Positive-Feedback Neuron

A cortical fast-spiking interneuron's phase-plot, computed from its membrane voltage trace (insert) [Izhikevich07]

Has an inflection in its membrane-voltage trace

Spike frequency increases sublinearly at high rates

Membrane-voltage equation
The inward currents (I_{in} plus I_{Na}) equal the outward currents (I_{k} plus I_{C})

\[
C_m \frac{dv_m}{dt} + g_{lk} V_m = I_{in} + I_{Na} \quad \text{where} \quad I_{Na} = \frac{1}{3} \left(\frac{v_m}{v_{th}} \right)^2 g_{lk} V_m
\]

\[
\tau_m \frac{dx}{dt} + x = r + \frac{1}{3} x^3 \quad \text{where} \quad \tau_m = \frac{C_m}{g_{lk}}, \quad x = \frac{v_m}{v_{th}}, \quad r = \frac{I_{in}}{g_{lk} v_{th}}
\]

Comparison

![In vitro diagram](image)

Matches neuron’s behavior in -70 to -5mV range (rat cortex L5 pyramidal cell) [Izhikevich07]
Fixed points: Rest and threshold

Two equilibria (left), corresponding to rest and threshold (right); r is set to zero.

We solve the membrane-equation for the derivative. It is proportional to the net current ($Input + Na - Leak$):

$$\frac{dx}{dt} = r + \frac{1}{3} x^3 - x$$

(time is in units of τ_m)

Plotting the derivative versus x for $r = 0$ reveals two fixed points:

Rest: A stable point at $x = 0$ — x moves toward 0 ($\dot{x} > 0$ when $x < 0$ and $\dot{x} < 0$ when $x > 0$).

Threshold: An unstable point at $x = \sqrt{3}$ — x moves away from $\sqrt{3}$ ($\dot{x} < 0$ when $x < \sqrt{3}$ and $\dot{x} > 0$ when $x > \sqrt{3}$).

That is, if you initialize x above $\sqrt{3}$ (i.e., peg V_m above $\sqrt{3} V_{th}$ and release it), the neuron will spike.

Adding input brings fixed points together
The equilibria move together (left); rest rises and threshold drops (right)

Increasing r shifts the phase-plot up, moving the equilibria closer. That is, the neuron rests at a higher voltage and has a lower threshold — the value above which x must be initialized to get a spike is now less than $\sqrt{3}$.

Saddle-node bifurcation

A bifurcation is said to occur when the number (or nature) of fixed-points changes

Eventually, the fixed points come together at $x = 1$. They coalesce into a saddle point — a fixed-point that is neither stable nor unstable — x may move toward it or away from it, depending on whether x is above or below ($\dot{x} > 0$ when $x < 1$ and $\dot{x} > 0$ when $x > 1$).

This is called a saddle-node bifurcation. When it happens, a neuron that was resting queiscently starts spiking rhythmically. That is, when x is reset to 0, it approaches 1, and sits there (similar to rest). However, with a little nudge (from noise), it takes off, producing a full-blown spike (similar to threshold). Thus, the current level at which the bifurcation occurs is the minimum input required for spiking.

Determining the minimum input
How far up must the phase-plot move for the minimum to touch the x-axis?

For the system \(\dot{x} = f(x, r) \), the input \(r_{th} \) at which the bifurcation occurs and the membrane voltage \(x_{th} \) at which the saddle-point appears must satisfy:

\[
f[x_{th}, r_{th}] = 0 \quad \text{and} \quad f'[x_{th}, r_{th}] = 0
\]

First find where \(f'(x, r) \), \(f' \)'s derivative with respect to \(x \), is 0:

\[
\frac{d}{dx} \left(r + \frac{1}{3} x^3 - x \right) = 0 \Rightarrow x^2 - 1 = 0 \Rightarrow x_{th} = \pm 1
\]

Then find the value of \(r \) that makes \(f(x_{th}, r) \) equal to 0:

\[
r + \frac{1}{3} - 1 = 0 \Rightarrow r_{th} = \frac{2}{3}
\]

Model membrane-voltage traces

Spikes sooner with increasing input current—once minimum is exceeded
Spike frequency

Theory (green) holds above 1 nA ($r = 3.3$)—five times the 0.2 nA minimum ($r = 2/3$).

The period T is obtained as:

$$\int_0^\infty dt = \int_0^\infty \frac{dx}{x} = \tau_m \int_0^\infty \frac{1}{r - x + x^3/3} \, dx$$

$$= \tau_m \int_0^\infty \frac{1}{r + x^3/3} \, dx \quad \text{when} \quad r > 1$$

$$= \frac{2}{3 \pi} \tau_m \frac{r}{r^{3/2}}$$

This result produced the green fit; the red one is a refined theory.
Next lecture: Adaptive neuron

Frequency adaptation (rat cortex L5 pyramidal cell) due to M-current