Slow inhibition applied at various phases; near 25ms delays spiking most
Inhibition is also ineffective immediately after and before spiking.
Immediately after, the driving force (i.e., V_m) is small.
Immediately before, there isn't enough time to rise.

Calculating the PRC
Shifting \(x(t) \) up by \(A \) corresponds to shifting it left by \(PRC(t) \).

The PRC and the membrane voltage increase \((A)\) are related by:

\[
x[t + PRC[t]] = x[t] + A
\]

\[\Leftrightarrow \]

\[
PRC[t] = x^{-1}[x[t] + A] - t
\]

which requires us to solve for the waveform and find its inverse.

Quadratic integrate-and-fire neuron

Neuron's phase plot (left) and PRCs (right); threshold is at \(x = 0 \) due to offset.

This model can be solved analytically:

\[
x[t] = -\text{Cot}[t] \quad \text{with} \quad T = \pi
\]

\[\Leftrightarrow \]

\[
PRC[t] = \text{Cot}^{-1}[A - \text{Cot}[t]] - t
\]

The PRC depends on \(A \) as well, becoming more asymmetrical as it gets large. Because, larger kicks send neuron across the minimum—where they are most helpful—only if they happen earlier.
For small A, \dot{x} yields a good approximation for $\text{PRC}(t)$

Extrapolating $x(t)$ linearly yields:

$$\dot{x}[t] \text{PRC}[t] = A \iff \text{PRC}[t] = A / \dot{x}[t]$$

Predicts that phase advance is greatest when x is minimum—at the inflection point.

For the quadratic I&F neuron, we get:

$$\dot{x}[t] = 1 / \sin^2[t] \Rightarrow \text{PRC}[t] = A \sin^2[t]$$

This matches the $A = 0.1$ curve in the previous slide.
Inhibition

The PRC becomes more asymmetrical as \(A \) gets large in this case as well. But it is skewed toward latter times, because the kicks send the neuron back across the minimum.