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Abstract 

Recent I/O technologies such as PCI-Express and 
10Gb Ethernet enable unprecedented levels of I/O 
bandwidths in mainstream platforms.  However, in 
traditional architectures, memory latency alone can limit 
processors from matching 10 Gb inbound network I/O 
traffic.  We propose a platform-wide method called Direct 
Cache Access (DCA) to deliver inbound I/O data directly 
into processor caches.  We demonstrate that DCA 
provides a significant reduction in memory latency and 
memory bandwidth for receive intensive network I/O 
applications.  Analysis of benchmarks such as 
SPECWeb9, TPC-W and TPC-C shows that overall 
benefit depends on the relative volume of I/O to memory 
traffic as well as the spatial and temporal relationship 
between processor and I/O memory accesses. A system 
level perspective for the efficient implementation of DCA 
is presented. 

1. Introduction  

Architectural and micro-architectural evaluation of 
processors, cache hierarchies and system interconnects has 
often been decoupled from I/O considerations.  There are 
multiple recent trends that require a broader view of 
computer architecture.  Foremost among these trends is 
the rapid maturity of the internet and the corresponding 
increase in applications and technologies that aim to make 
the internet a richer experience.  Applications associated 
with broadband internet such as video and graphics not 
only involve large volumes of data but are at the same 
time response time sensitive.  I/O technologies such as 
PCI-Express and multi-gigabit Ethernet are aimed at these 
emerging applications and enable high data rates within 
the system and between systems across a network.  They 
represent an unprecedented increase in the amount of raw 
I/O throughput in mainstream platforms in the near future.  
Having significantly alleviated I/O throughput limitations, 
the ability to process high rates of I/O becomes a 
dominant concern. 

The impact of I/O on processor efficiency can be 
demonstrated using the example of the 10 gigabit Ethernet 
standard and the processing involved in executing TCP/IP 
protocol.  TCP/IP over Ethernet is the prevalent form of 
communication used by network-intensive server 

applications (e.g. web services and e-commerce).  The 
relevance of TCP/IP protocol processing [1, 2, 3, 6, 9] 
grows stronger as Storage-over-IP starts to become 
popular with the help of working groups for iSCSI [7], 
RDMA [13] and DDP [15].  Independent of the volume of 
data presented by video and graphics data, traditional 
disk-intensive workloads may also be dependent on 
Ethernet capability and efficient TCP/IP processing in the 
future. 
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Figure 1. Expected Packet Service Time and 
Packet Rates at 10 Gb/s versus Packet Size 

Figure 1 illustrates that a data rate of 10 Gb/s 
corresponds to a packet rate of 14.8 million packets per 
second (MP/s) with 64 byte packets.  A system must be 
able to transmit or receive, on average, a 64 byte packet 
every 67 ns and at the largest Ethernet packet size of 1518 
bytes, a system must be able to transmit or receive once 
every 1230 ns.  When packet data is accessed from system 
memory, sustaining 10 Gb/s throughput will be very 
difficult without intervention.  In this paper, we present 
and evaluate a technique called Direct Cache Access 
(DCA) to minimize memory subsystem dependencies and 
improve the balance between processing and I/O 
capabilities. 

The rest of this paper is organized as follows. In 
Section 2, we provide an overview of I/O related data 
movement and processing.  With TCP/IP as our primary 
I/O centric usage model, typical data structures involved 
in TCP/IP processing and memory accesses associated 
with these data structures are reviewed in detail in Section 
III.  We also introduce DCA as an enhancement to the 
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system interconnect coherency protocol to move inbound 
I/O traffic directly into processor caches.  With inbound 
network traffic, the current coherency protocol between 
I/O adapters and processors results in unnecessary 
memory bandwidth consumption and numerous memory 
accesses that limit processors from being able to sustain 
high network I/O rates.  In Section 4, the magnitude of the 
problem is demonstrated using memory access traces and 
cache simulations for various network intensive and 
common server benchmarks. Section 5 presents a 
comprehensive system level perspective for implementing 
the protocols in mainstream architectures.  We observe 
that successful implementation requires simple but 
coordinated changes across multiple platform elements 
such as system software, CPU, chipsets and I/O devices. 
We conclude with planned future enhancements to DCA 
as well as other areas of improvement in handling high 
I/O throughputs. 

2. I/O Data Movement and Processing 

In this section, we provide an overview of I/O processing 
and point out the data movement and memory interactions 
that affect performance. 

2.1. Basic Processor, Memory and I/O Interaction 

The interaction between processors, memory and I/O 
adapters involves multiple data structures and also 
multiple system mechanisms.  Common today are Direct 
Memory Access (DMA) techniques that decouple 
processor involvement during data transfers between I/O 
devices and the memory subsystem.  Typical interactions 
assuming a DMA capable adapter are shown in Figure 2. 
The processor, as instructed by software, sets up a system 
memory based buffer for transmission or reception and 
provides an appropriate I/O adapter with a descriptor.  The 
descriptor contains a pointer to the buffer and is used by 
the I/O adapter to read data for transmission or to write 
data in the case of reception.  Upon creating a descriptor, 
the processor writes to a memory mapped I/O (MMIO) 
register on the I/O adapter to indicate the presence of a 
new descriptor.  Descriptors are often maintained as a 
circular ring structure and the MMIO write serves to 
update a pointer into the descriptor ring.  An I/O adapter 
equipped with a descriptor can independently complete a 
block transfer and provide a status in memory to the 
processor.  Since the processor is expected to execute 
other operations (possibly applications) concurrently, an 
I/O adapter sends an interrupt to bring the processor’s 
attention to any newly reported status information.  The 
processor may also query the NIC directly using MMIO 
reads to obtain the cause of interrupts.  In modern systems 
and I/O adapters, several optimizations exist to amortize 
the overhead of MMIO reads, writes and interrupts.  These 

optimizations are implementation specific and are beyond 
the scope of this paper.  The focus of this paper is on 
system memory based interactions involving status, 
descriptor and payload data structures.  Figure 2 shows the 
interactions on the ‘receive-side’ for inbound I/O data. 

 

 
Figure 2. Receive-side Interactions between 

Processor, Memory and I/O Adapter 

2.2 I/O Interactions From A Cache Perspective 
The three data structures that hold status, descriptors 

and payload are allocated from system memory space that 
is cacheable in processor caches.  It is clear from Figure 2 
that cache lines modified by the processor are read by the 
I/O adapter while cache lines modified by the I/O adapter 
are read by the processor.  Thus accesses from both the 
processor and the I/O adapter require transactions that 
maintain coherency using the system interconnect.  The 
sequence of transactions required to maintain cache 
coherency for I/O to memory write for a single cache line 
is shown in Figure 3. 

For both memory writes and memory read requests 
from the I/O adapter, the chipset acts as a bridge between 
I/O, processors and memory, and issues a snoop 
transaction for each cache line to ensure that the previous 
copy of the cache lines is invalidated from the processor’s 
cache.  In the case of memory writes, the cache line is 
invalidated, while in the case of a memory read, the cache 
line is either invalidated or marked as a shared cache line.  
DCA is concerned primarily with subsequent use of the 
snooped cache lines by the processor.  Depending on 
processing requirements of inbound data, invalidated 
cache lines may soon be read by the processor.  These 
memory accesses are compulsory cache misses due to the 
invalidation protocol implemented by current systems.  At 
the core of DCA is a system interconnect transaction that 
facilitates data movement directly into the processor’s 
cache.  DCA has two benefits: 1) timely availability of 
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data in cache leading directly to a lower average memory 
latency and 2) reduction in memory bandwidth 
requirement.  An ideal implementation of DCA would 
eliminate the need to write data to memory, continuously 
updating cache lines in the cache with new data. 

 

 
Figure 3. Transaction Sequence used to maintain 
Cache Coherency during Inbound I/O Transfers 

3. TCP/IP Example 
The magnitude of benefit due to DCA is best 

demonstrated by using specific data structures used in the 
TCP/IP software stack and the associated memory 
bandwidths.  One of the well-recognized issues with 
TCP/IP communication [12] is the significant 

computational and memory requirements of protocol stack 
processing and related overheads (such as buffer 
management, interrupts and scheduling) in a typical O/S 
environment.  Motivated by these issues, several research 
projects contemplate the potential of using TCP offload 
engines (TOE) or packet processing engines (PPE) [5, 10] 
to accelerate TCP/IP packet processing.  As a contrast, a 
comprehensive set of enhancements required in general 
purpose software and hardware to match high network I/O 
rates is provided in [14]. 

Memory accesses associated with TCP/IP processing 
include the same base components such as status, 
descriptors and payload (described in Section 2.1).  
Transfers across the network using Ethernet are, however, 
packetized where each packet contains a header portion 
and a payload portion.  An adapter moves both header and 
payload for each packet to and fro with respect to 
memory.  We assume in the following calculations that 
header and payload are placed in separate memory areas.  
A typical Ethernet and TCP/IP packet header size is 58 
bytes excluding any optional bytes.  The packet payload 
ranges from 0 to 1460 bytes or 0 to 23, 64-byte cache 
lines.  Descriptors are typically partial cache line 
structures – we assume 16 bytes in the following 
computations. 

In addition to these base memory traffic components, 
TCP/IP processing also involves other processor-to-
memory accesses of which the memory accesses related to 
maintaining the context of network connections (also 
called TCB or Transport Control Block) are most 
important.  TCBs are typically 512 bytes or greater 
although not all cache lines are frequently accessed.  
Unlike other data structures reviewed here, TCB accesses 
are immune to I/O adapter interactions. 

Table 1. Receive-Side Cache Line Transitions and Memory Accesses (payload of N cache lines) 

Memory Access Type   
Cache Line State Transitions 

without DCA 
Memory Accesses 
In Cache lines 

Requestor Data Structure Direction Descriptor Header Payload Baseline DCA 
Processor Descriptor Write E to M     0 0 
NIC Descriptor Read M to I   1 1 
NIC Header Write  E to I  1 0 
NIC Payload Write   E to I N 0 
NIC Status Write at I   1 0 
Processor Status Read I to E   1 0 
Processor Header Read  I to E  1 0 
Processor TCB Read           
Processor TCB Write           
Processor Payload Read     I to E N 0 
     TOTAL 2N + 5 1 
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The core sequence of processor and NIC (Network 
Interface Controller) memory accesses per packet during 
TCP/IP protocol processing is shown for packet reception 
(Receive side) in Table 1.  Cache lines associated with 
descriptors, headers and payload undergo multiple state 
transitions in response to each memory access.  The 
coherence protocol is assumed to be MESI (Modified, 
Exclusive, Shared and Invalid states) based.  Unknown or 
don’t care states are denoted with an ‘x’.  We also show 
cache misses resulting in accesses at memory and account 
for them in the table. 

Key to DCA are the transitions to I state upon the NIC 
writing data to memory.  For now, the accounting of 
benefits from DCA assume idealized implementations 
where memory writes can be completely eliminated by 
keeping cache lines in M state within the cache.  The 
opportunity to reduce memory bandwidth by a factor of 
2N+5 where N is the size of the payload within a packet is 
clearly significant. 

We also computed absolute memory bandwidths due to 
each type of memory access when sustaining 10Gb/s as 
shown in Figure 4.  Two packet sizes: 256 bytes and 1518 
bytes were chosen for comparison – these represent 
control message transfers and large block transfers across 
the network.  In both cases, the dominant source of 
bandwidth is clearly payload data movement.  In the 
baseline where no DCA is assumed, bandwidths range 
from 2.6 to 3.8 GB/s on the receive side and 2.6 to 3.0 
GB/s on the transmit side.  Movement of payload data in 
any one direction should roughly equate to 10 Gb/s (or 
1250 MB/s) save Ethernet specific overheads. 

In addition to an idealized DCA, we also show a case 
where all modified cache lines in the cache due to NIC 
writes are evicted.  Even when accounting evictions, we 
observe that memory bandwidth reduces from 3.8 GB/s to 
2.2 GB/s (71%) in the case of 256 byte packets and from 
2.6 GB/s to 1.4 GB/s (92%) in the case of 1518 byte 
packets. The bandwidth reduced corresponds to processor 
to memory reads – a more important limiter in a system 
that has memory bandwidth headroom compared to NIC 
to memory writes that occur transparently.  

DCA has limited applicability in a transmit-intensive 
workload.  It can only eliminate the processor-to-memory 
read of NIC status when transmit operations complete.   

In addition to memory bandwidth reduction, DCA 
addresses critical latency limitations.  To attain 10 Gb/s, 
each 256-byte packet must be processed at rate of one 
every 220 ns (Figure 1).  From Table 1 we see that there 
are at least four processor-to-memory accesses that can be 
exposed to full memory latency: status read, header read, 
TCB read and payload read.  This does not count back-to-
back accesses when fetching multiple cache lines of a 
TCB or payload.  Assuming, idle system latencies on 
recent typical servers of approximately 100 ns, we find 

that memory latency alone will limit the processor from 
matching full network I/O rate.  The problem is also much 
more critical on receive side TCP/IP processing. 
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Figure 4.  Memory Bandwidth Reduction due to 

DCA Options (Receive Side, TCB, descriptor and 
header accesses not labeled) 

4. Memory Access Profiles of Benchmarks 
We examined four benchmarks with varying amounts 

of I/O activity to quantify the improvement possible with 
DCA. 

4.1. Benchmarks 

The selected benchmarks are briefly described as 
follows 

NTTTCP [20] is Microsoft’s command-line tool that 
exercises the sockets API and is used for measuring 
network throughput between two end-systems. NTTTCP 
is used to represent forward looking network intensive 
applications. The NTTTCP workload is broken up into a 
set of Transmit (Tx) intensive tests and a set of Receive 
(Rx) intensive tests.  In each case, we also categorize the 
transferred application buffer size as small, medium and 
large implying the range of sizes shown in Table 2. 

Table 2: Application buffer size categories 

Case Size 
Small 64B to 256B 

Medium 512B to 4KB 

Large 8KB to 64KB 

 
SPECweb99 [17] is a benchmark that attempts to 

mimic a web server environment.  The benchmark setup 
uses multiple client systems to generate an aggregate load 

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



on the system under test (a web server).  Each client 
(mimicking browsers) initiates TCP connections to the 
web server and makes HTTP requests for static or 
dynamic web pages.  

TPC-W [18] is a multi-tier benchmark that attempts to 
model an e-commerce environment (based on an on-line 
bookstore like amazon.com). Since our interest is in 
packet-processing, we focused on the front-end tier that 
handles incoming connections, processes HTTP requests, 
generates queries to the back-end and finally puts together 
a web page that is sent back to the client. 

TPC-C [19] is an online-transaction processing 
benchmark that simulates a complete computing 
environment where a population of users executes 
transactions against a database.  The benchmark is based 
on the primary transactions in an order-entry environment.  
These transactions include entering and delivering orders, 
recording payments, checking the status of orders, and 
monitoring the level of stock at the warehouses.  The 
nature of I/O in the TPC-C benchmark is very different 
from the other benchmarks that we studied. It is 
predominantly disk I/O compared to network I/O.  TPC-C, 
however, makes an interesting contrast demonstrating how 
disk I/O traffic can be different compared to network I/O.  
Database applications are also interesting in that much of 
the disk I/O, in future, may translate into network I/O if 
the a remote disk subsystem over IP networks is used. 

4.1 Evaluation Methodology 
Our evaluation methodology consists of an extensive 

set of cache simulations fed by memory access traces 
collected on an existing system running the workloads of 
interest. Cache simulations were performed using the 
CASPER simulation framework [8]. CASPER enables the 
analysis of a spectrum of cache structures and hierarchies 
including UP & MP cache hierarchies, shared caches, 
chipset caches and snoop filters.  Prior research using a 
hardware cache emulator for TPC-H and cache coherence 
protocols represents an alternative approach [4]. 

For NTTTCP, each trace was 30M instructions long 
while in all other cases, the traces were 100M instructions 
long.  Since only about 10K instructions are executed per 
Ethernet packet, and the memory access patterns are 
repetitious, the 30M instructions per NTTTCP trace 
should be sufficient.  In the case of SPECWeb99, TPC-C 
and TPC-W, each trace corresponds to 2 to 5M bus 
transactions.  The traces and their lengths are expected to 
be sufficient to demonstrate a contrasting set of 
characteristics which can guide system design.  We 
caution that the trace based analysis results presented here 
should not be applied directly to any official statement of 
benchmark scores. 

The traces were collected on the system bus (also 
known as Front-Side Bus or FSB) on a dual processor, 

Pentium® III XeonTM system with a 2M 2nd level cache.  
For SPECWeb99 and TPC-W, memory subsystems were 
configured to 4-8GB in order to keep the disk traffic at 
negligible levels.  We simulated 4MB, 8MB and 16MB 
caches, all configured to a 64-byte line size and 8-way set 
associativity. 

4.2 Usage of I/O Writes by Processor 
I/O write addresses and processor reads to the same 

address were tracked in terms of both spatial and temporal 
aspects of their relationship.  In Table 3, we show the 
portion of all processor references due to I/O write traffic 
– these processor references (cache misses) occur only 
because memory has been updated by new data from the 
NIC or disk controller.  We also show how much of the 
I/O write traffic is ever used by the processor. 

The first column in Table 3, indicates that most 
processor references are unrelated to the I/O write traffic 
in the case of transmit intensive workloads including 
SPECWeb99 and TPC-W.  We will show in a later section 
that as cache sizes increase, a higher percentage of 
processor references to system memory will be related to 
I/O writes. 

Table 3: Importance of Incoming I/O Data  

 
As shown in the second column, the percentage of 

incoming data subsequently read by the processor is 
nearly 100% whenever the source of the I/O write traffic 
is the NIC.  TPC-C is a contrasting case where only 7.1% 
of the I/O writes are touched by the processor.  Unlike 
NIC I/O writes, processing of data from a disk controller 
I/O is highly application dependent.  Inbound disk traffic 
is not subjected to protocol processing upon arrival in 
memory unlike the packetized data moved by a NIC.  

4.3 Distance between I/O Writes and Processor Reads 
In order to benefit from direct placement of the I/O 

data in the cache, the processor must read the data from 
the cache in a timely manner.  Otherwise, the modified 
cache line may be evicted to memory before it is read.  In 
addition, the cache is subjected to two replacements 
instead of one – first, when placing the I/O data in the 

% of All CPU 
references due to 

I/O Writes 

% of I/O Writes 
referenced by 

CPU
Tx-small 3.1% 100.0%
Tx-medium 4.1% 100.0%
Tx- 4.7% 100.0%
Rx-small 34.3% 100.0%
Rx-medium 55.8% 100.0%
Rx-large 66.9% 99.7%
SPECWeb99 2.5% 99.7%
TPC-W 1.1% 99.7%
TPC- 2.9% 7.1%
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cache and second, due to untimely placement, when the 
processor misses the cache anyway. 

We characterize the temporal distance between 
incoming data that is placed in memory and the 
subsequent CPU access to this data. This distance is 
measured in terms of system bus clocks (66 MHz) 
between these two events and is shown in Figure 5. Figure 
5 illustrates the fundamental characteristic of packetized 
workloads that must undergo protocol processing before 
the data portion of the packet is delivered to the 
application.  In most cases, nearly 100% of the I/O writes 
are touched within 20K bus cycles.  The packets are also 
processed in a batched fashion by current stacks.  Upon 
receiving an interrupt from the NIC, the driver and the OS 
process one or more packets as they arrive across the 
network.  The status of a packet in the descriptor structure 
and the packet header and processed as quickly as 
possible.  While the application’s use of the data itself is 
highly dependent on application’s characteristics, we 
observe that the data portion of the packet is also touched 
very early in most cases.  For very large application buffer 
sizes (32KB and 64KB), we observed that stack 
optimizations to remove intermediate copies of the data 
were used.  In this case, only the header portion of the 
packet is used within a short distance, and payload data 
movement is deferred until the entire payload arrives 
across the network.  At this point, the payload may be 
directly transferred to the application buffer.  Note that for 
Rx-large, only 80% of the I/O writes are touched within 
20K bus cycles. 
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Figure 5: Distance between I/O Write & CPU Read  

SPECWeb99 and TPC-W exhibit very similar temporal 
behavior to NTTTCP.  80% of the I/O writes are read 
within 30K bus cycles in the two cases.  TPC-C data is 
consistent with our expectations of disk related I/O traffic 
– the distance is too long for the benchmark to benefit 
much from DCA. 

Data in this section clearly illustrates the opportunity to 
reduce a significant portion of CPU cache misses using 
DCA.  A high volume of incoming network I/O traffic is a 
pre-cursor to substantial performance improvements with 
DCA.  Most network I/O traffic is touched by the 
processor and is touched within a reasonably short 
interval.  This characteristic allows for a direct reduction 
in compulsory misses in the case of network I/O if the I/O 
write data is placed directly in the processor’s cache. 

4.4 Traffic Profiles 
Figure 6 shows the profile of cache misses in 

conjunction with the I/O read and write snoop traffic that 
the cache is exposed to.  These profiles may be thought of 
as ‘address bus’ profiles and are based on simulations of a 
4MB cache.  Each profile shows code reads, data reads, 
reads-for-ownership (RFOs) and write-backs from the 
processor (or CPU as labeled in the following figures).  
RFO’s are issued by the processor when a store instruction 
is executed and all cache levels in the processor incur a 
miss.  A cache line is read into the cache, marked 
exclusive (E state) and updated in the cache subsequently 
(M state). 

The traffic profiles for the Tx cases indicate a 
significant amount of I/O read traffic.  This property is 
expected since the NIC reads data from memory using 
DMA before transmitting the data to the network.  The Tx 
cases, however, do contain a small amount of I/O write 
traffic corresponding to the processing of ACKs received 
for any packets sent and also for descriptor updates by the 
NIC.  The ACKs are often ‘coalesced’ such that the 
number of explicit ACK packets required is a small 
fraction of the transmitted packets. 

A large portion of the Rx traffic is due to I/O writes 
from the NIC.  A related difference compared to the Tx 
cases is that there are a high number of CPU data read 
misses. The overall reduction in traffic is directly related 
to the reduction in data read misses. 

SPECWeb99 and TPC-W (front-end) respond to client 
requests that are typically small packets by sending web 
pages (constituting multiple packets) across the network. 
Both workloads have a much smaller I/O write component 
compared to the I/O read component.  Web servers that 
redirect most of the requests to other servers or that 
aggregate large amounts of content from application or 
back-end servers are likely to have different profiles.  The 
small percent of I/O write traffic can be sufficient to 
demonstrate visible performance gains for SPECWeb99 
and TPC-W since it affects performance critical data read 
misses. 

TPC-C has a significantly different profile compared to 
either TPC-W or SPECWeb99 with a much larger portion 
of the total traffic being I/O writes.  Since the data placed 
in the cache is marked as Modified, it is evicted as a write-
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back at a later point.  In TPC-C, since a majority of the 
data is not used, we note that the write-back traffic has 
increased relative to the base case without a noticeable 
change in data read misses. It is thus important to apply 
DCA selectively to different types of traffic. 

Processor (CPU) and I/O Coherency Traffic Filterd 
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Figure 6 Traffic Profile with a 4MB cache  
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Figure 7.  DCA Impact on Data Read Miss Rates  

Among the constituents of each profile, we expect that 
processor data reads and write-backs are the most directly 
impacted due to DCA.  When a data structure is expected 
to be modified by an I/O agent, typical driver programs 
ensure that, once modified, the data is read and interpreted 
before being re-used (or read for ownership).  Processor 
data reads are not only an important bandwidth 
component but it is the second significant source of 
memory latency stalls apart from code reads.  Hence in 
Figure 7 we show processor data read miss rates with and 
without DCA.  In the case of SPECWeb99 and TPC-W, 
the reduction in data read misses is 10% and 7% 
respectively for a 4MB cache. 

Figure 7 also shows the impact of DCA for 8MB and 
16MB caches. Larger caches present two opportunities for 
DCA: a) the proportion of data read misses due to I/O 
writes increases since it does not depend on the cache size 
and b) DCA will have a relatively smaller effect on 
pollution given that application working set sizes do not 
generally scale proportional to the cache size.  When the 
cache size is increased from 4MB to 16MB, a 19% 
reduction in data read miss rate is observed for 
SPECWeb99 and a 14% reduction for TPC-W. 

5. System Considerations 
High variations in workload characteristics imply that a 

flexible model for DCA must be adopted for 
implementation.  The scope of DCA should generally be 
limited to workloads that exhibit a strong producer-
consumer relationship.  A high percentage of data from 
the source must used within a short temporal distance 
between arrival of data from the source and processor 
usage.  When attempting to push data into the cache, if a 
new cache line must be allocated (upon a miss), it can 
potentially replace existing cache lines and also cause 
evictions if the lines are dirty.  The relative working set 
size of data structures also plays an important role when 
enabling DCA.  The data structures for which a producer-
consumer relationship exists may be large compared to 
working sets of other processes that are using caches.  In 
I/O device to processor shared memory communication, 
control structures such as descriptors often have a much 
smaller working set than the data buffers that they control.  
While these descriptors are accessed frequently by the 
processor, their impact on other working sets in the cache 
can be expected to be minimal.  Finally, there must be 
robust support to provide specific knowledge of which 
processor in multiprocessor (MP) systems will first 
process the data. 

In this section, we examine the following major 
architectural options: selection of cache in hierarchy, 
replacement policy and end line state, system interconnect 
protocol, selection of write stream and target processor 
determination.  In order to adapt to various types of 
workloads, DCA implementation should emphasize a 
flexible strategy that permits fine grained selection of the 
data that must be sent directly to cache.  At the source of 
the data (the producer), it is important to distinguish 
streams based on the above characteristics and provide 
mechanisms that tag these streams for DCA.  The streams 
must also be deterministically associated with processors 
where they will be processed. 

5.1. Cache Selection within a Hierarchy 

Analysis of workloads with network I/O content such 
as NTTTCP, SPECweb99 or TPC-W showed that there is 
a net gain from using DCA with a 4MB, 8-way cache.  
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The smaller the cache, the smaller the I/O related 
component of the total cache misses and hence lower the 
benefit due to DCA.  We also showed that the distance 
between I/O writes to memory and processor reads is 
reasonably short.  The distance is fundamentally 
determined by when the processor is notified regarding 
the arrival of new data using an event such as an interrupt.  
In typical, gigabit network controller implementations, 
interrupts are moderated to reduce processing overhead by 
collecting several packets and interrupting once for all the 
packets.  The number of packets accumulated provides a 
direct indication of the amount of cache occupied in 
anticipation of processor usage. 

Table 4. Cache Occupancy due to Batching of 
Packets (10 Gb/s, 4000 interrupts/sec) 

Pkt 
Size 

(Bytes) 

Pkt 
Rate 

(MP/s) 

Cache 
Lines 

per Pkt 

Pkts  
per 
Int 

with 
Data 
(MB) 

w/o 
Data. 
(MB) 

64 14.9 3 3720 0.28 0.26 
256 4.5 6 1132 0.29 0.08 
512 2.4 10 587 0.30 0.04 

1024 1.2 18 299 0.30 0.02 
1518 0.8 25 203 0.30 0.01 

   
In Table 4, we assume continuous arrival of packets 

(shown at different sizes) at a data rate corresponding to 
10 Gb/s.  We assume that a typical rate of 4000 interrupts 
per second is used in order to amortize interrupt 
processing overheads.  The number of packets 
accumulated (including packet header, descriptor and 
payload) before the processor is interrupted corresponds 
to a total of 0.28 to 0.30 MB or 7.1 to 7.4% of a 4MB 
cache across the selected packet sizes.   Note that the 
quantity well exceeds a 256K cache and is more than half 
of a 512K cache.  In an environment where other non-
streaming working sets are sharing the same cache, the 
last level cache of a typical server cache hierarchy will be 
strongly preferred.  Unless the cache belongs to a 
dedicated processing core for network I/O, a smaller cache 
in the range of 256K to 512K cannot be recommended for 
10 Gb/s rates. 

Just as network I/O and disk I/O were observed to have 
different characteristics, data types within network I/O 
may also be different.  In typical TCP/IP processing, a 
minimum of one copy operation is incurred where payload 
from NIC’s buffers is copied to the application buffer.  If 
the copy operation is eliminated by swapping pages or 
offloading to a copy engine, then using DCA for payload 
is unnecessary.  Consequently, capability to turn DCA on 
or off dynamically by the NIC will be important. 

5.2. Cache Replacement Policy 

The benefits of DCA described so far assume the 
commonly used pseudo-LRU policy for replacing lines in 

processor caches.  However, in this context, since I/O data 
is not reused before being invalidated by new data, we are 
investigating mechanisms to limit allocation of ways to 
this type of data.  Consider a hypothetical scenario where 
TPC-C is executed with storage across the network (IP 
storage).  In this case the traditional database code and 
data working sets must contend with the streaming 
network I/O data that is brought into caches for TCP/IP 
and related protocol processing.  Figure 8 shows data read 
miss rate for TPC-C for four cases: a) No IO Stream:  all 
interference from I/O is ignored to obtain a hypothetical 
best case b) IO Stream Base: I/O stream is turned on and 
allowed to interfere with the TPC-C memory accesses c) 
I/O Stream with DCA-LRU: Using DCA for the I/O 
stream and d) I/O Stream with DCA-W1: limiting I/O 
writes to a single way while using DCA. The number 
10000 is a simulated, fixed spacing between I/O writes 
and processor reads for the I/O stream.  Preliminary 
simulations indicate that when cache space is a constraint, 
DCA may incur I/O interference effects in cache by 
bringing data in too early.  This negative effect can be 
managed by limiting I/O-related allocations to one cache 
way. 

Impact of I/O Stream on TPC-C 
vs . Cache Size and DCA Policy
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Figure 8. Impact of Limiting I/O Stream Allocation 

to a Single Way (8-way caches assumed) 

5.3. System Interconnect Protocol 

Simulation data presented so far assumed that ‘Write-
Allocate’ transactions are used to replace other existing 
cache lines within the target cache.  A ‘Write-Update’  
protocol offers a good trade-off when the processor is 
accessing control structures or buffers that are frequently 
recycled.  If a data structure due to some form of temporal 
locality remains in cache, then a Write Update protocol 
can largely succeed.  Figure 9 summarizes a comparison 
between the Write-Allocate and Write-Update for the 
three server benchmarks.  For the same working set (as 
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determined by the selected traces), as cache size increases, 
the greater the opportunity to update directly in cache. 

Table 5.  State Transition in DCA Protocols 
 Initial State Final State 
Update I I 
 M, E or S M or E 
Allocate M, E, S or I M or E 

 

Write-Update also does not incur any cache pollution 
regardless of the amount of data actually touched by the 
processor.  This is why TPC-C does not suffer an increase 
in data read misses as in the case of Write-Allocate. 

Reduction in  Read Misses  (code, rfo and data reads) 
vs . Cache Size and Allocation Policy
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Figure 9. Impact of DCA on Data Read Misses 

DCA may be viewed as an I/O adapter initiated 
prefetching mechanism.  In the idealized implementation 
of DCA, data is directly brought into cache without 
touching memory.  However, the act of bringing data into 
cache ahead of processor’s demand requests is critical in 
decoupling the processor from memory.  Recognizing this 
key characteristic enables us to propose a significantly 
simpler mechanism called Prefetch Hint.  In one version 
of this proposal, the snoop associated with the I/O write is 
tagged to trigger a hardware prefetch within the processor.  
A hardware prefetcher can use the snoop address to issue 
a prefetch request to memory.  This approach has the 
benefit of mapping to existing micro-architectural 
implementations that do not expect unsolicited data from 
external sources.  The hint may also be decoupled from 
snoops for greater flexibility in triggering prefetches. 

5.4. Identify the Target Processor 

Since implementation of DCA can intricately depend 
on the architecture of the base processor and platform, we 
provide a reference model identifying the basic 
components involved in the correct yet flexible operation 

of DCA.  In this model (Figure 10), we recognize a Write 
Agent as the source of new data.  The Write Agent is 
responsible for issuing DCA transactions for routing in the 
platform.  A Requesting Agent is the processor running 
system software that sets up the Write Agent with DCA 
preferences.  DCA preferences primarily include the 
choice of enabling/disabling DCA and the target 
identifier.  A Target Agent is the target CPU and cache 
that receives data from the Write Agent.  System software 
(O/S or Virtual Machine Monitor) must provide a reliable 
environment for sending data from Write Agents directly 
into the cache of the processor that will first touch the 
data.  When data is sent into a processor, the task that will 
use the data must be running or should run within a short 
interval on that processor.  In some usage models such as 
network protocol processing, we have shown workload 
characteristics indicating that the interval between cache 
placement and the use of the same data by the processor is 
relatively short.  Thus, with the aid of the system software, 
it is only required to ensure that data is sent to the correct 
Target Agent in multi-cache systems. 

 
Figure 10. A Reference Model for DCA 

Two affinitization methods that are expected to become 
prevalent in operating systems can be leveraged for DCA: 
1) NUMA memory affinity and 2) connection based 
affinity.  Both Microsoft and Linux support NUMA-aware 
memory allocation schemes so that the memory requested 
by a task is allocated from the memory that is local to the 
processor that it is running on.  If the requested memory 
space is not available, then it is allocated from the remote 
processor’s memory.  For a NUMA memory optimized 
driver, we expect that a large majority of memory write 
transfers from I/O devices can be routed to the cache of 
the processor that owns the memory space indicated in the 
DMA write addresses. Since there is no guarantee that a 
packet will be processed on a processor that owns the 
memory containing the packet buffer, NUMA memory 
based affinity provides a coarse guidance regarding where 
the data will by processed.  Connection based affinity [16] 
involves the balancing of packet processing across 
multiple processors in the system while maintaining in-
order delivery of the data.  In addition, cache thrashing 
can be minimized by ensuring that a single TCP 
connection is always processed by one processor.  As 
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Routing 
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packets arrive from the network, NICs can be enabled to 
examine packet headers and assign processors to these 
packets in a deterministic manner.  The availability of the 
target processor at the NIC directly helps DCA 
implementation.  The target processor is used as part of 
DCA preferences passed into the chipset via the I/O 
interconnect. 

5.5. Summary of Architectural Guidelines 

We reviewed a number of system-wide issues that must 
be addressed for proper DCA implementation.  A brief 
summary of the guidelines that were developed is 
provided in Table 6.   It is important to interpret these 
guidelines considering that the focus of our research was 
on network intensive workloads and server processors / 
platforms. 

Table 6  Summary of DCA System Considerations 

Cache in 
Hierarchy 

Limit to Last-level cache except when the 
cache is not used for other purposes. 

Replacement 
Policy 

Normal LRU-like policy is sufficient.  Way 
limits are worth investigating 

Cache Line 
State after DCA 

Exclusive sufficient in the network I/O 
usage model. 

System 
Interconnect 
Protocol 

Write-Allocate provides the highest 
opportunity.  Ability to accommodate 
Write-Update in same design can be 
useful. 

Prefetch hint approach offers a simple, 
highly flexible alternative 

Write Stream Dynamic, per transaction selectivity 

Target CPU  
Determination 

Dynamic, per transaction selectivity 
supporting a scheme such as RSS 

 

6. Conclusions 
By alleviating the I/O interconnect bottleneck in low 

cost, high volume platforms, using PCI-Express and 
gigabit Ethernet technologies, we anticipate that the 
processor and in particular processor to memory 
interactions can severely limit the attainment of high 
network I/O rates. In this paper, we have reviewed 
scenarios such as TCP/IP on Ethernet where a strong 
relationship may exist between I/O traffic and processor 
efficiency. The result of extensive characterization of 
memory access traces is an enhancement called Direct 
Cache Access.  We note that due to different type of I/O 
characteristics, system level implementation must be 
based on a reference model that emphasizes flexibility. 
Higher rates of I/O, larger caches and efficiency 
improvements in other parts of network protocol 

processing will continue to increase the importance of 
DCA and similar I/O centric enhancements. 

Further characterization of I/O and processor 
relationship is ongoing.  Coherency protocol inefficiencies 
in the outbound direction include the eviction of modified 
data from cache to memory upon an I/O read.  The 
efficient use of cache in the presence of heterogeneous 
workloads is under investigation.  Apart from memory 
dependencies, I/O related computation will continue to 
receive attention due to additional layers of processing 
involving data integrity, security and flexibility offered by 
XML-like representations. 
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