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Abstract—We describe a neuromorphic chip designed to 
model active dendrites, recurrent connectivity, and plastic 
synapses to support one-shot learning.  Specifically, it is 
designed to capture neural firing patterns (short-term memory), 
memorize individual patterns (long-term memory), and retrieve 
them when primed (associative recall).  It consists of a 
recurrently connected population of excitatory pyramidal cells 
and a recurrently connected population of inhibitory basket 
cells.  In addition to their recurrent connections, the excitatory 
and inhibitory populations are reciprocally connected.  The 
model is novel in that it utilizes recurrent connections and 
active dendrites to maintain short-term memories as well as to 
store long-term memories.   

 
 

I.  NEUROMORPHIC SYSTEMS 
 
 Neuromorphic engineers aspire to match the 
computational abilities of neurobiological systems by 
morphing the microanatomy and physiology of these systems 
into custom hardware [1].  To date numerous sensory 
systems have been constructed.  The principal example of 
these systems is the silicon retina [2].  The silicon retina 
includes thirteen cell types, wired according to the 
anatomical structure of the retina.  However, such sensory 
systems are pointless without the higher-order regions to 
which they project.  Therefore, neuromorphic engineers have 
developed a silicon model of axon guidance, which learns 
cortical topographic maps based solely on input correlations 
[3].  The logical progression is next to model deeper, more 
complex, and more plastic brain regions such as the 
hippocampus. 
 We have designed and fabricated a chip based on the 
neuroanatomy and neurophysiology of the hippocampus.  
Modeled after the hippocampus’ CA3 region, this 
neuromorphic chip is designed to perform aspects of episodic 
memory, the memory of sequences of events in space and 
time.  Specifically, it is designed to perform the aspects of 
episodic memory necessary for one shot-learning, which are 
to capture neural firing patterns (short-term memory), 
memorize individual patterns (long-term memory), and 
retrieve them when primed (associative recall). 
 

II.  ONE-SHOT LEARNING IN HARDWARE 
 

Hardware associative memory networks, such as the one 
described in [4], require distinct learning (training) and recall 
phases to perform memory tasks.  These memory systems 
require numerous presentations of each pattern to be stored 
during the off-line training phase.  Once trained, the system 
can recall memories when presented with subsets of the 
stored patterns.  In contrast, neurobiological associative 
memory networks, such as the hippocampus, perform one-
shot learning.  With just one presentation of a pattern, they 
can store a pattern.  These networks appear to require no 
separate learning and recall phases.  Instead, all learning 
occurs on line in real-time.   

Our model is designed to capture episodes in short-term 
memory in a single presentation and to transfer each pattern 
in the episode into long-term memory over time.  We realize 
short-term memory by modeling active basal dendrites of 
pyramidal cells [5].  We realize long-term memory by 
clustering strengthened synapses on basal dendrites [6].  We 
realize associative recall by exceeding the dendritic threshold 
to recruit inactive pyramidal cells in a stored pattern.  Figure 
1 shows our pyramidal cell population with recurrent 
connections to the basal dendrites and inputs to the apical 
dendrites. 

Fig. 1.  Pyramidal cells recurrently connect to the basal dendrites of other
pyramidal cells in the network.   
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A.  Phase Code in One-Shot Learning 
 
Our model uses a phase code to store sequential patterns 

of activity in short-term memory.  Each activity pattern in the 
sequence reactivates at a specific phase of the intrinsic theta 
(5-12Hz) oscillation.  The theta oscillation is divided into 
about seven slots by the intrinsic gamma (30-80Hz) 
oscillation.  Each slot can store one short-term memory for a 
total of seven patterns in the sequence.  The phase of the slot 
contains information about the sequential position of the 
short-term memory, a phase code [7].   

The phase-code repeatedly reactivates multiple short-
term memories in sequence at theta frequency, providing 
multiple opportunities to store each item in long-term 
memory with only a single presentation.  Long-term 
memories are stored by strengthening recurrent synaptic 
weights among neurons active in the same pattern, which 
creates attractor states in the network [8].  These attractor 
states can be recalled by exciting a subset of neurons in the 
original pattern, which recruit their peers via the strengthened 
recurrent synapses. 

The basal-dendrite model provides a mechanism for 
reactivating patterns.  Reactivation results from the basal 
dendrites’ active behavior.  They contain model ionic 
channels (simplified voltage- and calcium-dependent calcium 
channels and calcium-dependent potassium channels from 
[9]) capable of generating repeated calcium spikes at theta 
frequency when provided with a constant or slowly decaying 
input.  The slowly decaying input is provided by model 
NMDA synapses from other pyramidal cells in the pattern. 

 
B.  Long-term Potentiation  in One-Shot Learning 

   
The excitatory synapses that only contain NMDA 

receptors are called silent synapses.  Silent synapses pass 
miniscule current unless the postsynaptic neuron is 
sufficiently depolarized, because of the NMDA channel’s 
voltage dependence.  Therefore, recurrent silent synapses 
only excite neurons that were depolarized by an external 
input, maintaining the short-term memory without recruiting 
other neurons.  The pattern of activity is repeated over and 
over again, reactivating the short-term memory and 
providing multiple opportunities for transfer to long-term 
memory. 

The basal-dendrite model also provides a mechanism for 
long-term memory: increased synaptic strength among 
pyramidal cells active in the same pattern.  To increase 
synaptic strength, pyramidal cells augment their purely 
NMDA silent synapses from other pyramidal cells in the 
pattern with AMPA receptors in a process called long-term 
potentiation (LTP) [10].  LTP is known to depend on the 
magnitude of the NMDA current flowing through a silent 
synapse [10].  Therefore, in the model, when a NMDA 
current flowing from a silent synapse to a basal dendrite 
exceeds a threshold, that silent synapse is potentiated on that 
basal dendrite.   

When synapses from many pyramidal cells active in a 
pattern are potentiated on a basal dendrite the long-term 
memory is stored and can be associatively recalled.  
Associative recall occurs when inputs from stimulated 
pyramidal cells converge onto the same dendritic branch of 
an inactive peer and exceed the dendritic threshold.  In this 
fashion, an entire pattern may be recalled given a subset of 
the pattern as input. 

 
 

III.  SILICON SYSTEM 
 

The primary circuit used in the CA3 Chip is a current-
mode first-order low-pass filter (Figure 2 gray box).  The 
low-pass filter (LPF) is mathematically identical to a resistor-
capacitor circuit.  However, in the LPF currents represent 
both voltages and conductances.  The equation that describes 
the LPF is given by  

 
 (1) 

 
Fig 2.  Transistor implementations are shown for a synaptic cleft, NMDA 
synapse, basal dendrite (all simplified), and calcium buffer, with circuit 
icons in the top-left of each box.  The synaptic cleft circuit generates a 
current pulse (ICLEFT) of about one millisecond duration from the current 
impulse generated by the presynaptic action potential.  The NMDA synapse 
circuit passes the synaptic-cleft current pulse through a low-pass filter 
(LPF) to compute the glutamate bound to the NMDA receptors (IBOUND).  
The NMDA current (INMDA) is computed from the glutamate bound to 
NMDA receptors and the dendritic potential.  The basal dendrite circuit, 
which receives synaptic input and stimulates the soma (magenta) with its 
output, is also based on a LPF, with model potassium (blue) and calcium 
(red) channels added.  The calcium channels are opened when the dendritic 
potential (IDEND) exceeds the calcium threshold (ITH).  The calcium current 
is integrated by a LPF in the calcium buffer circuit to obtain the dendritic 
calcium concentration ([Ca]), which controls the model potassium and 
calcium channels (via a scaling circuit). 
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where IIN is the input current, IOUT is the output current, and 
Iτ, which represents a conductance, sets the time constant (C 
is the capacitance and Ut = 25mV is the thermal voltage).  
Changing a current that represents a conductance is 
equivalent to changing that conductance.  We can implement 
neurons with voltage-dependent conductances by making 
currents that represent conductances depend on currents that 
represent voltages.  Therefore, we can implement a large set 
of conductance-based neuron models in silicon.  Each 
neuron, synapse, membrane compartment, ionic channel 
population, and potentiation circuit is modeled by a LPF with 
different inputs and properties. 

 
A.  Synapses 
 

We implement three types of synaptic conductances: 
AMPA, GABAA, and NMDA.  All three types include a 
synaptic cleft circuit.  The synaptic cleft circuit models the 
time course of neurotransmitter release, which lasts for about 
one millisecond (Figure 2).  The neurotransmitter release is 
modeled as a current pulse, ICLEFT, with width TPULSE (set by 
the voltage applied to the gate of the leak transistor) and 
amplitude IMAG (set by the voltage applied to the gate of the 
series-connected transistor).  We use this current directly to 
model the AMPA conductance since this conductance is 
extremely fast. 

The GABAA circuit models the amount of 
neurotransmitter bound to the receptor and the resulting 
conductance, IGABAA, using a single LPF.  Hence,  

 
(2) 

   
where IGABA  represents the neurotransmitter in the synaptic 
cleft and IτGABAA sets the time constant. 

The NMDA circuit models the glutamate bound to 
NMDA receptors and the conductance of the NMDA 
receptor-gated channel.  The glutamate bound to the NMDA 
receptors, IBOUND, is modeled as a current pulse filtered by a 
LPF, as described by  

 
(3) 

 
where IGLU represents the neurotransmitter in the cleft and 
IτNMDA sets the time constant.  The NMDA conductance, 
represented by the current INMDA, is obtained by assuming 
this channel’s voltage dependent block has the form  

 
(4) 

 
where IDEND represents the basal dendrite’s potential, ITHNMDA  
is the NMDA threshold, and N = 5 is the Hill coefficient of 
the voltage dependence. 

We use these three conductances to model four types of 
synapses: ampaergic (with AMPA conductance), silent 
(NMDA), potentiated (both), and gabaergic (GABAA).   

 
 

B.  Neurons 
 

We implement two types of neurons: basket cells and 
pyramidal cells.  The basket cell is the simpler of the two 
neuron types.  It consists of a LPF augmented with model 
voltage-dependent sodium and potassium channels for spike 
generation (modified from [12]).  It receives GABA receptor 
mediated inhibition from the basket cell population 
(including itself) and AMPA receptor mediated excitation 
from the pyramidal cell population. 

 The pyramidal cell consists of a soma and forty-five 
basal dendrites, each of which receives input form every one 
of the pyramidal cell’s forty-five silent synapses.  The soma 
is identical to the basket cell, receiving gabaergic inhibition 
from the basket cell population.   

The basal dendrite circuit models the generation of 
calcium spikes by voltage- and calcium-dependent calcium 
channels and calcium-dependent potassium (Figure 2).  It 
represents the dendritic potential as a current, IDEND, which is 
described by 

 
 

(5) 
 

where IIN is the synaptic input current, ICA (red) is the 
calcium current, IK (blue) is the potassium current, and Iτ0 
sets the time constant when IK is zero.   

ICA, which acts to increase IDEND, is modeled by a 
threshold and a scaling circuit, as described by  
 

(6) 

  

Fig. 3.  Calcium spikes generated by the basal dendrite circuit (black) 
cause the soma to burst (magenta).  The calcium spike occurs when the 
dendrite surpasses a threshold, turning on the calcium current (red). The 
accumulation of calcium turns on the potassium (blue), which terminates 
the spike.  This data is taken from a silicon neuron with a constant input to 
basal dendrite.   
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where [Ca] is the dendritic ‘calcium concentration’; it has a 
maximum value of [Ca]MAX. ICA_MAX is the maximum 
calcium current and u(x) is the Heaviside function.  Hence, 
ICA turns on when IDEND exceeds ITH, the calcium threshold, 
initiating a calcium spike.   

IK, which shunts IDEND, is modeled by a scaling circuit 
described by 

 
(7) 

 
where IK_MAX is the maximum potassium current.  Hence IK 
turns on when [Ca] rises. 

 [Ca] is modeled by a LPF (Figure 2), representing 
various endogenous calcium buffers, and is described by  

 
(8) 

 
where IτCA sets the calcium time constant. As [Ca] rises, IK 
increases and ICA decreases, terminating the calcium spike 
(Figure 3). 

 
C.  Potentiation circuit 
 

A pyramidal cell has a single potentiation circuit that 
evaluates pair wise correlations between all forty-five of its 
basal dendrites and all forty-five of its silent synapses.  
Therefore, each potentiation circuit is constantly evaluating 

2025 correlations.  The potentiation circuit is able to evaluate 
all correlations by looking only at the basal dendrite and 
silent synapse that have the highest correlation at any point in 
time, which must be the most active of each (Figure 4).  The 
most active is selected through a winner-take-all competition 
with its peers [13].  The winning currents are sent to the 
potentiation circuit.  The potentiation circuit evaluates the 
NMDA receptor gated current between this most active pair.  
If the current exceeds threshold, the potentiation circuit sends 
the basal dendrite and silent synapse's addresses off chip in 
an address event.  Circuitry off chip implements binary 
valued LTP of the silent synapse,  moving it a potentiated 
site on the basal dendrite with which it is well correlated (by 
swapping memory locations in a lookup table).   

We have designed and submitted a chip that implements 
the basal-dendrite model, the CA3 Chip (Figure 5).  The CA3 
Chip was fabricated through MOSIS in TSMC’s (Taiwan 
Semiconductor Manufacturing Company) 0.25-micron 
CMOS process.  The CA3 Chip contains 430,000 transistors 
in 10mm2.  These transistors model 100 inhibitory basket 
cells, 100 pyramidal cells, each with 45 basal dendrites and 
45 silent synapses, and 100 potentiation circuits.  The 
neurons fire action potentials in real-time, sending spikes off 
chip and receiving spikes on chip using the address-event 
representation [11].   

 
IV.  RESULTS 

 
We investigated performance of the CA3 Chip in short-

term memory, long-term memory, and associative recall 
tasks.  Our setup uses a Tektronix Pattern Generator to 
briefly stimulate silent synapses and basal dendrites of 
pyramidal cells on the CA3 Chip.  Recurrent connections are 
implemented with RAM (random access memory) and a  

 
 
Fig 5.  Layout of CA3 Chip with 100 pyramidal cells, each with 45 basal 
dendrites and 45 silent synapses, is shown. These two 45 by 100 arrays 
take up most of the chip area. Between them is a column of 100 
potentiation circuits and they are bordered on the right by two columns, 
one with 100 somas and the other with 100 basket cells. The insert shows a 
close up view of the layouts of these individual circuits, which are tiled 
horizontally, to build each pyramidal cell. This horizontal slice is 17.9 
microns tall; the entire chip is 3.9mm by 2.5mm. 
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Fig. 4.  Long-Term Potentiation occurs when the NMDA current, which
depends on both dendritic potential and synaptic input, surpasses a
threshold.  Only one silent synapse (yellow) can be potentiated (green) in a
given infinitesimal time window.  This synapse should be the one with the
largest NMDA current.  The source of the largest current is the most active
silent synapse, and the sink of the largest current is the most active basal
dendrite.  Two winner-take-all (WTA) circuits select the most active silent
synapse and basal dendrite.  If the NMDA receptor dependent current
between them exceeds a threshold, a signal is sent off chip. 
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Lattice CPLD (complex programmable logic device).  We 
acquire address-event (spike) data in real-time using a 
National Instruments DIO (digital input-output) card in the 
PC and custom software, which displays the spike rasters.   

For short-term memory experiments, ten of one hundred 
pyramidal cells are randomly selected.  One basal dendrite 
from each of these ten pyramidal cells is selected.  These 
selected basal dendrites are briefly excited from the pattern 
generator with three spikes one microsecond apart (yields 
same results for inputs several milliseconds apart).  The 
rasters are recorded.   

The CA3 Chip failed to store short-term memory 
because the pyramidal cells could not maintain synchrony by 
exciting each other.  However, we were able to entrain them 
to the basket cells, which were slowed down to oscillate at 
theta frequency for this purpose (Figure 6).  Thus, we were 
able to realize short-term memory behavior through 
synchronization by inhibition, but not through 
synchronization by excitation as we originally intended.  Co-
opting the inhibitory basket cells in this fashion precluded 
storing multiple simultaneous short-term memories.  Thus, 
we were unable to test this functionality.   

For long-term memory experiments, one basal dendrite 
and one silent synapse are each excited.  The basal dendrite 
receives enough excitation to cause a calcium spike, eliciting 
a burst of action potentials at the soma.  The spikes from the 
pyramidal cell as well as any learning signals from the 
potentiation circuit are recorded.  The delay between the time 
the silent synapse receives input and the time of the last spike 
in the burst is computed. By varying the delay between the 
times at which the basal dendrite and silent synapse are 
stimulated, and performing multiple trials, we can measure 
the probability of potentiation at each delay relative to the 
end of the burst. 

The CA3 Chip successfully sends a potentiation signal 
when a silent synapse and basal dendrite are well correlated.  
The potentiation circuit exhibits a form of spike timing 
dependent plasticity (Figure 7).  If the silent-synapse 
activation precedes the last spike of the burst by up to 30 
milliseconds, it is likely to be potentiated.  However, during 
high activity (where many pyramidal cells and basket cells 
are spiking) digital noise causes the analog potentiation 
circuits to send frequent erroneous signals that contain only a 
silent-synapse or basal-dendrite address, instead of both 
together.  These errors have prevented us from implementing 
real-time learning of long-term memories by the system. 

For associative recall experiments, an activity pattern (or 
several patterns) consisting of ten of one-hundred pyramidal 
cells is stored in RAM.  One basal dendrite on each 
pyramidal cell in the pattern receives potentiated synaptic 
input from every other pyramidal cell in the pattern.  Three 
of the ten pyramidal cells in the memory are randomly 
selected.  The basal dendrites involved in the memory of the 
selected pyramidal cells are excited from the pattern 
generator with three spikes one microsecond apart (yields 
same results for inputs several milliseconds apart).  The 
rasters are recorded.   

Time (s) 
Fig. 6.  In the short-term memory task, ten randomly chosen silicon 
pyramidal cells are stimulated by a brief external input (red stars) and most 
(9/10) respond by repeatedly firing action potentials (black raster lines) at 
theta frequency, maintained by NMDA-like recurrent connections and active 
basal dendrites.  No other pyramidal cells fired. 
 

Time (s) 
Fig. 8.  In the associative recall task, three of ten silicon pyramidal cells in a 
previously stored memory are stimulated by a brief external input (red stars) 
and most (8/10) respond by repeatedly firing action potentials (black raster 
lines) at theta frequency, maintained by potentiated recurrent connections 
and active basal dendrites. No other pyramidal cells fired. 
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The CA3 Chip successfully performs associative recall.  
When three of ten pyramidal cells involved in a previously 
stored memory pattern are activated, they recruit most or all 
of their unstimulated peers in the memory (Figure 8).  
However, the CA3 Chip is unable to store many patterns with 
overlapping pyramidal cell activities.  We have stored only 
six memories.  The dendritic thresholds are sensitive to 
transistor mismatch.  Therefore, some pyramidal cells can be 
recruited with just one spike, whereas others require 
numerous spikes.  The most excitable dendrites quickly 
recruit other excitable dendrites that are active in the 
overlapping patterns.  Within seconds every pyramidal cell in 
the network fires synchronously at a frequency determined 
by the inhibition.   

 
 

V.  DISCUSSION 
 

The CA3 Chip performs short-term memory, long-term 
memory, and associative recall in a limited manner.  It is 
limited by its sensitivity to transistor mismatch, which 
creates variability in the calcium-spike thresholds and in the 
oscillation frequencies.  These mismatched oscillation 
frequencies disrupted synchrony by excitation but did not 
disrupt synchrony by inhibition. Hence, the basal dendrites  
(firing rate coefficient of variation = 1.02) were unable to 
synchronize on their own, whereas the basket cells (firing 
rate coefficient of variation = 0.95) were able to synchronize 
them as well as synchronize on their own (Figure 9).  Thus, 
inhibition proved to be a more robust synchronization 
mechanism than excitation. 

In the next silicon model, we plan to compensate for the 
variable oscillation frequency of the calcium spikes by 
employing a second population of interneurons to provide 
dendritic inhibition to coax the dendrites to synchronize.  
This dendritic synchronization should allow storage of 
multiple short-term memories, isolated by somatic inhibition 
from basket cells.  We will compensate for the variable 
calcium spike thresholds by employing adaptive mechanisms 
analogous to spike frequency adaptation or a homeostatic 
mechanism to control the dendritic threshold.  We will 
compensate for the potentiation circuit noise by introducing 

an additional CPLD into the system to filter erroneous 
events, allowing the goal of real-time one-shot storage of 
patterns as long-term memories to be achieved. 
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