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Aging is accompanied by a decline in tissue function,

regeneration, and repair. A large part of this decline is caused

by the deterioration of tissue stem cell function. Understanding

the mechanisms that drive stem cell aging and how to

counteract them is a critical step for enhancing tissue repair

and maintenance during aging. Emerging evidence indicates

that epigenetic modifiers and metabolism regulators interact to

impact lifespan, suggesting that this mechanism may also

affect stem cell function with age. This review focuses on the

interaction between chromatin and metabolism in the

regulation of tissue stem cells during aging. We also discuss

how these mechanisms integrate environmental stimuli such as

nutrient stress to regulate stem cell function. Finally, this review

examines new perspectives for regeneration, rejuvenation, and

treatment of age-related decline of stem cell function.
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Tissue-specific stem cells are present in virtually every

adult tissue in mammals and are essential for tissue

homeostasis and repair after injury (Box 1). The striking

decline in stem cell function during aging, coupled with a

bias in the type of differentiated cells they generate,

could drive the deterioration in tissue function and dimin-

ished capacity for tissue repair in older individuals [1].

Stem cell function is regulated in response to exposure of

individuals to a variety of external stimuli, including

nutrient stress (e.g., starvation or caloric restriction, or

high fat diets). Knowledge of the mechanisms by which
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stem cells integrate signals from the environment will be

critical to identify strategies to preserve or reactivate their

function in old age.

Understanding the interaction between cellular metabo-

lism and chromatin features in stem cells is confounded

by the complexity of stem cell fates compared to many

other somatic cells. Stem cells, by their very nature, give

rise to progeny that are vastly different in terms of

virtually every biological parameter. For example, quies-

cent stem cells exhibit minimal metabolic activity, have

few mitochondria and other organelles, and have a minus-

cule cytoplasmic volume. In contrast, proliferating prog-

eny manifest dramatic energetic shifts, increases in bio-

synthetic activity, and cell growth. As these progeny

differentiate into mature, tissue-specific cells, there are

again dramatic structural and functional changes. The

dynamic interaction between cellular metabolism and the

epigenome is emerging as pivotal to the control of stem

cell transitions and function (Figure 1). This review will

discuss recent work connecting metabolism and chroma-

tin regulators in mammalian tissue-specific stem cells,

focusing primarily on mechanisms that are relevant to the

process of aging and that could be used to restore function

to old stem cells.

Interaction between epigenetic and metabolic
pathways in organismal aging
The importance of epigenetic mechanisms in controlling

aging has been extensively reviewed [2–5]. In this sec-

tion, we will present recent studies that have uncovered

intriguing connections between key chromatin regulators

and metabolic pathways in the regulation of lifespan in

yeast, worms, and flies. These studies help illustrate the

importance of the interactions between chromatin and

metabolism in the regulation of processes that may be

important in cell and tissue aging. For example, deletion

of the chromatin remodeler SWI/SNF (ISW2) extends

replicative lifespan in yeast, in a manner that mimics

caloric restriction [6]. Consistent with these findings,

genome-wide analysis indicates that in ISW2-deficient

yeast, changes in nucleosome positioning partially repli-

cate those of calorie-restricted cells [6]. As nucleosome

positioning is critical for gene expression regulation, these

results suggest that a common mechanism, regulated by

both chromatin remodelers and caloric restriction,

impacts many target genes in a coordinated manner.

Chromatin remodelers of the SWI/SNF family also play

a key role in modulating lifespan in Caenorhabditis elegans
[6,7], notably in partnership with FOXO/DAF-16
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2 Cell regulation

Box 1 Adult stem cells.

In many stem cell compartments, the lineage consists of a quiescent

stem cell that can activate (proliferate) and generate more committed

progenitors and differentiated progeny [66]. Adult stem cells can be

unipotent (i.e., generate one differentiated cell type) or multipotent (i.
e., generate several differentiated cell types). For example, muscle

stem cells (MuSCs) are unipotent and give rise to one cell type—

muscle fibers. In contrast, hematopoietic stem cells (HSCs) and

neural stem cells (NSCs) are multipotent and can give rise to several

types of differentiated cells (NCS, e.g., give rise to neurons, astro-

cytes and oligodendrocytes). Some stem cells are very important for

tissue homeostasis (HSCs, intestinal stem cells [ISCs]). Other stem

cells are activated in response to injury (MuSCs and to a lesser

extent NSCs), although they can also contribute to some aspect of

homeostasis (NSCs).

During aging, two key aspects of stem cell function are primarily

affected in multiple stem cell lineages: the transition from quiescent

stem cells to activated stem cells and the bias in generated differ-

entiated cell types. For example, HSCs exhibit a myeloid bias during

aging whereas NSCs exhibit an astrocytic bias. Single cells studies

have recently revealed additional cellular transitions in stem cell

lineages, and such transitions could also be affected during aging

[67–69].

Stem cells are present within complex ‘niches’ that are often in tight

connection with blood vessels, thereby providing an interface with

the systemic environment and factors in the blood (metabolites,

hormones, growth factors, etc.) [70,71]. In the brain, neural stem cells

are also in contact with the cerebral spinal fluid [72], providing an

additional source for external stimuli, such as metabolites.
transcription factor downstream of the insulin-signaling

pathway [7]. Furthermore, changes in global chromatin

structure were observed in conditions (mitochondrial

deficiency) that extend lifespan in C. elegans [8]. These

studies in yeast and worms, coupled with the observed

changes in nucleosome positioning during aging in mouse

tissues [9], highlight the importance of chromatin struc-

ture and nucleosome positioning in integrating metabolic

changes to regulate lifespan [10].

In addition to chromatin remodelers, several histone

modifiers, including Sirtuin deacetylases, have been

shown to link metabolic state to organismal lifespan

regulation [11]. Recently, in Drosophila, key metabolites

including acetylCoA were found to be increased during

aging. This increase is accompanied by an increase in

global histone acetylation, notably acetylated lysine 12 on

histone H4 (H4K12ac). Consistent with these observa-

tions, mutation in the H4K12 acetyltransferase Chameau
extends the lifespan of male flies [12�]. Histone methyl-

ation regulators, including H3K4me3, H3K36me3, and

H3K27me3 regulators, have also been found to regulate

lifespan in C. elegans [13–17]. Interestingly, the conserved

H3K27me3 demethylase Jmjd-3.1/JMJD3 and the

H3K27me2 demethylase Jmjd-1.2/PHF8 were recently

found to specifically mediate longevity caused by mito-

chondrial deficiency in C. elegans [18��]. Mitochondrial

deficiency triggers the specific upregulation of nuclear-

encoded genes involved in the response to mitochondrial
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unfolded protein response [18��]; this could mediate long-

lasting transcriptional responses in response to deficit in

mitochondrial function. In mammals, PHF8 and JMJD3

expression is correlated with the longevity of outbred

mice [18��]. Thus, histone modifiers that are responsive

to cellular metabolic state are key determinants of organ-

ismal longevity.

These recent examples highlight the interaction between

chromatin state and cellular metabolism in influencing

longevity, at least in model organisms. The interrelated

processes of chromatin regulation and metabolism are

increasingly being studied in the areas of stem cell aging

and general stem cell biology in mammals. In the follow-

ing sections, we discuss recent findings that reveal key

epigenetic changes that are associated with stem cell

aging and that, in some cases, reflect the potential impact

of cellular metabolism on the epigenetic state.

Epigenetics and stem cell aging
Epigenetic changes associated with somatic stem cell

aging have been reported for multiple stem cell popula-

tions, notably hematopoietic stem cells (HSCs) and

muscle stem cells (MuSCs)/satellite cells [19,20]. In both

HSCs and MuSCs, there is an age-dependent increase in

the repressive histone modification H3K27me3, whereas

H3K4me3, a mark associated with active genes, shows

increase in breadth in HSCs but decreases slightly in

intensity in quiescent MuSCs with age. In each case, the

increase in H3K27me3 is associated with a down-regula-

tion of a limited number of genes associated with stem

cell function. These results are interesting in light of the

recent finding that the H3K27me3 demethylase UTX is

important for MuSC-mediated muscle regeneration [21].

However, the specific effects of these chromatin changes

on stem cell function remain to be tested, particularly

given that different regulators of the same H3K27me3

mark (e.g., the H3K27me3 demethylases UTX and

JMJD3) can either extend or shorten lifespan in model

organisms [14,18��,22].

Changes in a number of other chromatin features, most of

which are also altered with age, have been shown to

regulate stem cell function [23]. For example, changes

in DNA methylation affect the differentiation potential

of HSCs [24,25]. Furthermore, H3K9 methylation, a

mediator of heterochromatin formation, is important for

HSC differentiation [26]. H4K20 methylation controls

MuSC quiescence by promoting the formation of facul-

tative heterochromatin [27�]. Finally, exceptionally broad

H3K4me3 domains form a signature for cell function/

identity, and these extended domains mark genes that are

critical for the ability of neural stem cells (NSCs) to self-

renew and to differentiate into neurons [28]. How these

different epigenetic marks are affected in aging stem cells

is not yet known. It will be important to develop methods

to modify the epigenetic state of specific genetic loci to
www.sciencedirect.com
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Changes in metabolism could have long-lasting impact on stem cell
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Metabolites are co-factors of many chromatin regulators, thereby

directly connecting metabolic state with chromatin state.
test for causal effects on stem cell function [29,30] to

determine if the epigenome of old stem cells can be

‘reset’ to a youthful state [31].

Direct modulation of epigenetic regulator
activity by metabolites in stem cells
While epigenetic states are clearly under multiple levels

of control, their direct regulation by metabolites in a

variety of cell types, including stem cells, is an area that

has recently been of great interest. It is noteworthy

that the co-factors important for enzymes that regulate

chromatin modifications (e.g., DNA methylation/

demethylation, histone acetylation/deacetylation, and

histone methylation/demethylation) are metabolites

whose levels are determined by the metabolic status

of the cell [32]. This direct link raises the intriguing

possibility that changes in metabolism could have global

effects on the stem cell epigenome and stem cell func-

tion (Figure 2).

It was recently shown that decreases in levels of cellular

NAD(+), a co-substrate for Sirtuin deacetylases and other

enzymes [33], lead to elevated H4K16 acetylation and the

induction of expression of a myogenic program in MuSCs

during activation out of quiescence [34��]. NAD(+) has

been shown to become limiting during aging and these

changes could drive the global changes in histone acety-

lation levels [35]. Other metabolites could play important

roles in modifying chromatin to impact stem cell function

or transitions. For example, changes in alpha-ketoglutarate

levels in response to knockdown of phosphoserine amino-

transferase 1 (PSAT1) affects embryonic stem cell (ESC)

differentiation, especially in the ectoderm (neural) lineage

[36]. Alpha-ketoglutarate is a co-factor not only for TET

enzymes (implicated in DNA demethylation) but also for

Jumonji family proteins (histone demethylases), and could

thereby exert widespread effects on chromatin in many
www.sciencedirect.com 
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stem cells. Likewise, S-adenosyl-methionine (SAM) is a

cofactor for histone methyltransferases and has been shown

to connect H3K4 methylation to one carbon metabolism

[37] and threonine metabolism [38]. How SAM levels

change with age in different cell types, including stem

cells, is not known, but changes in SAM levels could play an

important role in orchestrating age-dependent changes in

histone methylation marks in response to variations in one-

carbon metabolism. These examples illustrate a diverse set

of connections between metabolites and specific chromatin

regulators. Thus, select metabolites could promote long-

lasting changes in gene expression and stem cell state

changes in response to environmental stimuli. Given the

epigenetic changes associated with stem cell aging, it will

be of interest to understand how changes in metabolic

regulation associated with aging underlie these age-related

changes in chromatin.

Indirect regulation of stem cell function by
metabolism: effects of nutrient sensing
pathways
While some key regulators of lifespan and healthspan,

such as sirtuins, are directly regulated by metabolites,

other crucial regulators, including the insulin-FOXO and

the mTOR signaling pathways, are global integrators of

cellular nutrient and metabolic status (Figure 3). The role

of these pathways in the control of stem cell fate has been

extensively reviewed [39]. Here, we will focus in how

these pathways affect stem cell function and their

changes with age, at least in part through modulation

of chromatin/transcriptional states.

Sirtuins play important roles in the function of several

somatic stem cells. Inactivation of the sirtuin SIRT1 in

mouse NSCs leads to the expansion of oligodendrocyte

progenitors and leads to the misregulation of genes

involved in metabolism, notably amino-acid metabolism
Current Opinion in Cell Biology 2017, 45:1–7
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Figure 3
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Dietary control of regulators of stem cell function and consequences for tissue aging.
[40]. In HSCs, the Sirtuin SIRT7 is important for the

modulation of the mitochondrial unfolded protein

response, downstream of mitochondrial stressors. SIRT7

expression is downregulated during aging in HSCs, and

its expression maintains HSC function in part by repres-

sing NRF1 genomic targets [41��]. Finally, in MuSCs, as

described above, SIRT1 responds to the cellular ener-

getic state via NAD(+) to act as an epigenetic regulator

that influences stem cell fate [34��]. Interestingly, SIRT1

has been implicated in the regulation of autophagy in

MuSCs [42], and the induction of autophagy is necessary

for MuSC activation out of the quiescent state by provid-

ing essential building blocks for macromolecular synthe-

sis associated with the rapid growth of stem cells during

this transition [42].

The transcription factor FOXO3 is critical for the main-

tenance of NSC and MuSC quiescence [43–46]. FOXO3

enhances HSC survival in response to complete starvation

by poising the cells for the rapid induction of autophagy

[47]. Indeed, several of FOXO3 targets are implicated in

autophagy [48]. In contrast, in nutrient rich environments,

mTOR signaling, a key nutrient sensing pathway that

influences lifespan and suppresses autophagy [49], is

essential for the induction of quiescent cells MuSCs

and HSCs into a poised state (GAlert) for more rapid

activation [50]. Thus, autophagic processes that are cata-

bolic but also support cellular anabolic activities may be

important as determinants of stem cell aging by their roles
Current Opinion in Cell Biology 2017, 45:1–7 
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essential for epigenetic changes.

The role of external stimuli: effects of
starvation/refeeding and high fat diets on
stem cell function
The impact of metabolism on stem cell aging is suggested

by the profound effect that caloric restriction has in

extending lifespan. In addition, caloric excess (e.g., high

fat diets) often has negative healthspan and lifespan

effects [51]. Dietary changes that mimic fasting and that

delay the onset of age-related pathologies are able to

enhance the function of stem cells in multiple tissues

[52��]. Prolonged fasting itself promotes HSC-based

regeneration of the hematopoietic system [53]. Caloric

restriction also enhances intestinal stem cell (ISC) func-

tion and intestinal regeneration [54]. The expansion of

ISCs by caloric restriction depends upon the key nutrient

sensors, mTOR and SIRT1 [55]. In contrast, high fat diet

promotes dysregulation of ISCs and their progeny, result-

ing in an increased incidence of intestinal tumors [56].

Whether changes in stem cell function in response to

nutrient availability are mediated by epigenetic changes

is still largely unclear, but a few examples are emerging.

For instance, the regulation of NSC proliferation in

response to decreased glucose availability is governed

by the nutrient sensors CREB and SIRT1, and the effects

of caloric restriction are accompanied by an increase in
www.sciencedirect.com
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H3K9Ac [57�]. Changes in dietary intake are accompa-

nied by massive changes in chromatin states in several

species [58,59]. Although these studies were not done in

stem cells, it is likely that extensive changes in the

epigenome also accompany the altered stem cell activity

in response to changes in nutrient availability. In the

future, it will be interesting to explore the extent to which

those epigenetic changes mediate stem cell aging.

Conclusion and future outlook
While exciting progress has been made in understanding

how metabolic process and chromatin modifiers interact

in stem cells, it is still unclear how this interaction affects

stem cell function, how it is impacted by environmental

stimuli, and how it changes during aging. A deeper

knowledge of the interaction between chromatin regula-

tors and metabolic processes will be critical for under-

standing stem cell responses to other physiological pro-

cesses that impact metabolism such as circadian rhythm,

exercise, or sleep. As chromatin changes can have a long-

lasting impact, it will be important to determine the

kinetics and window of action of the key regulators of

metabolism and chromatin states. This interaction could

explain how changes in nutrition early in life could have

long-lasting consequences on tissue function and regen-

eration in adulthood (and even possibly in the subsequent

generations).

It is important to note that most studies so far have been

conducted in bulk populations of cells, thereby obscuring

potential cell heterogeneity and cell-to-cell variability in

chromatin states and metabolic responses. Initial studies

on limited numbers of genes have reported increased in

cell-to-cell transcriptional variability during aging of car-

diomyocytes [60], but not of HSCs [61]. Recent techno-

logical developments have allowed single cell transcrip-

tomic and chromatin accessibility studies. Thus, an

interesting future area of study will be to uncover how

chromatin and metabolites are modulated at the single

cell level and whether there is an increase in cell-to-cell

variability during aging. Recent evidence has provided

some link between chromatin regulators and cell-to-cell

variability. For example, H3K4me3 regulators have

recently found to be associated with reduced cell-to-cell

transcriptional variability [28]. Furthermore, the linker

histone H1.0 has been shown to exhibit cell-to-cell het-

erogeneity in cancer stem cells [62]. Cell-to-cell variabil-

ity within a stem cell niche during aging could be partic-

ularly deleterious for the coordination of tissue

regeneration or repair upon injury.

It will also be interesting to determine the role that the

interaction between metabolism and epigenetic factors

plays in the rejuvenation of old stem cell function in

response to interventions that revert some aspects of

aging. For example, heterochronic parabiosis, the fusion

of an old and young organism by the blood circulation, can
www.sciencedirect.com 
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revert hallmarks of aging in several stem cells [63,64].

The mechanisms of rejuvenation of old stem cells could

be mediated at least in part by the interaction between

metabolites and epigenetic regulators. Similarly, cellular

reprogramming has also been shown to reset several age-

dependent phenotypes including metabolic (mitochon-

dria) and epigenetic features [65]. Thus, the manipulation

of specific metabolic and epigenetic pathways, especially

those that occur early during the reprogramming process,

could be sufficient to promote rejuvenation without

inducing de-differentiation.

Collectively, the knowledge of the interaction between

metabolism and epigenetics will be critical to identify

new strategies for preserving youthful cellular function as

organisms age or to counteract age-related dysfunction of

stem cells in old tissues.
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