A Brief Overview of Uncertainty Quantification and Error Estimation in Numerical Simulation

Tim Barth
Exploration Systems Directorate
NASA Ames Research Center
Moffett Field, California 94035-1000 USA
Timothy.J.Barth@nasa.gov
FAQs in Numerical Simulation

Example: Stanford ASC combustor calculation

- (Uncertainty) How accurately does a mathematical model describe the true physics and what is the impact of model uncertainty (structural or parametric) on outputs from the model?
- (Error Estimation) Given a mathematical model, how accurately is a specified output approximated by a given numerical method?
- (Reliability) Given a mathematical model and numerical method, can the error in numerical solutions and specified outputs be reliably estimated and controlled by adapting resources?
- Sources of uncertainty in numerical simulation.
- A simple Burger’s equation example with 3 parametric sources of uncertainty.
- Mars atmospheric reentry with 130 input parametric sources of uncertainty.
- What can happen when sources of model uncertainty are not adequately understood.
- Some standard approaches to uncertainty quantification
- Uncertainty lectures
 - (Dr. Oberkampf) Uncertainty quantification using evidence theory.
 - (Prof. Ghanem) Error Budgets as a path from uncertainty to model validation.
Sources of Uncertainty in Simulation

Unfortunately, most numerical simulations of physical systems are rife with sources of uncertainty. Some examples include

- Geometrical uncertainty (Is the geometry exactly known?)
- Initial and boundary data uncertainty (Are initial/boundary conditions precisely known?)
- Structural uncertainty (Do the equations model the physics?)
 - Turbulence models
 - Combustion models
 - Number of moments in moment closure approximations
- Parametric uncertainty (How accurate are model parameters?)
 - Imperial equations of state and constitutive models
 - Reaction rates and relaxation times
 - Transport properties and catalycity
Uncertainty Quantification Approaches

Apply statistical techniques directly to simulations

- Monte Carlo simulation and variants
- Stratified sampling
- Latin hypercube sampling
- Response surface method

Recast a mathematical model of a physical process as a stochastic PDE and solve using deterministic methods

- Perturbation expansion methods for random fields
- Stochastic operator expansions
- Polynomial Chaos methods (see Prof. Ghanem)
Simple Example: Burger’s Equation

Example: Modified Burger’s Equation

\[u_t + f(u)_x = \nu u_{xx}, \quad (x, t) \in [0, 1] \times \mathbb{R}_+ \]
\[u(x, 0) = \sin(2\pi x) \]

with 2-parameter flux

\[f(u) = c_0 u + (1 + c_1) u^2 / 2. \]

Applet: http://science.nas.nasa.gov/~barth/stanford_workshop/PDE.html
Example: Mars Atmospheric Entry

Example: Aerothermal CFD analysis of Mars atmospheric entry.

- Uncertainty analysis for peak forebody heating predicted using the DPLR CFD code
- 130 input parameters
- Monte Carlo sensitivity analysis used to “shortlist” important parameters
- Full Monte Carlo uncertainty analysis on shortlisted parameters
- Presentation courtesy of Michael Wright, Code TSA, NASA Ames.
Range Based Sensitivity Analysis

Selected Input Parameters

<table>
<thead>
<tr>
<th>Input category</th>
<th>Model</th>
<th>Parameter varied</th>
<th>No. of input parameters</th>
<th>Variability for sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissociation reaction rates</td>
<td>$k = A_M \ T^\eta \ \text{exp}(-D/ T_a)$</td>
<td>A_M</td>
<td>40</td>
<td>1 order of magnitude</td>
</tr>
<tr>
<td>Exchange reaction rates</td>
<td>$k = A \ T^\eta \ \text{exp}(-D/ T_a)$</td>
<td>A</td>
<td>7</td>
<td>1 order of magnitude</td>
</tr>
<tr>
<td>Vibration-dissociation Coupling</td>
<td>$T_a = T^\eta \ T_v^{1-\eta}$</td>
<td>η</td>
<td>5</td>
<td>± 0.15</td>
</tr>
<tr>
<td>V- T Relaxation time</td>
<td>Millikan and White</td>
<td>slope</td>
<td>40</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>Binary collision integral</td>
<td>$\Omega^{1,1}, \Omega^{2,2} = Af(T)$</td>
<td>A</td>
<td>36</td>
<td>$\pm 30%$</td>
</tr>
<tr>
<td>Wall Catalysis</td>
<td>γ_{cat}, p_z</td>
<td>2</td>
<td>Entire range</td>
<td></td>
</tr>
</tbody>
</table>

Total = 130
Uncertainty Estimates

Binary Collision Integrals:

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2–CO_2</td>
<td>20%</td>
</tr>
<tr>
<td>CO_2–CO</td>
<td>20%</td>
</tr>
<tr>
<td>CO_2–O</td>
<td>30%</td>
</tr>
<tr>
<td>CO–O</td>
<td>30%</td>
</tr>
<tr>
<td>CO–CO</td>
<td>20%</td>
</tr>
<tr>
<td>O–O</td>
<td>5%</td>
</tr>
</tbody>
</table>

The uncertainty estimates are augmented by an additional 10% to account for non-ideal effects.

Gaussian distribution

Wall Catalycity:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{cat} (Highly catalytic)</td>
<td>10^{-1}–10^{0}</td>
</tr>
<tr>
<td>γ_{cat} (Moderately catalytic)</td>
<td>10^{-3}–10^{-1}</td>
</tr>
<tr>
<td>γ_{cat} (Weakly catalytic)</td>
<td>10^{-4}–10^{-3}</td>
</tr>
<tr>
<td>p,</td>
<td>10^{-4}–10^{0}</td>
</tr>
</tbody>
</table>

Uniform distribution

Chemical Reactions:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2+$\text{O} \leftrightarrow 2\text{O}$+$\text{O}$</td>
<td>$\frac{1}{2}$ order</td>
</tr>
<tr>
<td>O_2+$\text{CO} \leftrightarrow 2\text{O}$+$\text{CO}$</td>
<td>$\frac{1}{2}$ order</td>
</tr>
</tbody>
</table>

Gaussian distribution
In a nutshell...
Uncertainty Quantification Gone Awry

Congressional Budget Office (CBO) budget projections

CBO Budget Uncertainty Fan in 2000:

CBO Budget Uncertainty Fan in 2004:
Error Estimation Lectures

- (Prof. Peraire) 2-sided error bounds and accuracy certificates
 - Certifiably accurate computations
 - Error control via adaptivity

- (Prof. Houston) FEM error estimation for functionals via duality
 - Error representation for functionals $J(u)$ via duality
 - Weighted and unweighted error estimates
 - Error control via adaptivity

- (Barth) Error estimation for finite volume methods
 - Godunov finite volume methods rewritten as a Petrov-Galerkin FE method.
 - Applying standard error estimation techniques in the finite volume setting
Error Estimates for Functionals

Space-time hyperbolic PDE ($p^- = 1$ at inflow and $p^+ = 0$ at outflow):

\[\mathcal{L} u - f = 0, \quad \text{(interior)} \]
\[p^- (u - g) = 0, \quad \text{(initial/boundary data)} \]

Weighted error estimates for functionals:

\[|J(u) - J(u_h)| \leq \sum_K |(r_h, \phi - \pi_h \phi)_K| + \sum_{\partial K} \langle j_h, \phi - \pi_h \phi \rangle_{\partial K} | \]

where

\[r_h \equiv \mathcal{L} u_h - f \quad \text{(Element Residual)} \]
\[j_h \equiv \begin{cases} p^- [u_h]^+ & \text{(Interior Jump Residual)} \\ p^- (g - u_h) & \text{(Boundary Jump Residual)} \end{cases} \]

Unweighted error estimates for functionals:

\[|J(u) - J(u_h)| \leq C_{\text{int}} C_{\text{stab}} \| h^s r_h \|, \; s > 0 \]
φ is solution of the infinite-dimensional dual problem. Suppose \(\mathcal{V} \) is the space of \(H^s \) functions and \(\mathcal{V}_h \subset \mathcal{V} \) a suitable finite-dimensional approximation space.

Abstract FEM method with weakly imposed BCs:

(Finite-Dimensional Primal Problem) Find \(u_h \in \mathcal{V}_h \) such that

\[
B(u_h, v) = (f, v) , \quad \forall v \in \mathcal{V}_h
\]

(Infinite-Dimensional Dual Problem) Find \(\phi \in \mathcal{V} \) such that

\[
B(v, \phi) = (\psi, v) = J(v) , \quad \forall v \in \mathcal{V}
\]
Assessing Computability

The dual solution and functional error estimates contain a wealth of information concerning *computability* of outputs.

\[
|J(u) - J(u_h)| \leq \sum_K |(r_h, \phi - \pi_h \phi)_K| + \sum_{\partial K} \langle j_h, \phi - \pi_h \phi \rangle_{\partial K}
\]

Clearly, the computability of outputs deteriorates as gradients of the dual solution grow in space and/or time.

An extreme example is fluid turbulence where the prospect of controlling pointwise errors deteriorates rapidly with increasing Reynolds number.
Example: Backward facing step (Re=2000)

\[J(u) = \int_{9}^{10} \int_{d \times d \times d}^{u_1} dx^3 dt \]
Hoffman and Johnson (2002) have computed solutions of the backward facing step problem using a FEM method with linear elements for incompressible flow.

In velocity and pressure variables, \((V, p)\), the following error estimate for functionals is readily obtained in terms of the dual solution \((\psi, \phi)\):

\[
|J(V, p) - J(V_h, p_h)| \leq C\|\dot{\psi}\|\Delta t r_0(V, p) + C\|D^2\phi\|\|h^2 r_0(V, p)\|
+ C\|\dot{\phi}\|\|\Delta t r_1(V, p)\|
+ C\|D\phi\|\|h r_1(V, p)\|
\]

where \(r_i\) are element residuals.
The following stability factors have been computed by Hoffman and Johnson (2002) for the backward facing step problem:

<table>
<thead>
<tr>
<th>d</th>
<th>‖ψ‖</th>
<th>‖∇ψ‖</th>
<th>‖∇φ‖</th>
<th>‖ϕ‖</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>124.0</td>
<td>836.0</td>
<td>138.4</td>
<td>278.4</td>
</tr>
<tr>
<td>1/4</td>
<td>39.0</td>
<td>533.4</td>
<td>48.9</td>
<td>46.0</td>
</tr>
<tr>
<td>1/2</td>
<td>10.5</td>
<td>220.3</td>
<td>16.1</td>
<td>25.2</td>
</tr>
</tbody>
</table>

These results clearly show the deterioration in computability as the box width is decreased.
Concluding Remarks

• Due to the vast increases in computing power, it’s an exciting time in scientific computation.

• The time is right to advance the state-of-the-art in scientific computing to a new level.

• The ability to quantify uncertainty and numerical errors in large scale computations is *the* missing piece of the puzzle.