Synapse Model

Synapse formed between axonal button and dendritic spine

Neurotransmitter concentration is modeled as an extended pulse

Binding and unbinding are modeled by first-order kinetics

Dumping neurotransmitter

Neurotransmitter concentration in cleft increases rapidly and then decays slowly

\[\frac{dT}{dt} = -I_{\text{leak}} \quad \text{with} \quad T[0] = Q \]

\[\Rightarrow T[t] = Q - I_{\text{leak}} t \]
Binding to receptors

Neurotransmitter binds to receptors and ion-channels open

\[
\text{In[1]} := \quad T(t_{\text{bnd}}) = 0 \implies t_{\text{bnd}} = Q / I_{\text{leak}}
\]

Receptor affinity (K_D)

Neurotransmitter binds when concentration exceeds \(K_D \)

\[
\text{In[1]} := \quad T(t_{\text{bnd}^*}) = K_D \implies t_{\text{bnd}^*} = (Q - K_D) / I_{\text{leak}} < t_{\text{bnd}}
\]

Requiring that the concentration exceed \(K_D \) reduces first spike's efficacy by the fraction \(K_D / Q \); the second spike is unaffected.
Pulse extension

Experiment 1.3: Colliding pulses (10ms apart)

(Vq=1.97V Vpl=0.022V)

6 of 13
Linearity of pulse extension

![Graph showing the linearity of pulse extension with number of colliding pulses and pulse length.](image)

(Vq1=1.97V Vpl=0.022V)

Binding and unbinding rates

![Diagram illustrating binding and unbinding rates with time.](image)
Channels do not open or close instantaneously; it takes time

\[\frac{dR}{dt} = \frac{\alpha T (1 - r)}{\alpha T + \beta} - \beta r \]

With neurotransmitter (T) binding to receptors (R) at a rate \(\alpha \) and unbinding from them at a rate \(\beta \), the fraction of channels that are open changes at the rate:

\[\frac{dr}{dt} = \frac{\alpha T}{\alpha T + \beta} - \beta r \]

Time-constant and steady-state level

The time-constant determines how quickly steady-state is reached

The reaction kinetics are described by a first-order ODE with time-constant and steady-state level:

\[\tau[T] = \frac{1}{T + \beta} \quad \text{and} \quad r_\infty[T] = \frac{\alpha T}{\alpha T + \beta} \]

1. Half the channels open when the neurotransmitter concentration is \(\beta/\alpha \) — this is defined as \(K_D \).

2. \(r_\infty \) is a saturating function of \(T \) so it is reasonable to assume that \(r_\infty = 1 \) when \(T > K_D \) — this is how \(P(t) \) is defined.
Responses to step changes

The difference between the initial level and the steady-state level decreases exponentially with time.

When T is constant, the solution is:

$$ r[t] = r_\infty + (r[0] - r_\infty) e^{-(t-t_0)/\tau} $$

This holds for $t > t_0$.

Rise-Time

The rise-time equals the pulse-width, or three time-constants, whichever is shorter.

For $0 < t < t_p$ and $r[0] = 0$:

$$ r[t] = r_\infty (1 - e^{-t/\tau}) $$

When $t = t_p$, the conductance reaches its maximum value.

However, it is within 5% of its steady-state value when $t = 3\tau$.
Decay-Constant

The decay-constant equals the time-constant

For \(t > t_p \) and \(r[t_p] = r_p \):

\[
\tau(t) = \tau_p e^{-(t-t_p)/\tau_p} \quad \text{where } \tau_p = \frac{1}{\beta}
\]

since \(r_\infty = 0 \) when \(T = 0 \).

When \(t = t_p + \tau \), the conductance has decayed by a factor of \(e \) (a 63% decrease).

Temporal integration

Responses summate over time

If \(p_1(t) \) and \(p_2(t) \) produce \(r_1(t) \) and \(r_2(t) \) when presented separately, what happens when they are presented together? \(p_1(t) + p_2(t) \) produces \(r_1(t) + r_2(t) \); these sums satisfy the ODE if the individual pairs satisfy it.
The only requirement is that \(\tau \) cannot change — this is called **linear** behavior.

\[
\frac{1}{\tau} \frac{d}{dt} \left(r_1[t] + r_2[t] \right) + \left(\frac{1}{\tau} \frac{d}{dt} r_1[t] + r_2[t] \right) = p_1[t] + p_2[t]
\]

\[
\Rightarrow \left(\frac{1}{\tau} \frac{d}{dt} r_1[t] + r_1[t] \right) + \left(\frac{1}{\tau} \frac{d}{dt} r_2[t] + r_2[t] \right) = p_1[t] + p_2[t]
\]

\[
\Rightarrow p_1[t] + p_2[t] = p_1[t] + p_2[t]
\]