
Direct Cache Access for High Bandwidth Network I/O

Abstract

Recent I/O technologies such as PCI-Express and
10Gb Ethernet enable unprecedented levels of I/O
bandwidths in mainstream platforms. However, in
traditional architectures, memory latency alone can limit
processors from matching 10 Gb inbound network I/O
traffic. We propose a platform-wide method called Direct
Cache Access (DCA) to deliver inbound I/O data directly
into processor caches. We demonstrate that DCA
provides a significant reduction in memory latency and
memory bandwidth for receive intensive network I/O
applications. Analysis of benchmarks such as
SPECWeb9, TPC-W and TPC-C shows that overall
benefit depends on the relative volume of I/O to memory
traffic as well as the spatial and temporal relationship
between processor and I/O memory accesses. A system
level perspective for the efficient implementation of DCA
is presented.

1. Introduction

Architectural and micro-architectural evaluation of
processors, cache hierarchies and system interconnects has
often been decoupled from I/O considerations. There are
multiple recent trends that require a broader view of
computer architecture. Foremost among these trends is
the rapid maturity of the internet and the corresponding
increase in applications and technologies that aim to make
the internet a richer experience. Applications associated
with broadband internet such as video and graphics not
only involve large volumes of data but are at the same
time response time sensitive. I/O technologies such as
PCI-Express and multi-gigabit Ethernet are aimed at these
emerging applications and enable high data rates within
the system and between systems across a network. They
represent an unprecedented increase in the amount of raw
I/O throughput in mainstream platforms in the near future.
Having significantly alleviated I/O throughput limitations,
the ability to process high rates of I/O becomes a
dominant concern.

The impact of I/O on processor efficiency can be
demonstrated using the example of the 10 gigabit Ethernet
standard and the processing involved in executing TCP/IP
protocol. TCP/IP over Ethernet is the prevalent form of
communication used by network-intensive server

applications (e.g. web services and e-commerce). The
relevance of TCP/IP protocol processing [1, 2, 3, 6, 9]
grows stronger as Storage-over-IP starts to become
popular with the help of working groups for iSCSI [7],
RDMA [13] and DDP [15]. Independent of the volume of
data presented by video and graphics data, traditional
disk-intensive workloads may also be dependent on
Ethernet capability and efficient TCP/IP processing in the
future.

Required Packet Service Tim es & Rates at 10 Gb/s

0

400

800

1200

1600

0

25
6

51
2

76
8

10
24

12
80

15
36

Packet Size (Bytes)

P
kt

 S
er

vi
ce

 T
im

e
(n

an
os

ec
on

ds
)

0

4

8

12

16

P
ac

ke
t R

at
e

(M
ill

io
n

P
kt

s/
se

c)

Packet Service Tim e (ns) Packet Rate

64B packets

1518B packets

Figure 1. Expected Packet Service Time and
Packet Rates at 10 Gb/s versus Packet Size

Figure 1 illustrates that a data rate of 10 Gb/s
corresponds to a packet rate of 14.8 million packets per
second (MP/s) with 64 byte packets. A system must be
able to transmit or receive, on average, a 64 byte packet
every 67 ns and at the largest Ethernet packet size of 1518
bytes, a system must be able to transmit or receive once
every 1230 ns. When packet data is accessed from system
memory, sustaining 10 Gb/s throughput will be very
difficult without intervention. In this paper, we present
and evaluate a technique called Direct Cache Access
(DCA) to minimize memory subsystem dependencies and
improve the balance between processing and I/O
capabilities.

The rest of this paper is organized as follows. In
Section 2, we provide an overview of I/O related data
movement and processing. With TCP/IP as our primary
I/O centric usage model, typical data structures involved
in TCP/IP processing and memory accesses associated
with these data structures are reviewed in detail in Section
III. We also introduce DCA as an enhancement to the

Ram Huggahalli
Intel Corporation

ram.huggahalli@intel.com

Ravi Iyer
Intel Corporation

ravishankar.iyer@intel.com

Scott Tetrick
Intel Corporation

scott.tetrick@intel.com

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

system interconnect coherency protocol to move inbound
I/O traffic directly into processor caches. With inbound
network traffic, the current coherency protocol between
I/O adapters and processors results in unnecessary
memory bandwidth consumption and numerous memory
accesses that limit processors from being able to sustain
high network I/O rates. In Section 4, the magnitude of the
problem is demonstrated using memory access traces and
cache simulations for various network intensive and
common server benchmarks. Section 5 presents a
comprehensive system level perspective for implementing
the protocols in mainstream architectures. We observe
that successful implementation requires simple but
coordinated changes across multiple platform elements
such as system software, CPU, chipsets and I/O devices.
We conclude with planned future enhancements to DCA
as well as other areas of improvement in handling high
I/O throughputs.

2. I/O Data Movement and Processing

In this section, we provide an overview of I/O processing
and point out the data movement and memory interactions
that affect performance.

2.1. Basic Processor, Memory and I/O Interaction

The interaction between processors, memory and I/O
adapters involves multiple data structures and also
multiple system mechanisms. Common today are Direct
Memory Access (DMA) techniques that decouple
processor involvement during data transfers between I/O
devices and the memory subsystem. Typical interactions
assuming a DMA capable adapter are shown in Figure 2.
The processor, as instructed by software, sets up a system
memory based buffer for transmission or reception and
provides an appropriate I/O adapter with a descriptor. The
descriptor contains a pointer to the buffer and is used by
the I/O adapter to read data for transmission or to write
data in the case of reception. Upon creating a descriptor,
the processor writes to a memory mapped I/O (MMIO)
register on the I/O adapter to indicate the presence of a
new descriptor. Descriptors are often maintained as a
circular ring structure and the MMIO write serves to
update a pointer into the descriptor ring. An I/O adapter
equipped with a descriptor can independently complete a
block transfer and provide a status in memory to the
processor. Since the processor is expected to execute
other operations (possibly applications) concurrently, an
I/O adapter sends an interrupt to bring the processor’s
attention to any newly reported status information. The
processor may also query the NIC directly using MMIO
reads to obtain the cause of interrupts. In modern systems
and I/O adapters, several optimizations exist to amortize
the overhead of MMIO reads, writes and interrupts. These

optimizations are implementation specific and are beyond
the scope of this paper. The focus of this paper is on
system memory based interactions involving status,
descriptor and payload data structures. Figure 2 shows the
interactions on the ‘receive-side’ for inbound I/O data.

Figure 2. Receive-side Interactions between

Processor, Memory and I/O Adapter

2.2 I/O Interactions From A Cache Perspective
The three data structures that hold status, descriptors

and payload are allocated from system memory space that
is cacheable in processor caches. It is clear from Figure 2
that cache lines modified by the processor are read by the
I/O adapter while cache lines modified by the I/O adapter
are read by the processor. Thus accesses from both the
processor and the I/O adapter require transactions that
maintain coherency using the system interconnect. The
sequence of transactions required to maintain cache
coherency for I/O to memory write for a single cache line
is shown in Figure 3.

For both memory writes and memory read requests
from the I/O adapter, the chipset acts as a bridge between
I/O, processors and memory, and issues a snoop
transaction for each cache line to ensure that the previous
copy of the cache lines is invalidated from the processor’s
cache. In the case of memory writes, the cache line is
invalidated, while in the case of a memory read, the cache
line is either invalidated or marked as a shared cache line.
DCA is concerned primarily with subsequent use of the
snooped cache lines by the processor. Depending on
processing requirements of inbound data, invalidated
cache lines may soon be read by the processor. These
memory accesses are compulsory cache misses due to the
invalidation protocol implemented by current systems. At
the core of DCA is a system interconnect transaction that
facilitates data movement directly into the processor’s
cache. DCA has two benefits: 1) timely availability of

Processor

Memory

Status, Payload

I/O Adapter

Descriptor

Descriptor

Status, Payload
MMIO Write

IO Interrupt
MMIO Read

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

data in cache leading directly to a lower average memory
latency and 2) reduction in memory bandwidth
requirement. An ideal implementation of DCA would
eliminate the need to write data to memory, continuously
updating cache lines in the cache with new data.

Figure 3. Transaction Sequence used to maintain
Cache Coherency during Inbound I/O Transfers

3. TCP/IP Example
The magnitude of benefit due to DCA is best

demonstrated by using specific data structures used in the
TCP/IP software stack and the associated memory
bandwidths. One of the well-recognized issues with
TCP/IP communication [12] is the significant

computational and memory requirements of protocol stack
processing and related overheads (such as buffer
management, interrupts and scheduling) in a typical O/S
environment. Motivated by these issues, several research
projects contemplate the potential of using TCP offload
engines (TOE) or packet processing engines (PPE) [5, 10]
to accelerate TCP/IP packet processing. As a contrast, a
comprehensive set of enhancements required in general
purpose software and hardware to match high network I/O
rates is provided in [14].

Memory accesses associated with TCP/IP processing
include the same base components such as status,
descriptors and payload (described in Section 2.1).
Transfers across the network using Ethernet are, however,
packetized where each packet contains a header portion
and a payload portion. An adapter moves both header and
payload for each packet to and fro with respect to
memory. We assume in the following calculations that
header and payload are placed in separate memory areas.
A typical Ethernet and TCP/IP packet header size is 58
bytes excluding any optional bytes. The packet payload
ranges from 0 to 1460 bytes or 0 to 23, 64-byte cache
lines. Descriptors are typically partial cache line
structures – we assume 16 bytes in the following
computations.

In addition to these base memory traffic components,
TCP/IP processing also involves other processor-to-
memory accesses of which the memory accesses related to
maintaining the context of network connections (also
called TCB or Transport Control Block) are most
important. TCBs are typically 512 bytes or greater
although not all cache lines are frequently accessed.
Unlike other data structures reviewed here, TCB accesses
are immune to I/O adapter interactions.

Table 1. Receive-Side Cache Line Transitions and Memory Accesses (payload of N cache lines)

Memory Access Type
Cache Line State Transitions

without DCA
Memory Accesses
In Cache lines

Requestor Data Structure Direction Descriptor Header Payload Baseline DCA
Processor Descriptor Write E to M 0 0
NIC Descriptor Read M to I 1 1
NIC Header Write E to I 1 0
NIC Payload Write E to I N 0
NIC Status Write at I 1 0
Processor Status Read I to E 1 0
Processor Header Read I to E 1 0
Processor TCB Read
Processor TCB Write
Processor Payload Read I to E N 0
 TOTAL 2N + 5 1

System
Memory

System
Interconnect

I/O Interconnect

2

I/O Adapter

5
3

1. Memory write by I/O Adapter
2. Snoop on system interconnect
3. Probable writeback by processor if snoop

finds modified data in cache
4. Merged write to system memory
5. Probable CPU read to process I/O data

Processor

Chipset

Cache

1

4

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

The core sequence of processor and NIC (Network
Interface Controller) memory accesses per packet during
TCP/IP protocol processing is shown for packet reception
(Receive side) in Table 1. Cache lines associated with
descriptors, headers and payload undergo multiple state
transitions in response to each memory access. The
coherence protocol is assumed to be MESI (Modified,
Exclusive, Shared and Invalid states) based. Unknown or
don’t care states are denoted with an ‘x’. We also show
cache misses resulting in accesses at memory and account
for them in the table.

Key to DCA are the transitions to I state upon the NIC
writing data to memory. For now, the accounting of
benefits from DCA assume idealized implementations
where memory writes can be completely eliminated by
keeping cache lines in M state within the cache. The
opportunity to reduce memory bandwidth by a factor of
2N+5 where N is the size of the payload within a packet is
clearly significant.

We also computed absolute memory bandwidths due to
each type of memory access when sustaining 10Gb/s as
shown in Figure 4. Two packet sizes: 256 bytes and 1518
bytes were chosen for comparison – these represent
control message transfers and large block transfers across
the network. In both cases, the dominant source of
bandwidth is clearly payload data movement. In the
baseline where no DCA is assumed, bandwidths range
from 2.6 to 3.8 GB/s on the receive side and 2.6 to 3.0
GB/s on the transmit side. Movement of payload data in
any one direction should roughly equate to 10 Gb/s (or
1250 MB/s) save Ethernet specific overheads.

In addition to an idealized DCA, we also show a case
where all modified cache lines in the cache due to NIC
writes are evicted. Even when accounting evictions, we
observe that memory bandwidth reduces from 3.8 GB/s to
2.2 GB/s (71%) in the case of 256 byte packets and from
2.6 GB/s to 1.4 GB/s (92%) in the case of 1518 byte
packets. The bandwidth reduced corresponds to processor
to memory reads – a more important limiter in a system
that has memory bandwidth headroom compared to NIC
to memory writes that occur transparently.

DCA has limited applicability in a transmit-intensive
workload. It can only eliminate the processor-to-memory
read of NIC status when transmit operations complete.

In addition to memory bandwidth reduction, DCA
addresses critical latency limitations. To attain 10 Gb/s,
each 256-byte packet must be processed at rate of one
every 220 ns (Figure 1). From Table 1 we see that there
are at least four processor-to-memory accesses that can be
exposed to full memory latency: status read, header read,
TCB read and payload read. This does not count back-to-
back accesses when fetching multiple cache lines of a
TCB or payload. Assuming, idle system latencies on
recent typical servers of approximately 100 ns, we find

that memory latency alone will limit the processor from
matching full network I/O rate. The problem is also much
more critical on receive side TCP/IP processing.

Mem ory Bandwidth at 10 Gb/s TCP/IP (Receive)

0

800

1600

2400

3200

4000

Ba
se

lin
e

D
C

A-
W

rit
e

(E
vi

ct
io

ns
)

D
C

A
-W

rit
e

(Id
ea

l)

Ba
se

lin
e

D
C

A-
W

rit
e

(E
vi

ct
io

ns
)

D
C

A
-W

rit
e

(Id
ea

l)

256 Byte 1518 Byte

M
em

or
y

B
an

dw
id

th
 (M

B/
s)

NIC Payload
Write

Processor
Payload Read

Figure 4. Memory Bandwidth Reduction due to

DCA Options (Receive Side, TCB, descriptor and
header accesses not labeled)

4. Memory Access Profiles of Benchmarks
We examined four benchmarks with varying amounts

of I/O activity to quantify the improvement possible with
DCA.

4.1. Benchmarks

The selected benchmarks are briefly described as
follows

NTTTCP [20] is Microsoft’s command-line tool that
exercises the sockets API and is used for measuring
network throughput between two end-systems. NTTTCP
is used to represent forward looking network intensive
applications. The NTTTCP workload is broken up into a
set of Transmit (Tx) intensive tests and a set of Receive
(Rx) intensive tests. In each case, we also categorize the
transferred application buffer size as small, medium and
large implying the range of sizes shown in Table 2.

Table 2: Application buffer size categories

Case Size
Small 64B to 256B

Medium 512B to 4KB

Large 8KB to 64KB

SPECweb99 [17] is a benchmark that attempts to

mimic a web server environment. The benchmark setup
uses multiple client systems to generate an aggregate load

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

on the system under test (a web server). Each client
(mimicking browsers) initiates TCP connections to the
web server and makes HTTP requests for static or
dynamic web pages.

TPC-W [18] is a multi-tier benchmark that attempts to
model an e-commerce environment (based on an on-line
bookstore like amazon.com). Since our interest is in
packet-processing, we focused on the front-end tier that
handles incoming connections, processes HTTP requests,
generates queries to the back-end and finally puts together
a web page that is sent back to the client.

TPC-C [19] is an online-transaction processing
benchmark that simulates a complete computing
environment where a population of users executes
transactions against a database. The benchmark is based
on the primary transactions in an order-entry environment.
These transactions include entering and delivering orders,
recording payments, checking the status of orders, and
monitoring the level of stock at the warehouses. The
nature of I/O in the TPC-C benchmark is very different
from the other benchmarks that we studied. It is
predominantly disk I/O compared to network I/O. TPC-C,
however, makes an interesting contrast demonstrating how
disk I/O traffic can be different compared to network I/O.
Database applications are also interesting in that much of
the disk I/O, in future, may translate into network I/O if
the a remote disk subsystem over IP networks is used.

4.1 Evaluation Methodology
Our evaluation methodology consists of an extensive

set of cache simulations fed by memory access traces
collected on an existing system running the workloads of
interest. Cache simulations were performed using the
CASPER simulation framework [8]. CASPER enables the
analysis of a spectrum of cache structures and hierarchies
including UP & MP cache hierarchies, shared caches,
chipset caches and snoop filters. Prior research using a
hardware cache emulator for TPC-H and cache coherence
protocols represents an alternative approach [4].

For NTTTCP, each trace was 30M instructions long
while in all other cases, the traces were 100M instructions
long. Since only about 10K instructions are executed per
Ethernet packet, and the memory access patterns are
repetitious, the 30M instructions per NTTTCP trace
should be sufficient. In the case of SPECWeb99, TPC-C
and TPC-W, each trace corresponds to 2 to 5M bus
transactions. The traces and their lengths are expected to
be sufficient to demonstrate a contrasting set of
characteristics which can guide system design. We
caution that the trace based analysis results presented here
should not be applied directly to any official statement of
benchmark scores.

The traces were collected on the system bus (also
known as Front-Side Bus or FSB) on a dual processor,

Pentium® III XeonTM system with a 2M 2nd level cache.
For SPECWeb99 and TPC-W, memory subsystems were
configured to 4-8GB in order to keep the disk traffic at
negligible levels. We simulated 4MB, 8MB and 16MB
caches, all configured to a 64-byte line size and 8-way set
associativity.

4.2 Usage of I/O Writes by Processor
I/O write addresses and processor reads to the same

address were tracked in terms of both spatial and temporal
aspects of their relationship. In Table 3, we show the
portion of all processor references due to I/O write traffic
– these processor references (cache misses) occur only
because memory has been updated by new data from the
NIC or disk controller. We also show how much of the
I/O write traffic is ever used by the processor.

The first column in Table 3, indicates that most
processor references are unrelated to the I/O write traffic
in the case of transmit intensive workloads including
SPECWeb99 and TPC-W. We will show in a later section
that as cache sizes increase, a higher percentage of
processor references to system memory will be related to
I/O writes.

Table 3: Importance of Incoming I/O Data

As shown in the second column, the percentage of

incoming data subsequently read by the processor is
nearly 100% whenever the source of the I/O write traffic
is the NIC. TPC-C is a contrasting case where only 7.1%
of the I/O writes are touched by the processor. Unlike
NIC I/O writes, processing of data from a disk controller
I/O is highly application dependent. Inbound disk traffic
is not subjected to protocol processing upon arrival in
memory unlike the packetized data moved by a NIC.

4.3 Distance between I/O Writes and Processor Reads
In order to benefit from direct placement of the I/O

data in the cache, the processor must read the data from
the cache in a timely manner. Otherwise, the modified
cache line may be evicted to memory before it is read. In
addition, the cache is subjected to two replacements
instead of one – first, when placing the I/O data in the

% of All CPU
references due to

I/O Writes

% of I/O Writes
referenced by

CPU
Tx-small 3.1% 100.0%
Tx-medium 4.1% 100.0%
Tx- 4.7% 100.0%
Rx-small 34.3% 100.0%
Rx-medium 55.8% 100.0%
Rx-large 66.9% 99.7%
SPECWeb99 2.5% 99.7%
TPC-W 1.1% 99.7%
TPC- 2.9% 7.1%

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

cache and second, due to untimely placement, when the
processor misses the cache anyway.

We characterize the temporal distance between
incoming data that is placed in memory and the
subsequent CPU access to this data. This distance is
measured in terms of system bus clocks (66 MHz)
between these two events and is shown in Figure 5. Figure
5 illustrates the fundamental characteristic of packetized
workloads that must undergo protocol processing before
the data portion of the packet is delivered to the
application. In most cases, nearly 100% of the I/O writes
are touched within 20K bus cycles. The packets are also
processed in a batched fashion by current stacks. Upon
receiving an interrupt from the NIC, the driver and the OS
process one or more packets as they arrive across the
network. The status of a packet in the descriptor structure
and the packet header and processed as quickly as
possible. While the application’s use of the data itself is
highly dependent on application’s characteristics, we
observe that the data portion of the packet is also touched
very early in most cases. For very large application buffer
sizes (32KB and 64KB), we observed that stack
optimizations to remove intermediate copies of the data
were used. In this case, only the header portion of the
packet is used within a short distance, and payload data
movement is deferred until the entire payload arrives
across the network. At this point, the payload may be
directly transferred to the application buffer. Note that for
Rx-large, only 80% of the I/O writes are touched within
20K bus cycles.

% of Inbound I/O Read by CPU vs . Dis tance

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50

Dis tance in Sys tem Bus Clocks (x1000)

%
 O

cc
ur

en
ce

Rx-sm all
Rx-m edium
Rx-large
SPECWeb99
TPC-W
TPC-C

Figure 5: Distance between I/O Write & CPU Read

SPECWeb99 and TPC-W exhibit very similar temporal
behavior to NTTTCP. 80% of the I/O writes are read
within 30K bus cycles in the two cases. TPC-C data is
consistent with our expectations of disk related I/O traffic
– the distance is too long for the benchmark to benefit
much from DCA.

Data in this section clearly illustrates the opportunity to
reduce a significant portion of CPU cache misses using
DCA. A high volume of incoming network I/O traffic is a
pre-cursor to substantial performance improvements with
DCA. Most network I/O traffic is touched by the
processor and is touched within a reasonably short
interval. This characteristic allows for a direct reduction
in compulsory misses in the case of network I/O if the I/O
write data is placed directly in the processor’s cache.

4.4 Traffic Profiles
Figure 6 shows the profile of cache misses in

conjunction with the I/O read and write snoop traffic that
the cache is exposed to. These profiles may be thought of
as ‘address bus’ profiles and are based on simulations of a
4MB cache. Each profile shows code reads, data reads,
reads-for-ownership (RFOs) and write-backs from the
processor (or CPU as labeled in the following figures).
RFO’s are issued by the processor when a store instruction
is executed and all cache levels in the processor incur a
miss. A cache line is read into the cache, marked
exclusive (E state) and updated in the cache subsequently
(M state).

The traffic profiles for the Tx cases indicate a
significant amount of I/O read traffic. This property is
expected since the NIC reads data from memory using
DMA before transmitting the data to the network. The Tx
cases, however, do contain a small amount of I/O write
traffic corresponding to the processing of ACKs received
for any packets sent and also for descriptor updates by the
NIC. The ACKs are often ‘coalesced’ such that the
number of explicit ACK packets required is a small
fraction of the transmitted packets.

A large portion of the Rx traffic is due to I/O writes
from the NIC. A related difference compared to the Tx
cases is that there are a high number of CPU data read
misses. The overall reduction in traffic is directly related
to the reduction in data read misses.

SPECWeb99 and TPC-W (front-end) respond to client
requests that are typically small packets by sending web
pages (constituting multiple packets) across the network.
Both workloads have a much smaller I/O write component
compared to the I/O read component. Web servers that
redirect most of the requests to other servers or that
aggregate large amounts of content from application or
back-end servers are likely to have different profiles. The
small percent of I/O write traffic can be sufficient to
demonstrate visible performance gains for SPECWeb99
and TPC-W since it affects performance critical data read
misses.

TPC-C has a significantly different profile compared to
either TPC-W or SPECWeb99 with a much larger portion
of the total traffic being I/O writes. Since the data placed
in the cache is marked as Modified, it is evicted as a write-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

back at a later point. In TPC-C, since a majority of the
data is not used, we note that the write-back traffic has
increased relative to the base case without a noticeable
change in data read misses. It is thus important to apply
DCA selectively to different types of traffic.

Processor (CPU) and I/O Coherency Traffic Filterd
by a 4MB, 8-way cache

0%

20%

40%

60%

80%

100%

120%

B
as

el
in

e

D
C

A

B
as

el
in

e

D
C

A

B
as

el
in

e

D
C

A

B
as

el
in

e

D
C

A

B
as

el
in

e

D
C

A

Tx-m ed Rx-med SW99 TPC-W TPC-C

%
 o

f T
ot

al
 T

ra
ffi

c

cpu-code-read cpu-data read cpu-rfo

cpu-writebacks io-read-snoop io-write-snoop

Figure 6 Traffic Profile with a 4MB cache

Reduction in Data Read Miss Rate due to
DCA vs. Cache Size

0%

5%

10%

15%

20%

SPECWeb99 TPC-W

%
 R

ed
uc

tio
n

in
 M

is
s

R
at

e

4M 8M 16M

Figure 7. DCA Impact on Data Read Miss Rates

Among the constituents of each profile, we expect that
processor data reads and write-backs are the most directly
impacted due to DCA. When a data structure is expected
to be modified by an I/O agent, typical driver programs
ensure that, once modified, the data is read and interpreted
before being re-used (or read for ownership). Processor
data reads are not only an important bandwidth
component but it is the second significant source of
memory latency stalls apart from code reads. Hence in
Figure 7 we show processor data read miss rates with and
without DCA. In the case of SPECWeb99 and TPC-W,
the reduction in data read misses is 10% and 7%
respectively for a 4MB cache.

Figure 7 also shows the impact of DCA for 8MB and
16MB caches. Larger caches present two opportunities for
DCA: a) the proportion of data read misses due to I/O
writes increases since it does not depend on the cache size
and b) DCA will have a relatively smaller effect on
pollution given that application working set sizes do not
generally scale proportional to the cache size. When the
cache size is increased from 4MB to 16MB, a 19%
reduction in data read miss rate is observed for
SPECWeb99 and a 14% reduction for TPC-W.

5. System Considerations
High variations in workload characteristics imply that a

flexible model for DCA must be adopted for
implementation. The scope of DCA should generally be
limited to workloads that exhibit a strong producer-
consumer relationship. A high percentage of data from
the source must used within a short temporal distance
between arrival of data from the source and processor
usage. When attempting to push data into the cache, if a
new cache line must be allocated (upon a miss), it can
potentially replace existing cache lines and also cause
evictions if the lines are dirty. The relative working set
size of data structures also plays an important role when
enabling DCA. The data structures for which a producer-
consumer relationship exists may be large compared to
working sets of other processes that are using caches. In
I/O device to processor shared memory communication,
control structures such as descriptors often have a much
smaller working set than the data buffers that they control.
While these descriptors are accessed frequently by the
processor, their impact on other working sets in the cache
can be expected to be minimal. Finally, there must be
robust support to provide specific knowledge of which
processor in multiprocessor (MP) systems will first
process the data.

In this section, we examine the following major
architectural options: selection of cache in hierarchy,
replacement policy and end line state, system interconnect
protocol, selection of write stream and target processor
determination. In order to adapt to various types of
workloads, DCA implementation should emphasize a
flexible strategy that permits fine grained selection of the
data that must be sent directly to cache. At the source of
the data (the producer), it is important to distinguish
streams based on the above characteristics and provide
mechanisms that tag these streams for DCA. The streams
must also be deterministically associated with processors
where they will be processed.

5.1. Cache Selection within a Hierarchy

Analysis of workloads with network I/O content such
as NTTTCP, SPECweb99 or TPC-W showed that there is
a net gain from using DCA with a 4MB, 8-way cache.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

The smaller the cache, the smaller the I/O related
component of the total cache misses and hence lower the
benefit due to DCA. We also showed that the distance
between I/O writes to memory and processor reads is
reasonably short. The distance is fundamentally
determined by when the processor is notified regarding
the arrival of new data using an event such as an interrupt.
In typical, gigabit network controller implementations,
interrupts are moderated to reduce processing overhead by
collecting several packets and interrupting once for all the
packets. The number of packets accumulated provides a
direct indication of the amount of cache occupied in
anticipation of processor usage.

Table 4. Cache Occupancy due to Batching of
Packets (10 Gb/s, 4000 interrupts/sec)

Pkt
Size

(Bytes)

Pkt
Rate

(MP/s)

Cache
Lines

per Pkt

Pkts
per
Int

with
Data
(MB)

w/o
Data.
(MB)

64 14.9 3 3720 0.28 0.26
256 4.5 6 1132 0.29 0.08
512 2.4 10 587 0.30 0.04

1024 1.2 18 299 0.30 0.02
1518 0.8 25 203 0.30 0.01

In Table 4, we assume continuous arrival of packets

(shown at different sizes) at a data rate corresponding to
10 Gb/s. We assume that a typical rate of 4000 interrupts
per second is used in order to amortize interrupt
processing overheads. The number of packets
accumulated (including packet header, descriptor and
payload) before the processor is interrupted corresponds
to a total of 0.28 to 0.30 MB or 7.1 to 7.4% of a 4MB
cache across the selected packet sizes. Note that the
quantity well exceeds a 256K cache and is more than half
of a 512K cache. In an environment where other non-
streaming working sets are sharing the same cache, the
last level cache of a typical server cache hierarchy will be
strongly preferred. Unless the cache belongs to a
dedicated processing core for network I/O, a smaller cache
in the range of 256K to 512K cannot be recommended for
10 Gb/s rates.

Just as network I/O and disk I/O were observed to have
different characteristics, data types within network I/O
may also be different. In typical TCP/IP processing, a
minimum of one copy operation is incurred where payload
from NIC’s buffers is copied to the application buffer. If
the copy operation is eliminated by swapping pages or
offloading to a copy engine, then using DCA for payload
is unnecessary. Consequently, capability to turn DCA on
or off dynamically by the NIC will be important.

5.2. Cache Replacement Policy

The benefits of DCA described so far assume the
commonly used pseudo-LRU policy for replacing lines in

processor caches. However, in this context, since I/O data
is not reused before being invalidated by new data, we are
investigating mechanisms to limit allocation of ways to
this type of data. Consider a hypothetical scenario where
TPC-C is executed with storage across the network (IP
storage). In this case the traditional database code and
data working sets must contend with the streaming
network I/O data that is brought into caches for TCP/IP
and related protocol processing. Figure 8 shows data read
miss rate for TPC-C for four cases: a) No IO Stream: all
interference from I/O is ignored to obtain a hypothetical
best case b) IO Stream Base: I/O stream is turned on and
allowed to interfere with the TPC-C memory accesses c)
I/O Stream with DCA-LRU: Using DCA for the I/O
stream and d) I/O Stream with DCA-W1: limiting I/O
writes to a single way while using DCA. The number
10000 is a simulated, fixed spacing between I/O writes
and processor reads for the I/O stream. Preliminary
simulations indicate that when cache space is a constraint,
DCA may incur I/O interference effects in cache by
bringing data in too early. This negative effect can be
managed by limiting I/O-related allocations to one cache
way.

Impact of I/O Stream on TPC-C
vs . Cache Size and DCA Policy

0%

10%

20%

30%

40%

50%

60%

70%

80%

512k 1M 2M 4M 8M 16M

Cache Size

%
 D

at
a

R
ea

d
M

is
s

R
at

e

No IO Stream
IO Stream 10000 Base
IO Stream 10000 DCA-W1
IO Stream 10000 DCA-LRU

Figure 8. Impact of Limiting I/O Stream Allocation

to a Single Way (8-way caches assumed)

5.3. System Interconnect Protocol

Simulation data presented so far assumed that ‘Write-
Allocate’ transactions are used to replace other existing
cache lines within the target cache. A ‘Write-Update’
protocol offers a good trade-off when the processor is
accessing control structures or buffers that are frequently
recycled. If a data structure due to some form of temporal
locality remains in cache, then a Write Update protocol
can largely succeed. Figure 9 summarizes a comparison
between the Write-Allocate and Write-Update for the
three server benchmarks. For the same working set (as

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

determined by the selected traces), as cache size increases,
the greater the opportunity to update directly in cache.

Table 5. State Transition in DCA Protocols
 Initial State Final State
Update I I
 M, E or S M or E
Allocate M, E, S or I M or E

Write-Update also does not incur any cache pollution
regardless of the amount of data actually touched by the
processor. This is why TPC-C does not suffer an increase
in data read misses as in the case of Write-Allocate.

Reduction in Read Misses (code, rfo and data reads)
vs . Cache Size and Allocation Policy

-5%

-3%

-1%

1%

3%

5%

7%

9%

11%

13%

SPECWeb99 TPC-W TPC-C

%
 R

ed
uc

tio
n

in
 D

at
a

R
ea

d
M

is
se

s

4M Allocate 8M Allocate 16M Allocate
4M Update 8M Update 16M Update

Figure 9. Impact of DCA on Data Read Misses

DCA may be viewed as an I/O adapter initiated
prefetching mechanism. In the idealized implementation
of DCA, data is directly brought into cache without
touching memory. However, the act of bringing data into
cache ahead of processor’s demand requests is critical in
decoupling the processor from memory. Recognizing this
key characteristic enables us to propose a significantly
simpler mechanism called Prefetch Hint. In one version
of this proposal, the snoop associated with the I/O write is
tagged to trigger a hardware prefetch within the processor.
A hardware prefetcher can use the snoop address to issue
a prefetch request to memory. This approach has the
benefit of mapping to existing micro-architectural
implementations that do not expect unsolicited data from
external sources. The hint may also be decoupled from
snoops for greater flexibility in triggering prefetches.

5.4. Identify the Target Processor

Since implementation of DCA can intricately depend
on the architecture of the base processor and platform, we
provide a reference model identifying the basic
components involved in the correct yet flexible operation

of DCA. In this model (Figure 10), we recognize a Write
Agent as the source of new data. The Write Agent is
responsible for issuing DCA transactions for routing in the
platform. A Requesting Agent is the processor running
system software that sets up the Write Agent with DCA
preferences. DCA preferences primarily include the
choice of enabling/disabling DCA and the target
identifier. A Target Agent is the target CPU and cache
that receives data from the Write Agent. System software
(O/S or Virtual Machine Monitor) must provide a reliable
environment for sending data from Write Agents directly
into the cache of the processor that will first touch the
data. When data is sent into a processor, the task that will
use the data must be running or should run within a short
interval on that processor. In some usage models such as
network protocol processing, we have shown workload
characteristics indicating that the interval between cache
placement and the use of the same data by the processor is
relatively short. Thus, with the aid of the system software,
it is only required to ensure that data is sent to the correct
Target Agent in multi-cache systems.

Figure 10. A Reference Model for DCA

Two affinitization methods that are expected to become
prevalent in operating systems can be leveraged for DCA:
1) NUMA memory affinity and 2) connection based
affinity. Both Microsoft and Linux support NUMA-aware
memory allocation schemes so that the memory requested
by a task is allocated from the memory that is local to the
processor that it is running on. If the requested memory
space is not available, then it is allocated from the remote
processor’s memory. For a NUMA memory optimized
driver, we expect that a large majority of memory write
transfers from I/O devices can be routed to the cache of
the processor that owns the memory space indicated in the
DMA write addresses. Since there is no guarantee that a
packet will be processed on a processor that owns the
memory containing the packet buffer, NUMA memory
based affinity provides a coarse guidance regarding where
the data will by processed. Connection based affinity [16]
involves the balancing of packet processing across
multiple processors in the system while maintaining in-
order delivery of the data. In addition, cache thrashing
can be minimized by ensuring that a single TCP
connection is always processed by one processor. As

Generate
DCA
transaction

DCA Preferences

Platform
Routing

Target Agent

Write AgentRequesting
Agent

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

packets arrive from the network, NICs can be enabled to
examine packet headers and assign processors to these
packets in a deterministic manner. The availability of the
target processor at the NIC directly helps DCA
implementation. The target processor is used as part of
DCA preferences passed into the chipset via the I/O
interconnect.

5.5. Summary of Architectural Guidelines

We reviewed a number of system-wide issues that must
be addressed for proper DCA implementation. A brief
summary of the guidelines that were developed is
provided in Table 6. It is important to interpret these
guidelines considering that the focus of our research was
on network intensive workloads and server processors /
platforms.

Table 6 Summary of DCA System Considerations

Cache in
Hierarchy

Limit to Last-level cache except when the
cache is not used for other purposes.

Replacement
Policy

Normal LRU-like policy is sufficient. Way
limits are worth investigating

Cache Line
State after DCA

Exclusive sufficient in the network I/O
usage model.

System
Interconnect
Protocol

Write-Allocate provides the highest
opportunity. Ability to accommodate
Write-Update in same design can be
useful.

Prefetch hint approach offers a simple,
highly flexible alternative

Write Stream Dynamic, per transaction selectivity

Target CPU
Determination

Dynamic, per transaction selectivity
supporting a scheme such as RSS

6. Conclusions
By alleviating the I/O interconnect bottleneck in low

cost, high volume platforms, using PCI-Express and
gigabit Ethernet technologies, we anticipate that the
processor and in particular processor to memory
interactions can severely limit the attainment of high
network I/O rates. In this paper, we have reviewed
scenarios such as TCP/IP on Ethernet where a strong
relationship may exist between I/O traffic and processor
efficiency. The result of extensive characterization of
memory access traces is an enhancement called Direct
Cache Access. We note that due to different type of I/O
characteristics, system level implementation must be
based on a reference model that emphasizes flexibility.
Higher rates of I/O, larger caches and efficiency
improvements in other parts of network protocol

processing will continue to increase the importance of
DCA and similar I/O centric enhancements.

Further characterization of I/O and processor
relationship is ongoing. Coherency protocol inefficiencies
in the outbound direction include the eviction of modified
data from cache to memory upon an I/O read. The
efficient use of cache in the presence of heterogeneous
workloads is under investigation. Apart from memory
dependencies, I/O related computation will continue to
receive attention due to additional layers of processing
involving data integrity, security and flexibility offered by
XML-like representations.

REFERENCES
[1] J. Chase et. al., “End System Optimizations for High-Speed
TCP”, IEEE Communications, June 2000.
[2] D. Clark et. al., “An analysis of TCP Processing overhead”,
IEEE Communications, June 1989.
[3] D. Clark et. al., “Architectural Considerations for a new
generation of Protocols”, ACM SIGCOMM, September 1990.
[4] M. Dubois et al, “Evaluation of Shared Cache
Architectures for TPC-H”, 5th Workshop on Comp. Architecture
Evaluation using Commercial Workloads (CAECW-2002).
[5] A. Earls, “TCP Offload Engines Finally Arrive”, Storage
Magazine, March 2002.
[6] A. Foong et al., “TCP Performance Analysis Re-visited,”
IEEE Int’l Symp on Performance Analysis of Software and
Systems, Mar 2003
[7] iSCSI, IP Storage Working Group, Internet Draft, available
at http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-20.txt
[8] R. Iyer, “On Modeling and Analyzing Cache Hierarchies
using CASPER”, 11th IEEE/ACM Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), April 2003.
[9] S. Makineni and R. Iyer, “Performance Characterization of
Packet Processing in Commercial Server Workloads,” 6th
Workshop on Workload Characterization (WWC), Oct 2003.
[10] J. Mogul, “TCP offload is a dumb idea whose time has
come,” Symposium on Hot Operating Systems (HOT OS), 2003.
[11] E. Nahum, D. Yates , J. Kurose and D. Towsley, “Cache
behavior of network protocols, ACM SIGMETRICS
Performance Evaluation Review, v.25 p.169-180, June 1997
[12] J. B. Postel, “Transmission Control Protocol”, RFC 793,
Information Sciences Institute, Sept. 1981.
[13] RDMA Consortium. http://www.rdmaconsortium.org
[14] G. Regnier et al, “TCP Onloading For Data center
Servers”, IEEE Computer. November 2004.
[15] Remote Direct Data Placement Working Group.
http://www.ietf.org/html.charters/rddp-charter.html
[16] “Scalable Networking: Eliminating the Receive Processing
Bottleneck – Introducing RSS”. Microsoft WinHEC April 2004.
[17] “SPECweb99 Design Document”, available online at
http://www.specbench.org/osg/web99/docs/whitepaper.html
[18] “TPC-W Design Document”, www.tpc.org/tpcw/
[19] “TPC-C Design Document”, www.tpc.org/tpcc/
[20] “TTTCP Benchmark”, http://ftp.arl.mil/~mike/ttcp.html
[21] D. Yates., “Connection-Level Parallelism for Network
Protocols on Shared-Memory Multiprocessor Servers,” Ph.D.
Dissertation, University of Massachusetts, Amherst, 1997.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

