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SUMMARY

AMP-activated protein kinase (AMPK) is a central en-
ergy gauge that regulates metabolism and has been
increasingly involved in non-metabolic processes
and diseases. However, AMPK’s direct substrates in
non-metabolic contexts are largely unknown. To bet-
ter understand the AMPK network, we use a chem-
ical genetics screen coupled to a peptide capture
approach in whole cells, resulting in identification of
direct AMPK phosphorylation sites. Interestingly,
the high-confidence AMPK substrates contain many
proteins involved in cell motility, adhesion, and inva-
sion. AMPK phosphorylation of the RHOA guanine
nucleotide exchange factor NET1A inhibits extracel-
lularmatrix degradation, an early step in cell invasion.
The identification of direct AMPK phosphorylation
sites also facilitates large-scale prediction of AMPK
substrates. We provide an AMPK motif matrix and
a pipeline to predict additional AMPK substrates
from quantitative phosphoproteomics datasets. As
AMPK is emerging as a critical node in aging and
pathological processes, our study identifies potential
targets for therapeutic strategies.

INTRODUCTION

The ability to adjust to nutrient stress is critical for cellular and

organismal functions. Central to this process is AMP-activated

protein kinase (AMPK), an energy-sensing protein kinase that

regulates metabolic processes (Hardie and Carling, 1997). At

the cellular level, AMPK responds to low energy levels by pro-

moting glucose uptake (Kurth-Kraczek et al., 1999), increasing

catabolism (Egan et al., 2011; Wang et al., 2001), and inhibiting

anabolic processes (Gwinn et al., 2008; Sim and Hardie, 1988)

through a repertoire of substrates. Systemically, AMPK inte-

grates hormonal signals to trigger food intake and prevent en-

ergy expenditure (Andersson et al., 2004; Hardie and Ashford,
Cell M
2014). The critical role of AMPK in metabolic regulation has

made it an attractive pharmacological target for treatment of

metabolic diseases like diabetes (Winder and Hardie, 1999).

Indeed, several AMPK activating compounds have recently

been identified (Hawley et al., 2012; Zadra et al., 2014; Zhou

et al., 2001). As AMPK has been implicated in extending lifespan

in several organisms, including potentially humans (Apfeld et al.,

2004; Burkewitz et al., 2014; Greer et al., 2007; Mair et al., 2011),

it is also an attractive target to delay aspects of aging.

AMPK activity has also been linkedwith processes that are not

directly viewed as metabolic, including mitosis (Banko et al.,

2011; Bettencourt-Dias et al., 2004; Vazquez-Martin et al.,

2009), development (Lee et al., 2007), and cell polarity (Zhang

et al., 2006; Zheng and Cantley, 2007). While many of the sub-

strates that mediate AMPK’s effect on metabolism have been

well studied (Chen et al., 2008; Gwinn et al., 2008; Sim and Har-

die, 1988), those connecting AMPK to non-metabolic roles are

largely unknown. Additionally, aberrant AMPK activity has

been associated with diseases like cancer (Kato et al., 2002;

Liang and Mills, 2013; Xiang et al., 2004), and the functionally

relevant substrates in disease often remain obscure. The emer-

gence of unexpected roles of AMPK and the increasing effort

to pharmacologically target this kinase make it critical to fully un-

derstand the AMPK substrate network in the context of specific

diseases and cellular states.

Central to a kinase-substrate interaction is the exact phos-

phorylated residue. Previous efforts to characterize the AMPK

network in whole cells have focused on protein substrate, but

not phosphorylation site, identification (Banko et al., 2011). Addi-

tionally, while in vitro phosphorylation motif libraries have helped

predict AMPK substrates (Egan et al., 2011; Gwinn et al., 2008),

large-scale identification of AMPK phosphorylation sites has

never been done. Interestingly, a new approach was developed

to identify direct phosphorylation sites of a protein kinase in vitro

(Blethrow et al., 2008; Hengeveld et al., 2012). However, this

method had not been used in whole cells.

To understand the AMPK substrate network at the resolution

of the phosphorylated site, we combined a chemical genetic

screen (Banko et al., 2011) and peptide capture approach (Bleth-

row et al., 2008), allowing us to identify direct AMPKa1 and a2

phosphorylation sites. We provide a comprehensive resource
etabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc. 907
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Figure 1. Screening Strategy to Identify AMPKa1 and a2 Substrates and Phosphorylation Sites in Cells

(A) Schematic of the peptide-capture technique used to identify analog-specific (AS) AMPKa1 and a2 substrates and phosphorylation sites in whole cells.

AS-AMPK uses A*TPgS, a bulky ATP analog, to thiophosphorylate substrates. Upper panel: thiophosphorylated substrates are alkylated by p-nitrobenzyl

mesylate (PNBM) and recognized by an antibody to the thiophosphate moiety (thioP). Lower panel: thiophosphorylated peptides are captured on a resin, eluted,

and identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 2DG, 2-deoxy-D-glucose.

(legend continued on next page)
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of over 50 AMPK substrates and phosphorylation sites in a

human cancer cell line. This screen revealed that AMPK con-

trols different aspects of cellular motility and invasion. We also

provide an AMPK motif matrix and pipeline to further predict

additional components of the AMPK network, which should

have critical implications in pharmacological targeting of AMPK

in disease or aging.

RESULTS

AComprehensive Physiological Screen for AMPKa1 and
a2 Substrates in a Human Cancer Cell Line
To characterize the AMPK network, we conducted a screen to

identify direct AMPK substrates and phosphorylation sites. We

used an analog-specific (AS) method of kinase-substrate identi-

fication (Banko et al., 2011; Shah et al., 1997), which utilizes a

mutant of AMPK that accepts N6-(phenethyl) ATPgS, a bulky

form of ATP introduced into cells with gentle digitonin permeabi-

lization, to tag direct substrates with a thiophosphate moiety

(Figure 1A). We coupled this approach to a peptide capture sys-

tem, allowing identification of the exact phosphorylation site by

tandem mass spectrometry (Blethrow et al., 2008; Hertz et al.,

2010) (Figure 1A).

AMPK is a heterotrimeric protein kinase composed of a cata-

lytic a subunit (a1 or a2) as well as regulatory b and g subunits.

We had previously screened for AMPKa2 substrates by overex-

pressing an analog-specific (AS) version of AMPKa2 together

with b and g subunits in 293T cells (Banko et al., 2011). To extend

our screen to AMPKa1 and better approximate physiological ki-

nase activity, we generated stable U2OS cell lines that inducibly

express AS or wild-type (WT) AMPKa1 or a2 upon doxycycline

addition (Figures S1A and S1B). While AMPKa1 or a2 subunits

were overexpressed in these U2OS cell lines, this did not lead

to substantial dysregulation of endogenous AMPK substrates

(Figure S1D), probably because the endogenous b and g sub-

units keep the activity of the exogenous a subunit in check.

Thus, this system provides screening conditions that better

approximate physiological AMPK activity.

Both AS-AMPKa1 and a2 were able to use N6-(phenethyl)

ATPgS to thiophosphorylate endogenous substrates in U2OS

cells upon activation by serum starvation and 2-deoxy-D-glucose

(2DG) (Figure1B). Theydid sowith lessbackgroundthiophosphor-

ylation than in 293T cells overexpressing all AMPK subunits

(Figure1B) (Bankoetal., 2011).AS-AMPKa1anda2also thiophos-

phorylated endogenous substrates when activated by 2DG alone

or by the specific AMPKactivator A769662 (Cool et al., 2006) (Fig-

ure 1C). They also thiophosphorylated the knownAMPKsubstrate
(B) HA-tagged AS-AMPKa1 and a2 thiophosphorylate endogenous substrates in

starved for 2 hr and stimulated for 5minwith 100mM2DG, then incubatedwith A*T

(thioP) and exogenous AMPK subunits (HA tag).

(C) HA-tagged AS-AMPKa1 and a2 thiophosphorylate endogenous substrates un

the presence of thiophosphorylation (thioP) and AMPKa (HA tag, AMPKa1, AMP

panel: 15 min of 50 mM 2DG; third panel: 30 min of 300 mM A769662. Represe

A769662, respectively. Empty, empty vector; a1WT, WT-AMPKa1; a1AS, AS-AM

(D) Summary ofmass spectrometry datasets. AMPK-activating conditions as in Fig

(E) Known AMPK substrates identified in multiple AS-AMPK datasets. Underline

(more than one is shown if the phosphopeptide hadmultiple or ambiguous phosph

site corresponding to the known AMPK site. ‘‘j,’’ ambiguous site identification. S7

site on BAIAP2.

Cell M
PPP1R12C in U2OS cells with less background than in 293T cells

(Figure S1C) (Banko et al., 2011).

To use the analog-specific approach to identify not only AMPK

substrates, but also the exact AMPK phosphorylation sites, we

coupled it to a peptide capturemethod developed for concurrent

AS-substrate and phosphosite identification (Blethrow et al.,

2008; Hertz et al., 2010) (Figure 1A). Since this peptide capture

method had not yet been used in whole cells, we first determined

its efficacy in 293T cells overexpressing AS-AMPKa2, b1, and g1

subunits or their respective controls (Figure 1D, top row). We

successfully identified phosphopeptides unique to AS-AMPKa2

(Figure S1G). We then performed ten biological experiments in

U2OS cells expressing AS-AMPKa1 and AS-AMPKa2 or their

respective controls (Figure 1D, bottom rows; Figure S1G), using

several methods of AMPK activation (Figure 1D). Importantly, the

known phosphorylation sites on five established AMPK sub-

strates (ACC1 [S80], Davies et al., 1990; RAPTOR [S722], Gwinn

et al., 2008; TBC1D1 [S237], Chen et al., 2008; BAIAP2 [S366],

Banko et al., 2011; andKLC2 [S545], Amato et al., 2011; Johnson

et al., 2011) were identified in multiple independent datasets

(Figure 1E). Thus, this whole-cell peptide capture approach

can be used to identify AMPK phosphorylation sites. However,

the presence of background phosphopeptides (Figures S1E

and S1G) and lack of saturation across replicates (Figures S1F

and S1G) indicate that this method is not yet sensitive enough

to compare AMPK activity between different conditions.

Identification of Over 50 Potential AMPK Substrates and
Their Phosphorylation Sites, Including 21 Previously
Unknown High-Confidence Substrates
To identify high-confidence AMPK substrates and phosphoryla-

tionsites,wedevelopedastringentpipeline toanalyze the tandem

mass spectrometry data (Figure 2A). Phosphopeptides that were

found in experimental datasets, but never in control datasets (see

Supplemental Experimental Procedures), were further consid-

ered. All AS-AMPK-specific phosphopeptides are presented in

List S2. The motifs surrounding phosphorylation sites on phos-

phopeptides seen in 3 or more of the 22 experimental datasets

(Group A) strongly adhered to the known AMPK motif (Dale

et al., 1995; Gwinn et al., 2008; Scott et al., 2002) (Figures 2B

and S2B), while those seen less frequently adhered less well to

the AMPK motif (Figures 2C, 2D, and S2C). In addition, many

known AMPK substrates were identified in Group A (Figure 4A).

Thus, there is high confidence that the 21 previously unknown

substrates identified in Group A are AMPK targets. We will first

focus on the high-confidence Group A substrates, but we will re-

turn to all identified phosphopeptides in Figure 6.
U2OS cells without overexpression of the b and g subunits. Cells were serum-

PgS.Whole-cell lysates were analyzed for the presence of thiophosphorylation

der different AMPK-activating conditions. Whole-cell lysates were analyzed for

Ka2). First panel: 2 hr of serum starvation with 5 min of 100 mM 2DG; second

ntative of 6, 1, and 3 independent experiments for 2DG (�) serum, 2DG, and

PKa1; a2WT, WT-AMPKa2; a2AS, AS-AMPKa2.

ure 1C. See Figure S1G and List S1 formore information. Empty, empty vector.

d and bold residues, phosphorylated sites on the identified phosphopeptide

orylation site identification). ‘‘Phosphosite’’ column, identified phosphorylation

22, known AMPK site on RAPTOR; S237, known site on TBC1D1; S366, known

etabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc. 909
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Figure 2. Identification of High-Confidence AS-AMPK Substrates with a Tailored Pipeline

(A) Schematic of the pipeline used to identify AS-AMPK substrates in LC-MS/MS datasets. See Supplemental Experimental Procedures. Phosphopeptides only

found in AS-AMPK datasets were classified as Group A, B, or C based on the number of biological samples in which they were identified. a1WT, a2WT, a1AS,

a2AS: WT or AS-AMPKa1 or a2.

(B–D) Logo motif of the most common phosphorylation sites on each phosphopeptide from Group A (B), Group B (C), and Group C (D). The established in vitro

AMPK phosphorylation motif displayed below Group A is modified with permission from (Gwinn et al., 2008) and was generated in that study using a positional

scanning peptide library. Green, hydrophobic residues; red, basic; yellow, acidic; blue, neutral polar. See Figure S2A and Supplemental Experimental Procedures

for selection of the most common phosphorylation sites.

910 Cell Metabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc.



Validation of AMPK Substrates and Phosphorylation
Sites
We next validated several AMPK substrates from Group A. AS-

AMPKa1 and a2 strongly thiophosphorylated all of the sub-

strates we tested: SNX17 (Figure 3A), NET1A (a short isoform

of NET1) (Figure 3B), CDC42EP1 (Figure 3C), SH3PXD2A (Fig-

ure 3D), SNAP29 (Figure S3A), MTFR1L (Figure S3B), and

RBM14 (Figure S3C). In most cases, AS-AMPKa1 and a2 thio-

phosphorylated these proteins equally well, although SNAP29

was a better substrate of AS-AMPKa2 (Figures S3A and S3D),

while MTFR1L was a better substrate of AS-AMPKa1 (Figures

S3B and S3E). Thus, several proteins from Group A were vali-

dated as good substrates for both AMPK isoforms, though there

may be some isoform-preferred substrates.

To confirm the identified AMPK phosphorylation sites on

three validated substrates, SNX17, NET1A, and CDC42EP1,

we mutated the identified site on these proteins (Figure 3E).

These mutations reduced (SNX17 S437A; Figure 3F) or

completely removed (NET1A S46A, CDC42EP1 S192A; Figures

3G and 3H) thiophosphorylation by AS-AMPK. Mutation of the

identified site on another validated substrate, SH3PXD2A, did

not decrease thiophosphorylation (Figure S3F), though this

may be due to the presence of many potential AMPK phos-

phorylation sites on this protein (Figures S3F and S3G). Thus,

the identified sites are likely bona fide AMPK phosphorylation

sites.

To validate phosphorylation sites independently of the

analog-specific approach, we focused on SNX17 pS437 and

NET1A pS46. For SNX17, we generated a phosphospecific

antibody against pS437. We verified that this antibody recog-

nized the WT, but not the S437A phosphorylation mutant,

form of SNX17 (Figure S3H). Activation of endogenous AMPK

by the specific AMPK activator A769662 increased the phos-

phorylation of endogenous SNX17 at S437 in U2OS cells

(Figure 3I). Furthermore, shRNA knockdown of both AMPKa1

and a2 diminished the phosphorylation of endogenous SNX17

at S437 in response to A769662 (Figure 3I). Long-term activa-

tion of AMPK with either A769662 or nutrient deprivation

correlated with decreased total levels of SNX17 (Figures 3J

and S3I), raising the possibility that phosphorylation at this

site leads to degradation of SNX17. Together, these results

indicate that SNX17 pS437 is an endogenous AMPK target.

For NET1A, we generated a phosphospecific antibody against

pS46, but it was not potent enough to recognize NET1A

pS46 in cells (data not shown). We thus used an antibody

that recognizes the general AMPK phosphorylation motif

(Ducommun et al., 2015; Gwinn et al., 2008; Zhang et al.,

2002). Activation of endogenous AMPK by the specific AMPK

activator A769662 increased the phosphorylation of the

exogenously expressed WT, but not the S46A phosphoryla-

tion mutant, form of NET1A in U2OS cells (Figure 3K). In

addition, knockdown of both AMPKa1 and a2 diminished

phosphorylation of NET1A in response to A769662 (Fig-

ure 3K). These results indicate that endogenous AMPK is

important for exogenous NET1A phosphorylation at S46,

although other kinases could be contributing to NET1A basal

phosphorylation. Collectively, these results confirm that the

phosphorylation sites in Group A are likely bona fide endoge-

nous AMPK targets.
Cell M
Many High-Confidence AMPK Substrates Have Known
Roles in Cell Motility, Adhesion, and Invasion
We mined the literature and used GO terms to determine the

functions of the AMPK substrates in Group A (Figure 4A, List

S3). As expected, some of the substrates further link AMPK

with metabolic signaling pathways (Figures 4A and 4B). For

example, WDFY3, a phosphatidylinositol 3-phosphate binding

protein, promotes recycling of protein aggregates by autophagy

(Simonsen et al., 2004). Interestingly, 14 AMPK substrates are

involved in cellular motility, adhesion, or invasion as defined by

literature mining and GO terms (Figure 4A, orange rows, and Fig-

ures 4B, S4A, and S4B). For example, NET1A is a RHOA guanine

nucleotide exchange factor (GEF) that can promote cell migra-

tion and invasion (Carr et al., 2013), and ERBB2IP is an adaptor

protein that can inhibit cell migration (Liu et al., 2013). While un-

biased GO analysis did not reveal any significant enrichment,

probably due to the small size of the list, 11 of the 31 substrates

were identified in a compiled list of GO terms encompassing

aspects of cell motility, adhesion, and invasion (Figures S4A

and S4B). Consistently, studies have recently implicated AMPK

in cell motility, adhesion, and invasion, in part via the known sub-

strates ACC1 and CLIP-170 (Nakano et al., 2010; Scott et al.,

2012; Zhang et al., 2006). Thus, our screen provides additional

substrates and phosphorylation sites that could help in func-

tionally analyzing the role of AMPK in cell motility, adhesion,

and invasion, processes that are key for wound healing and

metastasis.

AMPK Phosphorylation of NET1A Inhibits Extracellular
Matrix Degradation
Cell invasionwas recently found to be regulated by ACC1, a well-

known AMPK substrate (Scott et al., 2012), but the exact roles of

AMPK in cell invasion and the other potential substrates involved

are largely unknown.We first testedwhethermanipulating AMPK

activity indeed impacted a cell’s ability to degrade the extra-

cellular matrix (ECM), an early step in cell invasion, by using a

gelatin-degradation assay (Bowden et al., 2001). U2OS cells

stably expressing an shRNA against both AMPKa1 and a2 (Fig-

ure S5A andBanko et al., 2011) displayed a slight, but significant,

increase in gelatin degradation (Figure 5A). Because U2OS cells

are not a highly invasive cell line (Yuan et al., 2009) (Figure 5A,

see basal levels), we also used RPMI-7951 cells, a metastatic

melanoma cell line that extends invadopodia—protrusions that

degrade the ECM (Seals et al., 2005). RPMI-7951 cells stably ex-

pressing an shRNA against AMPKa1 and a2 (Figure S5B) also

displayed a significant increase in ECM degradation (Figure 5B).

Conversely, activation of AMPK by A769662 in RPMI-7951 cells

inhibited ECM degradation (Figure 5C). Together, these results

suggest that AMPK impedes this early step of cell invasion.

As NET1A can promote cell invasion (Carr et al., 2013), we next

asked if the AMPK phosphorylation site on NET1A (S46, Figures

3G and 3K) mediates ECM degradation. To this end, we gener-

ated RPMI-7951 and U2OS cell lines that express either WT

or phosphomutant (S46A) NET1A in a doxycycline inducible

manner (Figures S5C–S5F). We verified that doxycycline induces

similar levels of WT and S46A NET1A in these cell lines at the

doses used in these assays (Figures S5C–S5F). Overexpression

of NET1A S46A resulted in a strong increase in gelatin degrada-

tion in RPMI-7951 cells compared to both WT NET1A and empty
etabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc. 911
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Figure 3. AS-AMPK Directly Phosphorylates Several High-Confidence Substrates, Including SNX17 and NET1A

(A–D) AS-AMPK thiophosphorylates SNX17 (A), NET1A (B), CDC42EP1 (C), and SH3PXD2A (D). Tagged proteins were overexpressed in empty vector or

AMPKa-expressing (HA-tagged WT or AS-AMPKa1 or a2) U2OS cell lines, immunoprecipitated, and analyzed by western blot for the presence of thio-

phosphorylation. AMPK was activated in all conditions with 15 min of 50 mM 2DG. Representative of 3, 1, 1, and 2 independent experiments, respectively.

(E) Mass spectrometry-predicted AMPK phosphorylation sites and corresponding phosphopeptides for SNX17, NET1A, and CDC42EP1. Labeled as in Figure 1E.

S100 on NET1 (S46 on the short isoform NET1A) was used as the NET1/NET1A site as its surrounding motif resembled the AMPK motif better than that of T99.

(F–H) AS-AMPK thiophosphorylates SNX17 (F), NET1A (G), and CDC42EP1 (H) at the identified residues. Tagged WT and predicted phosphorylation site

mutants of the indicated substrates were overexpressed in U2OS AS-AMPKa2 and a1 cell lines, immunoprecipitated, and analyzed as in Figures 3A–3D. The

phosphorylation motif for the predicted residue is shown. The phosphorylated residue is underlined and bold. Color coding is as in Figure 2B. Each panel is

representative of two independent experiments.

(I) AMPKphosphorylates S437 on SNX17 endogenously. AMPKwas activated in U2OScells stably expressing an shRNA against AMPKa1 and a2 or empty vector

control. Phosphorylation of the known substrates ACC1 S80 and PPP1R12C S452 are shown as controls for AMPK activation. Note that there is still some degree

of AMPK substrate phosphorylation in cells with stable knockdown of AMPKa1 and a2, probably due to residual AMPK expression in these cells. ‘‘�,’’ no drug

(DMSO vehicle control); A, A769662, 300 mM for 30 minutes. Representative of two independent experiments.

(J) Specific activation of AMPK decreases SNX17 protein levels. AMPK was activated in U2OS cells with 300 mM of A769662 for the indicated amount of time.

Representative of two independent experiments.

(K) Overexpressed NET1A is phosphorylated at S46 in response to endogenous AMPK activation. NET1A-V5 WT or S46A was expressed in a doxycycline-

inducible manner in U2OS cell lines. NET1A-V5 WT was also expressed in U2OS cell lines with shRNA knockdown of both AMPKa1 and a2. Cells were serum-

starved overnight, which was important to decrease basal NET1A phosphorylation, and NET1A-V5 expression was induced by 2 hr of doxycycline exposure (see

Supplemental Experimental Procedures). AMPK was activated with 300 mM A769662 for 30 min. Following NET1A-V5 immunoprecipitation, samples were

immunoblotted with an AMPK substrate motif antibody. Representative of three independent experiments.

912 Cell Metabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc.



vector control (Figure 5D). This trend was also observed in U2OS

cells (Figure S5G). These observations suggest that phosphor-

ylation of S46 on NET1A inhibits ECM degradation. Activation

of AMPK by A769662 reduced gelatin degradation in the pres-

ence ofWT, but not S46A, NET1A in RPMI-7951 cells (Figure 5E).

AMPK phosphorylation of NET1A did not seem to affect NET1A

localization or the ability to activate RHOA (data not shown).

Collectively, these results suggest that AMPK inhibits ECM

degradation in part by phosphorylating NET1A at S46, although

how phosphorylation affects NET1A function is still unclear.

Given that other AMPK substrates are involved in cell motility,

adhesion, and invasion, AMPK likelymodulates a network of pro-

teins to affect these processes, perhaps dependent on cellular or

environmental contexts.

Using the AMPK Phosphorylation Motif to
Computationally Rank and Identify Low-Frequency
Substrates
Given the successful validation of Group A substrates from our

screen, we surmised that some of the phosphopeptides identi-

fied only once (Group C) or twice (Group B) could also be

AMPK substrates instead of background. Group A substrates

resemble the in vitro AMPK motif (Dale et al., 1995; Gwinn

et al., 2008; Scott et al., 2002) (Figure 2B). They also closely

match a curated motif that we built from 50 published AMPK

substrates that were validated in cells (Figures 6A, top left

panel, Supplemental Experimental Procedures). This similarity

suggests that the AMPK phosphorylation motif could be used

to identify additional likely AMPK substrates identified at low

frequency in the screen.

To rank the phosphorylation sites from our screen based on

their similarity to the AMPK motif, we built a ‘‘position-weight

matrix’’ (PWM) algorithm using the 50 published AMPK sub-

strates (Figures 6A and S6A, List S4, Supplemental Experimental

Procedures). PWM algorithms are frequently used to score the

likelihood of a motif being targeted by a specific kinase (e.g.,

Scansite; Obenauer et al., 2003). Constructing our own PWM

algorithm allowed us to base it on well-validated AMPK phos-

phorylation sites. We then used our algorithm to score and

rank each phosphorylation site from the screen (Figures 6A

and 6B, List S5). The motifs of highly ranked sites matched the

validated AMPK motif, whereas the lower ranked ones did not

(Figure 6B). Consistently, Group A sites (in yellow) ranked higher

than Group B sites (in green), which themselves ranked higher

than Group C sites (in blue) (Figures 6B and S6B). We noted

that there was also a cluster of lower ranked Group A sites (Fig-

ures 6B and S6B); those sites mostly resembled the AMPKmotif

(Figure S6C) but contained one amino acid that was not present

in the validated AMPK motif, resulting in a scoring penalty.

Therefore, our PWM algorithm selectively and stringently iden-

tifies phosphorylation motifs that closely resemble the AMPK

motif, although it can also miss some substrates.

To predict which Group B and C phosphorylation sites could

be real AMPK substrates, we applied a stringent cutoff score

(1.037, see Figure S6D) to the ranked list (Figure 6B). Fifty phos-

phorylation sites scored above this cutoff, including most sites

from Group A as well as 31 sites from Groups B and C (Fig-

ure S6E). These 31 additional sites, while found infrequently in

our screen, likely represent real AMPK substrates. Indeed, two
Cell M
known substrates, CDC27 and TP53BP2 (Banko et al., 2011),

are present in this group. Similar to Group A substrates, the 31

highly scoring Group B and C proteins are involved in a variety

of cellular processes, including aspects of cell motility, adhesion,

and invasion (Figures 6C and S6E, second tab of List S5), further

suggesting that these processes likely represent an important

aspect of the AMPK network in U2OS cancer cells. However,

because the phosphorylation motif of other AMPK family mem-

bers is highly similar to that of AMPK (Goodwin et al., 2014),

some of these sites may also be targeted by other kinases, and

indeed S227 of RAB11FIP2 is a known target of the AMPK-

related kinase MARK2 (Ducharme et al., 2006). Thus, this

AMPK motif matrix algorithm helped maximize our screen,

revealing a total of 57 previously unknown AMPK phosphoryla-

tion sites. These sites serve as a resource for future studies

seeking to functionally understand the AMPK-substrate network.

In Silico Analysis of AMPK Network Dynamics and
Prediction of AMPK Phosphorylation Sites
We next sought to extend our analysis of the AMPK network to

other contexts (e.g., cell type, stimuli) and use our algorithm to

facilitate large-scale substrate prediction. We first examined

the dynamics of AMPK phosphorylation sites in publicly avail-

able quantitative phosphoproteomic datasets (Figure 7A, top

panel). We selected large-scale datasets generated under con-

ditions where AMPK is likely active. One dataset was generated

from human luminal breast cancer xenografts, where ischemia—

a condition that can lead to AMPK activation (Kudo et al., 1995;

Russell et al., 2004)—was mimicked by delaying sample pro-

cessing (Mertins et al., 2014) (Figure S7A). In the other dataset

(Olsen et al., 2010), HeLa S3 cells were synchronized in different

phases of the cell cycle, including mitosis—a context that can

result in AMPK activation (Banko et al., 2011; Vazquez-Martin

et al., 2009) (Figure S7B). Searching these datasets for AMPK

phosphorylation sites (Figure 7A, middle panel) revealed that

phosphorylation of ACC1 at S80 increased during both ischemia

(Figure 7B) and mitosis (Figure 7C), consistent with the notion

that AMPK is likely active under these conditions. Not all previ-

ously known AMPK sites were dynamically regulated during

these processes (Figures S7C and S7D), which suggests that

AMPK activity may not be optimal and/or is directed toward

other substrates under these conditions. Several of the AMPK

phosphorylation sites we identified in our screen, including a

number of high-confidence sites, also increased during ischemia

(Figures 7B and S7C) or mitosis (Figures 7C and S7D). Thus, this

type of analysis may help generate hypotheses for the relevance

of AMPK substrates in specific contexts.

As these quantitative phosphoproteomic datasets contain

thousands of phosphopeptides, they could also be analyzed

more globally to predict additional AMPK-like sites and their

dynamics (Figure 7A, bottom panel). We first increased the

robustness of the PWM algorithm by combining the phosphory-

lation sites identified in our screen with the well-validated AMPK

sites, generating a matrix from 109 AMPK phosphorylation sites

(Figure S7E, List S6). We then scored and ranked the motifs of

sites in each phosphoproteomic dataset (Figures S7E and S7F,

see Experimental Procedures). This analysis identified 630

AMPK-like phosphorylation sites in the ischemia dataset and

266 in the cell-cycle dataset (Figures 7D and 7E; Figure S7F;
etabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc. 913
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B

Figure 4. Many High-Confidence AMPK Substrates Have Known Roles in Cell Motility, Adhesion, and Invasion

(A) All Group A substrates and themost frequently identified phosphorylation site(s) on the phosphopeptide. ‘‘j,’’ ambiguity in themass spectrometry placement of

the phosphorylation site; ‘‘Times seen,’’ number of biological samples the phosphopeptide was identified in; ‘‘Previously identified’’ indicates whether the

phosphorylation site (open circle) or the protein (but not phosphorylation site) (closed square) was a previously known AMPK substrate; ‘‘Validated’’ indicates

(legend continued on next page)
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Figure 5. AMPK Phosphorylation of NET1A Inhibits Extracellular Matrix Degradation

(A) Knockdown of AMPK increases ECM degradation in U2OS cells. Cells stably expressing an shRNA against both AMPKa1 and a2 or empty vector control

(Empty) cells were cultured on fluorescein isothyocyanite (FITC)-conjugated gelatin-coated coverslips for 3 days. Fixed cells were stained for DAPI and analyzed.

Grey arrowheads indicate points of gelatin degradation. Within each experiment, approximately 15–20 203 fields per sample were quantified and averaged;

displayed images are 403. Error bars represent mean ± SEM of the averaged values from six independent experiments; the control samples in four of the

experiments were the same used in four of the experiments in Figure S5G. *p < 0.05 by two-tailed Wilcoxon matched-pairs signed-rank test; scale bar, 50 mM.

(B) Knockdown of AMPK increases ECMdegradation in RPMI-7951 cells. Cells stably expressing an shRNA against both AMPKa1 and a2 or empty vector control

cells were analyzed, and results are represented as in Figure 5A. Seven independent experiments were quantified.

(C) Activation of AMPK inhibits ECM degradation. RPMI-7951 cells were plated on FITC-conjugated gelatin-coated coverslips for 3–4 hr prior to administration of

100 mM A769662 or DMSO vehicle control for 16 hr. Analysis and results are represented as in Figure 5A. Six independent experiments were quantified.

(D) Loss of the AMPK phosphorylation site on NET1A increases ECM degradation. RPMI-7951 cells expressing similar levels of doxycycline-inducible NET1A-V5

WT or S46A (Figures S5C and S5D) were plated on FITC-conjugated gelatin-coated coverslips and allowed to adhere overnight. 2 mg/ml doxycycline was added,

and cells were cultured for an additional 2 days. Analysis and results are as in Figure 5A. Six independent experiments were quantified.

(E) Activation of AMPK inhibits ECMdegradation in the presence ofWT, but not S46A, NET1A. RPMI-7951 cells expressing similar levels of doxycycline-inducible

NET1A-V5 WT or S46A (Figures S5C and S5D) were plated on FITC-conjugated gelatin-coated coverslips for 3 hr prior to addition of 2 mg/ml doxycycline and

either 100 mMA769662 or DMSO vehicle control for 20 hr. Media and drugs were replaced with fresh stocks after 10 hr. Analysis and results are represented as in

Figure 5A. Six independent experiments were quantified; ns, not significant.
List S7). These AMPK-like sites could be AMPK substrates,

although they could also be targets of other related kinases. Dur-

ing ischemia, phosphorylation increased on 150 of the 630
whether the protein was validated as a substrate of AS-AMPK (Figures 3 and S3

invasion (see Figure S4B); note that two different sites were identified on PPP1R

(B) Many Group A substrates are proteins involved in cell motility, adhesion, and

classified by mining the literature (Figure S4B), while an additional two were iden

Cell M
AMPK-like sites and decreased on 28 (Figure 7D, List S7). During

mitosis, phosphorylation increased on 74 of the 266 AMPK-like

sites and decreased on 13 (Figure 7E; List S7). Of the 131
). Orange background, proteins with known roles in cell motility, adhesion, or

12A. Bold type, validated substrates.

invasion. Twelve substrates involved in motility, adhesion, and invasion were

tified using a curated list of GO terms (Figures S4A and S4B).

etabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc. 915
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Figure 6. Use of the AMPK Phosphorylation Motif to Rank Phosphorylation Sites Identified at Low Frequency in the Screen

(A) Schematic of the pipeline used to score resemblance to the AMPK phosphorylation motif. The logomotif (1.) represents the phosphorylationmotif of 50 known

in vivo AMPK substrates. See Figure 2B for amino acid color coding. The heatmap (2. and 5.) represents the standardized frequencies of the 50 known AMPK

substrates, with red indicating enrichment and blue indicating depletion in the AMPK motif compared with background (see Figure S6A).

(legend continued on next page)

916 Cell Metabolism 22, 907–921, November 3, 2015 ª2015 Elsevier Inc.



AMPK-like sites that were present in both studies (List S7), 47

increased specifically in either ischemia (25) (e.g., CDC42EP4

S140) or mitosis (22) (e.g., SNX5 S152), while 9 increased in

both (e.g., CCDC131 S352 and the Group A substrate

TMEM201 S454) (Figures 7F; List S7). This predictive approach

allows rapid identification of potential AMPK substrates and their

regulation in different contexts, although this could also reflect

experimental conditions and/or contributions of other kinases.

As high-quality phosphoproteomics datasets become avail-

able, analyzing AMPK site dynamics and predicting new sub-

strates in context-specific scenarios will likely yield important

hypotheses to test experimentally. To facilitate this, we have

made both the AMPK motif matrix and our algorithm avail-

able to the community at https://github.com/BrunetLabAMPK/

AMPK_motif_analyzer (see Supplemental Experimental Proce-

dures). These tools complement existing resources that scan

proteins for specific motifs, such as Scansite (Obenauer et al.,

2003) and MEME (FIMO) (Bailey et al., 2009; Grant et al., 2011)

(Figure S7G). The comprehensive AMPK motif matrix we gener-

ated (List S6) can also be uploaded to Scansite and MEME to

query protein sequences for the presence of AMPK-like motifs

(Figure S7G and Supplemental Experimental Procedures).

In summary, using a biochemical screen for direct AMPK sub-

strate identification, we identified 57 previously unknown AMPK

phosphorylation sites (Figure 7G), highlighting a role for this

energy sensor in cell motility, adhesion, and invasion. We also

developed an in silico approach to predict AMPK substrates

and analyze their phosphorylation dynamics (Figure 7G),

providing resources for future studies on AMPK.

DISCUSSION

Identification of Direct AMPK Substrates and
Phosphorylation Sites
Our screen is the first large-scale identification of direct kinase

substrates and phosphorylation sites in cells and identified 57

previously unknown AMPK phosphorylation sites. Seven sub-

strates and three phosphorylation sites validated as direct

targets of AS-AMPK. It is possible that the AS system, which

involves digitonin permeabilization and overexpression of a

mutated form of the alpha subunit of AMPK, alters the specificity

of AMPK. However, our screen identified known substrates of

AMPK (e.g., ACC1 S80 and RAPTOR S722), and two of the pre-

viously uncharacterized substrates (SNX17 and NET1A) were

confirmed to be substrates of endogenous AMPK, suggesting

that this screen identified bona fide AMPK targets.

While successful in identifying direct AMPK phosphorylation

sites, the screening conditions were subject to background and

low saturation. In addition, not all known AMPK substrates were

found. Several factors may help explain this. For example, not

all tryptic peptides are detectable by mass spectrometry, and

the peptide capture approach results in the loss of cysteine-con-

taining peptides from the sample, as they irreversibly bind to the

iodoacetyl groups (Blethrow et al., 2008). Furthermore, some
(B) Ranked list of the scored motifs corresponding to the Group A (yellow lines), B

quartile of ranked motifs is shown. Scores of interest are noted.

(C) Nine highly scoring Group B and C phosphorylation sites are on proteins with k

A, this totals 24 phosphorylation sites on 22 proteins involved in these processe

Cell M
endogenous kinases may also use the bulky ATPgS. Developing

methods to decrease background phosphopeptides and in-

crease retention of bona fide thiophosphopeptides will help

make this method more widely applicable to other kinases.

AMPK Phosphorylates Many Substrates Involved in Cell
Motility, Adhesion, and Invasion
An important finding of this screen is the number of substrates

involved in different aspects of cell motility, adhesion, and inva-

sion. We found that AMPK inhibits ECM degradation, a key early

step in cell invasion, in part through NET1A. NET1A was recently

implicated in cell invasion (Carr et al., 2013), but its impor-

tance during ECM degradation and regulation by AMPK were

completely unknown. NET1A does not appear to localize to inva-

dopodia (B.E.S. and A.B., unpublished data), but it does localize

to focal adhesions and binds focal adhesion kinase (FAK) (Carr

et al., 2013). FAK helps regulate the balance between invadopo-

dia and focal adhesions (Chan et al., 2009), so AMPK phosphor-

ylation of NET1A could alter the ability of FAK to modulate this

balance. Alternatively, phosphorylation of NET1A by AMPK

could affect the function of specific invadopodia components.

Importantly, AMPK may regulate additional targets to inhibit

ECM degradation, including other previously unknown sub-

strates, like the invadopodia component SH3PXD2A (Seals

et al., 2005), or well-known ones such as ACC1. Indeed, ACC1

mediates AMPK-dependent inhibition of ECM degradation

(Scott et al., 2012). As ECM degradation is an initial step in

metastasis (Eckert et al., 2011), these results raise the possibility

that AMPK could inhibit early stages of metastasis.

In Silico Approach to Predict AMPK Phosphorylation
Sites in Phosphoproteomics Datasets
Exploring AMPK substrates in different contexts is an important

but difficult experimental task, and a well-defined AMPK motif

can be used to more accurately predict substrates in other con-

texts. Previous approaches have successfully used an AMPK

motif defined by in vitro peptide scanning (Gwinn et al., 2008)

or by mutational analyses of AMPK substrates (Marin et al.,

2015; Towler and Hardie, 2007). Here, we develop an in silico

approach based on in vivo AMPK phosphorylation sites to pre-

dict likely AMPK sites in phosphoproteomics datasets, notably

quantitative ones. As quantitative datasets already contain infor-

mation about the dynamics of phosphorylation sites, data are

immediately available regarding the regulation of an AMPK-like

site in that context. Caveats of this approach are that phos-

phoproteomic datasets are often generated using different

experimental procedures and do not capture all phosphorylated

peptides. In addition, the experimental conditions used (e.g.,

pharmacological cell synchronization) may result in aberrant

AMPK activity, and AMPK-like sites may be phosphorylated by

other kinases. Nevertheless, comparison of the predicted

AMPK phosphorylation sites between different phosphoproteo-

mic datasets could generate hypotheses concerning context-

specific phosphorylation.
(green lines), and C (blue lines) phosphorylation sites. The logo motif for each

nown roles in cell motility, adhesion, and invasion. When combined with Group

s (2 sites are on PPP1R12A and ERBB2IP).
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Figure 7. In Silico Analysis of AMPK Network Dynamics and Prediction of AMPK Phosphorylation Sites

(A) (1) General schematic of quantitative phosphoproteomic studies. (2) Datasets were queried for the presence of known AMPK phosphorylation sites and their

dynamics during the biological processes analyzed. (3) A PWM constructed from 109 AMPK phosphorylation sites from both the literature and this study (List S6)

(legend continued on next page)
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Our work provides the first large-scale identification of direct

AMPK phosphorylation sites, extending the AMPK network

and facilitating the generation of a platform to help predict addi-

tional AMPK targets. As promising therapeutic roles of AMPK

continue to emerge for diseases like cancer (Kato et al., 2002;

Liang and Mills, 2013; Xiang et al., 2004) and diabetes (Winder

and Hardie, 1999), as well as for aging (Apfeld et al., 2004; Greer

et al., 2007; Mair et al., 2011), the substrates we identified and

the platform we created could help properly harness AMPK’s

full therapeutic potential.

EXPERIMENTAL PROCEDURES

Full protocols and additional information are provided in the Supplemental

Experimental Procedures.

Thiophosphorylation of AS-AMPK Substrates

In-cell thiophosphorylation of AS-AMPK substrates was performed as in

Banko et al. (2011), but without addition of AMP to the thiophosphorylation

labeling buffer (see Supplemental Experimental Procedures). Samples pro-

cessed for western blot analysis were alkylated using p-nitrobenzyl mesylate.

Samples generated for peptide capture were processed as outlined below.

Peptide Capture of Thiophosphorylated Peptides and Identification

via Liquid Chromatography-Tandem Mass Spectrometry

Peptide capture of thiophosphorylated peptides was performed according to

Blethrow et al. (2008) andHertz et al. (2010). Experiment-specificmodifications

to the full protocol detailed under Supplemental Experimental Procedures are

in List S1. LC-MS/MS and processing was performed as in Hengeveld et al.

(2012).

Analysis of Mass Spectrometry Data

Massspectrometry peaklistsweregeneratedwith an in-house (UCSF) software

named PAVA and searched against the SwissProt Homo sapiens database

(downloaded on March 21, 2012) using Protein Prospector (version 5.10.10).

Phosphopeptides identified in the AS-AMPK samples were compared to those

identified in control samples across all experiments (phosphopeptides identi-

fied in control samples; List S2, second tab), and overlapping phosphopepti-

des were removed as background. The peptide, irrespective of phosphosite

placement, was used for this filtering step, accounting for possible missed

trypsinization events or other peptide overlap. See Supplemental Experimental

Procedures for more details.

Scoring Phosphorylation Motifs Based on Similarity to the

AMPK Motif

To determine the similarity of phosphorylation motifs to the AMPK motif, a po-

sition-weight matrix (PWM) was constructed using the frequencies of amino
was generated to score and rank the motifs surrounding each quantified site in (1

analyzed.

(B) Seventeen AMPK phosphorylation sites present in the ischemia study (Mertins

Mertins et al., 2014). Sites in yellow are from Group A; blue, highly scoring Gro

standardized to isoform 1 in Uniprot. The 5, 30, and 60 min time points were stan

(C) Four AMPK phosphorylation sites present in the cell-cycle dataset (Olsen et a

Sites with yellow lines are fromGroup A; green, highly scoring Group B substrates

All time points were standardized to an asynchronously cycling population, norm

(D) 630 AMPK-like phosphorylation sites were present in the ischemia dataset, an

blue, relative decrease compared to the 0 min time point. The time points were s

(E) 266 AMPK-like phosphorylation sites were present in the cell-cycle dataset, an

blue, relative decrease compared to an asynchronously cycling population. The

(F) Highly scoring AMPK-like sites quantified in both the ischemia and cell-cycle da

total of 131 quantified AMPK-like sites were present in both datasets (List S7). Ph

accessions).

(G) Summary of the proteomic and in silico approaches used here to identify AM

The datasets used in Figure 7 are fromMertins et al. (2014), reprinted with permiss

Cell M
acids in the motifs surrounding 50 well-validated in vivo AMPK phosphoryla-

tion sites (see Supplemental Experimental Procedures and List S4) (Figure 6)

or 109 AMPK phosphorylation sites that were previously validated or were

discovered in our screen (Figure 7). Each amino acid frequency in the AMPK

motif was standardized to a background frequency generated by averaging

the amino acid occurrences in 10,000 randomly sampled datasets of matched

number and phosphoS:T ratio from a compendium of human phosphorylation

sites. Querymotifs were scored by summing the log10 of each location’s amino

acid standardized frequency from the N-terminal 5 to the C-terminal 4 position.

Motifs lacking basic residues within 5 N-terminal amino acids or surrounding

phosphotyrosines were discarded. If a phosphopeptide contained more

than one possible phosphorylation site, the site with the highest scoring motif

was used (Figure 6). Scored motifs were rank ordered. The standardized fre-

quencies of the 50 well-validated AMPK sites are in the second tab of List

S4; those of the 109 AMPK sites are in List S6 (matrix form) and on GitHub

(tab-delimited list form). The code to score and rank input motifs is available

on GitHub (https://github.com/BrunetLabAMPK/AMPK_motif_analyzer) (see

Supplemental Experimental Procedures).

Logo Motif Generation

To visualize phosphorylation motifs, logo motifs were generated using Berke-

ley’s Weblogo generator (Crooks et al., 2004; Schneider and Stephens, 1990).

Antibody information, primer sequences and construct generation, cell cul-

turemethods, generation of stable cell lines, cell lysis and immunoprecipitation

in non-AS-based assays, immunoprecipitation of AS-AMPK substrates, prep-

aration of fluorescein isothyocyanite (FITC)-conjugated gelatin-coated cover-

slips, analysis of gelatin degradation, using the AMPKmotif matrix and GitHub

access, and general data plotting and statistical analyses are detailed in the

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and seven lists and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2015.09.009.
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