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Abstract: Cells must abide by a number of constraints. The
environmental constraints of cellular behavior and phys-
icochemical limitations affect cellular processes. To regu-
late and adapt their functions, cells impose constraints
on themselves. Enumerating, understanding, and applying
these constraints leads to a constraint-based modeling
formalism that has been helpful in converting conceptual
models to computational models in biology. The continued
success of the constraint-based approach depends upon
identification and incorporation of new constraints to
more accurately define cellular capabilities. This review
considers constraints in terms of environmental, physico-
chemical, and self-imposed regulatory and evolutionary
constraints with the purpose of refining current constraint-
basedmodels of cell phenotype. B 2003Wiley Periodicals, Inc.
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INTRODUCTION

The complex composition of a biological system requires the

use of computational tools to describe its integrated func-

tion. As a result, more biologists are turning to engineers,

physicists, and mathematicians, who in turn are scrambling

to learn biological fundamentals. Such cross-disciplinary

fertilization has led to important studies on regulation of

galactose utilization in yeast (Ideker et al., 2001), control of

the InB–NF–nB signaling module (Hoffmann et al., 2002),

and mammalian cell cycle regulation (Qu et al., 2003),

among others. Taken together, these developments signal an

important shift in biology from conceptual modeling

to computational modeling. Conceptual models describe a

system in qualitative terms, whereas computational models

can quantitatively simulate systemic properties to ana-

lyze, interpret, and predict cell behavior. Thanks to the high-

throughput generation of ‘‘omics’’ data (Blaine-Metting

and Romine, 1997), biologists find themselves well posi-

tioned to reconstruct fairly complicated conceptual models

of metabolic, regulatory, and signaling networks (in order of

difficulty) (Davidson et al., 2002a, 2002b; Karp et al., 2002;

Salgado et al., 2001), culminating in the development of

databases such as KEGG and MetaCyc (Kanehisa and Goto,

2000; Karp et al., 2000).

One current challenge in systems biology is to translate

these conceptual models into genome-scale computational

models. It is clear that the complexity of biological systems,

the difficulty of obtaining kinetic parameters, and the enor-

mous generation of data will require the development of new

analytical methods in in silico biology (Bailey, 2001; Kitano,

2002) (Fig. 1). The constraint-based approach (Palsson,

2000) to the deduction of phenotype from the genotype and

environment directly addresses these challenges. In the

constraint-based approach to analyzing metabolic networks,

all possible behaviors of a system (e.g., flux distributions

through the metabolic network) are considered, as shown in

Figure 2. Although cellular behavior may not be completely

specified at this point, it is known that cells behave in ways

that reflect the constraints imposed by their environments, by

physicochemical laws, and by themselves. By successively

imposing constraints on conceptual models, as illustrated in

Figure 2, the allowable range for each flux in the network is

reduced dramatically. The problem of modeling complex

biological systems shifts from experimental determination of

kinetic and other fundamental parameters—as mentioned,

currently an intractable problem—to continued identifica-

tion of constraints that allow a more specific description of

the system—a challenge that is successfully being addressed,

as discussed in what follows.

Current constraint-based computational models have fo-

cused on microbial organisms. These models are at the

‘‘genome-scale’’—referring simply to the amount of genes

accounted for in the model, which has now reached approx-

imately 30% to 35% of the annotated genes in an organism

(Price et al., 2003). Genome-scale models have focused

primarily on metabolism and associated transcriptional
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regulation, but are aimed at a complete representation of an

organism and have already been used to simulate cell

behavior under a variety of conditions (Reed and Palsson,

2003). In addition, because these models attempt to capture

systems-level behaviors as completely as possible, they are

instrumental in identifying and characterizing emergent

properties of biological networks, where an observed

behavior has been difficult or even impossible to interpret

from the cellular ‘‘parts list’’ alone (Papin et al., 2003; Price

et al., 2003).

The success of the constraint-based approach depends

upon identification and incorporation of new constraints to

define the cellular capabilities more accurately. This review

considers constraints in terms of environmental, physico-

chemical, and self-imposed regulatory and evolutionary

constraints with the purpose of refining current constraint-

based models of cell phenotype. Some of the constraints may

seem intuitive or basic; however, we aim to illustrate how

their consideration leads to nonintuitive modeling conse-

quences (Fig. 3, Table I).

ENVIRONMENTAL CONSTRAINTS

The constraints imposed on cells by their environments—

both external and internal—have a major influence on cell

behavior. External environments impose constraints on cells

in terms of nutrients, physical factors, and neighboring influ-

ences. Whether a cell can grow in a given environment

depends in part on its ability to obtain or synthesize all nec-

essary biomass components (Neidhardt et al., 1990). The

presence or absence of necessary compounds thus represents

an environmental constraint on the cell. As an example,

development of a ‘‘minimal gene set’’ to sustain life must be

kept in the context of environmental constraints, as the

minimal gene set for life in a complex medium would differ

significantly from that required for life in glucose minimal

Figure 1. The shift from studying components to studying systems requires the use of computational tools to integrate conceptual data and simulate

systemic behavior. The importance of computation has become apparent in the biological sciences, wherein generation of experimental data far outpaces

efforts to reconcile these data in terms of a comprehensive model. New mathematical approaches will be required to describe such systems. Such a

challenge is not new; the development of statistical mechanics originated as an attempt to integrate the known chemical properties of molecules to simulate

the properties of a bulk fluid. Escherichia coli image courtesy of www.denniskunkel.com.
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medium (Burgard et al., 2001; Koonin, 2000). The impor-

tance of the nutrient constraints imposed by the external

environment also underscores the importance of defined

media in mathematical simulation of cell behavior. Without

adequate knowledge of the nutritional content of the exter-

nal environment, significant constraints must be ignored or

grossly approximated, resulting in incorrect or misleading

predictions of cell behavior. The development of high-

throughput phenotyping technologies has addressed the

inadequacies of studies on undefined media, enabling char-

acterization of the environmental effects on organism growth

under thousands of well-defined conditions (Bochner et al.,

2001). Physical characteristics of the external environment,

such as temperature, pressure, pH, and exposure to light or

water, can also limit possible cell behavior and survival.

Physical environmental constraints have been used to inves-

tigate the possibility of life on Mars (Cockell et al., 2000).

The environmental conditions experienced by a cell gen-

erally change over time. They may change by the presence

of new harmful products (such as the cell’s own waste),

depletion of nutrients (by the cell itself or by competitors), or

other dynamic forces. A tightly packed cellular community

necessitates competition for, or exchange of, nutrients and

adhesion sites, evolving mechanisms to survive toxin expo-

sure or to move toward scarce nutrients, but also raises the

possibility of obtaining new cellular capabilities via gene

transfer, or of cooperation and specialization, such as in a

tissue, where signaling molecules allow cells to communi-

cate and cooperate (DeLisa et al., 2001). To account for such

interactions in a model, the cellular community must there-

fore be accurately represented (Tsuchiya et al., 1966). Forces

such as fluid flow (wind on a plant leaf, juices through the

intestines) necessitate that cells adhere to their chosen envi-

ronments or develop systems that are resilient to changing

environments (sporulation, broad substrate utilization). The

cell is therefore constrained to the development of biological

functions that allow it to thrive in a dynamic environment.

The intracellular environment of a cell also imposes con-

straints on cellular behavior, notably in terms of its internal

components and the physical properties of its interior. Cells

are obviously limited by the biochemical components of

Figure 3. Perspectives generated using the constraint-based approach.

The phenotypic potential (set of all behaviors that can be exhibited by a

biological system) can be represented as a solution space (shown as an

ellipse for simplicity). The identification of constraints that the cell must

obey, such as conservation of mass and energy, survivable temperature

ranges, etc., further constrain this space (e.g., solutions that violate

conservation laws are excluded from the space). Depending on the objective

of the cell, it may exhibit a variety of behaviors. Although the cell is

constrained by its solution space at one point in time, it is also able to control

its behavior over time via processes such as evolution and regulation.

Escherichia coli: image courtesy of www.denniskunkel.com

Figure 2. The constraint-based approach applied to metabolic networks. A small network with only two chemical reactions (flux v1: A!B; flux v2:

A!C) and two transport processes (metabolite A enters the cell with flux vin and B and C exit together via flux vout) is depicted together with the allowable

range of each reaction/transport flux. Initially, the flux ranges are unbounded. By incorporating characteristics of the system, such as reaction

thermodynamics, maximum enzyme turnover rates, and metabolite mass balance, in terms of constraints, the allowable ranges are reduced significantly. If

the system is characterized completely, the ranges are reduced to a single point.
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which they are comprised; the glycolytic genes must not

only be located in the genome but also must be expressed as

functional proteins for glycolysis to occur in an organism.

The components may be thought of as a ‘‘toolbox’’ that the

cell requires to use the resources found in the environment

to perform necessary functions (growth, signaling, chemo-

taxis, etc.). This toolbox constantly changes over time,

either enabling or limiting the function of the cell. For

example, the maximum transport rate of a particular cell

moiety will be determined in part by the number of transport

proteins specific to that moiety located in the cell

membrane. The total number of components that can be

contained in the cell are limited by a generalized bounding

constraint, cell volume (i.e., the toolbox is also quite small).

The last several decades of biological research has focused

on identifying cellular components, culminating in the dev-

elopment of high-throughput methods to study the genome

(Gaasterland and Oprea, 2001), transcriptome (Devaux

et al., 2001), proteome (Naaby-Hansen et al., 2001), and

metabolome (Raamsdonk et al., 2001) of organisms under

various conditions. Because cell function depends on the

action and interaction of various components, the ‘‘omics’’

data are of fundamental importance in the effort to model

cell behavior.

Physical factors of the cellular interior also impose

constraints on the cell. Pictorial models of the interior of

E. coli depict a crowded, tightly packed, nonhomogeneous

cytoplasm (Ellis, 2001; Goodsell, 1993). Such a dense

environment has a constraining effect on solute and macro-

molecular diffusion. One way in which cells may overcome

diffusion-related constraints in a crowded environment is

via compartmentalization of major cell processes and

metabolic channeling (Verkman, 2002). Furthermore, the

crowded internal environment of the cell creates an osmotic

pressure in relation to the often aqueous external environ-

ment that must be balanced. Cells achieve this balance by

exchanging molecules with the external environment. The

balance of osmotic pressure must be achieved while

maintaining an electroneutral environment on both sides

of the membrane. Osmotic and electroneutrality constraints

can affect the total volume of the cell, and the need to meet

these constraints imposes significant energy demands on

the cell.

PHYSICOCHEMICAL CONSTRAINTS

Physicochemical laws place demanding constraints on cel-

lular behavior (see examples in Appendix). Cells balance

Table I. Some biological constraints with important modeling consequences. The constraints listed at the left may seem intuitive, but the consideration of

such constraints in modeling biological systems can be vital in terms of correct prediction and simulation.
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mass and energy, conform to the laws of thermodynamics

and kinetics, and operate under limited enzyme turnover

rates and activity of gene products. Physicochemical con-

straints are generally considered to be ‘‘hard’’ constraints

and are thought to remain unchanged.

Mass and energy are never created or destroyed in the

cell. Elements entering the cell are either incorporated into

biosynthetic material for cell growth and replication,

utilized to generate energy required for cellular functions,

or secreted into the extracellular environment. Excess

biochemical byproducts that remain internal to the cell

may accumulate over time and result in cellular toxicity and

death. Complex systems have evolved to sense and respond

to imbalances of mass within the cell. Energy imbalance

also has detrimental consequences. Eukaryotic loss of

mitochondrial function to generate energy prohibits the cell

from driving cellular functions and causes death (Scheffler,

1999). The balance of mass and energy thus poses critical

constraints on how the cell must allocate its resources. Mass

balance of reactions also imposes stoichiometric constraints

on the network. The stoichiometric coefficients of any

biochemical reaction are such that the number of elements

and charge is conserved in a conversion. Stoichiometric

constraints impose restrictions on the network that, apart

from the nature of kinetics, define what combinations of

species must be present or absent in a steady state (Feinberg,

1987). For example, for a set of compounds with zero

concentrations, it is possible to determine which reactions

have zero rates (i.e., ‘‘switched off’’) and which have

positive rates (i.e., ‘‘switched on’’) (Feinberg, 1987). The

requirement of mass balance exerts such a strong constraint

on metabolic network function that flux balance analysis

requires virtually only these constraints, with only a handful

of strain-specific parameters, for detailed qualitative sim-

ulations (Edwards et al., 2002).

The thermodynamics of internal reactions can signifi-

cantly affect the overall capability and phenotypic properties

of the cell. The direction in which reactions proceed is a

function of energetic properties of the biochemical conver-

sions and may determine the ability of the cell to reach

diverse metabolic states in a variety of internal and external

conditions. Furthermore, chemical turnover of uncatalyzed

reactions is often very slow. In the presence of enzymes,

however, substrates are quickly converted into products.

Enzymes also provide means for fast-responding control

mechanisms. Feedback and feedforward control mecha-

nisms, including inhibition and activation, and effect of pH

and temperature on enzyme activity can influence the rate of

biochemical reactions, either linearly or nonlinearly (Bailey,

1998; Desai et al., 1999; Lee et al., 1999; Savageau, 1998).

Kinetic constraints are especially important in cells with

little or no other means of regulation. Upon maturation, the

red blood cell loses its DNA and, consequently, lacks any

means of transcriptional regulation. The sole form of regu-

lation in the red cell is thus kinetic regulation, which makes

the red cell a suitable model for studying kinetics (Jamshidi

et al., 2001).

The maximum throughput or enzyme capacity of bio-

chemical reactions can also force the cell to exhibit more

limited behaviors than otherwise. The enzyme turnover rate

of reactions in biochemical pathways can impose ‘‘bottle-

neck’’ constraints on the maximum allowable flow achieved

in a pathway (Bailey, 2001). Such bottlenecks have been

identified and analyzed using metabolic flux analysis and

metabolic control analysis (Stephanopoulos et al., 1998).

Metabolic engineering of microbial organisms has centered

around the premise of removing such bottleneck constraints

and achieving a higher production rate of desirable com-

pounds. Such efforts have been successful in a number of

cases (Stephanopoulos et al., 1998).

The balance of osmotic pressure and maintenance of

electroneutrality also impose constraints on cells. For exam-

ple, the constraints of osmotic pressure and charged mole-

cule requirements (e.g., nutrients) were found to be driving

forces in evolution of cell walls in bacteria (Koch, 2000).

Although cell volume regulation is relatively well charac-

terized (Hallows and Knauf, 1994), it is routinely ignored by

most models. The consequences of such constraints have

been studied in detail in the human red blood cell, because

such cells are relatively simple, lacking chromosomes, and

are therefore not capable of replication (Joshi and Palsson,

1989; Werner and Heinrich, 1985). Initial assessment of

the importance of these constraints using metabolic control

analysis shows that they represent dominant regulatory ef-

fects (Lee and Palsson, 1991). Clearly, much work is re-

quired to ascertain the importance of these constraints and

implement them in mathematical models.

SELF-IMPOSED CONSTRAINTS

We have previously discussed the environmental and phys-

icochemical constraints imposed on cells, which are beyond

the cells’ direct control. To respond to these constraints and

still carry out their desired functions (e.g., growth, nitrogen/

carbon dioxide fixation, development), cells must impose

constraints upon themselves to direct their behavior, select-

ing the ‘‘best’’ or most suitable option from a range of al-

lowable alternatives. Self-imposed constraints are different

from other constraints because they respond to—and often

change—internal or external environments. Unlike physico-

chemical constraints, they are time-dependent. Such adap-

tive constraints may entail regulation in the short term and

evolution over longer time scales.

Evolutionary Constraints

Although cells are constrained by the contents of their ge-

nome, they are able to change their genome sequence via

evolution. The evolutionary process is associated with cer-

tain constraints. For example, E. coli’s overall error rate for

DNA replication is between 1 in 1010 and 1 in 1011 basepairs

(Neidhardt et al., 1990); this error rate may change some-
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what in stressful conditions to increase the rate of beneficial

mutation and adaptation. Evolution is also constrained by the

number of possible mutation sites, as can be illustrated by

rolling a six-sided die. With one roll, the probability of

rolling a six is only one in six, or 16.7%. However, if the die

is rolled 36 times, the probability of rolling at least one six

becomes 99.9%. Similarly, genome size and growth rate in-

fluence the probability of a favorable mutation (see Appen-

dix, section iii). Although most mutations are selected

against, the number of mutations that occur in each gen-

eration can drive the occurrence of an evolved mutant to

virtual inevitability over time (de Duve, 1996). Thus, after a

period of only decades, bacteria, malarial parasites, insects,

and weeds have been found to resist man-made antibiotics

and toxins (de Duve, 1996). More quantitatively, Esche-

richia coli has been shown to overcome thymineless death by

experimental evolution over 10,000 generations (de Crecy-

Lagard et al., 2001), and also to exhibit parallel changes in

expression of 59 genes after 20,000 generations of evolution

on a glucose-limiting medium (Cooper et al., 2003). Con-

sideration of evolutionary constraints also led to the predic-

tion that E. coli would optimize its metabolic network for

growth on a glycerol minimal medium, which was then

demonstrated experimentally over 700 generations (Ibarra

et al., 2002).

Regulatory Constraints

Beyond reconfiguring their genomes via mutation and

adaptive evolution, organisms are able to control, to a cer-

tain extent, which genes are expressed, which proteins are

present, and even the activity of proteins in cells. The in-

corporation of regulatory constraints in considerations of

biological systems is vital (Liao andOh, 1999). For example,

recent studies of cellular metabolic networks (Jeong et al.,

2000; Wagner and Fell, 2001) have characterized such

networks as scale-free or ‘‘small world.’’ These studies were

based on genomic constraints only (i.e., any gene located in

the genome was considered a part of the network). However,

the entire metabolic network of a cell is never completely

expressed at a given time. For this reason, transcriptomic

and proteomic studies are necessary to further constrain and

thereby more accurately characterize these networks.

Furthermore, many molecules, notably those involved in

the control of regulatory networks, are present and act at

nanomolar concentrations in the cell (McAdams and Arkin,

1999). As a result of these low concentrations, there is a

substantial amount of noise in gene expression, as has been

recently demonstrated (Elowitz et al., 2002). Stochasticmod-

eling approaches have been used to incorporate the con-

straints imposed by gene noise in models of the lambda

phage (McAdams and Arkin, 1999), and experiments have

demonstrated how such noisy systems may be controlled by

negative feedback (Gardner and Collins, 2000). Recent work

has quantified the efficacy of regulatory constraints in re-

ducing metabolic solution spaces using extreme pathway

analysis to illustrate the potential dominant effect of regu-

lation on cell phenotype (Covert and Palsson, 2003).

APPLICATION OF CONSTRAINTS TO
GENOME-SCALE MODELS

As mentioned earlier, constraint-based approaches have

enabled the development of genome-scale models of micro-

organisms. Thus far, the constraints that have been incorpo-

rated into genome-scale simulative models of metabolism,

such as those that exist for E. coli, H. influenzae, H. pylori,

and S. cerevisiae, have been stoichiometric, thermodynamic,

enzyme capacity, and energy balance constraints (Price et al.,

2003a). Transcriptional regulatory constraints have also

recently been added to enable combined simulation of

regulatory and metabolic networks (Covert et al., 2001b;

Covert and Palsson, 2002, 2003).

The constraint-based approach to modeling metabolic

systems has been described by Covert et al. (2001b) and

Palsson (2000). A metabolic network is reconstructed for a

microorganism, yielding a set of all metabolic reactions

available to the cell (Covert et al., 2001a). Once defined,

this set of reactions represents the stoichiometric constraints

on a cell. The reaction list also contains certain thermo-

dynamic constraints, in the effective irreversibility of some

reactions. A useful mathematical representation of all pos-

sible cell behaviors is one established geometrically as a

solution space, which is effectively capped and reduced as

constraints are incorporated (Fig. 3). We are then left with a

smaller solution space having general properties that can be

studied, or in which certain points (i.e., cellular behaviors)

may be examined in more detail.

Pathway analysis, a method of relating the structure of a

metabolic network in terms of an organism’s overall meta-

bolic capabilities, is based solely on identification of the

aforementioned stoichiometric and thermodynamic con-

straints and requires no other parameters (Papin et al., in

press). Using pathway analysis it is possible to determine,

for example, possible network ‘‘dead-ends’’ (Schilling and

Palsson, 2000; Schilling et al., 2002), key regulatory con-

trol points (Price et al., 2003b, and the level of redundancy

in a metabolic network (Papin et al., 2002a, 2002b; Price

et al., 2002).

Incorporation of enzyme capacity constraints enables flux

balance analysis (FBA), which may be used to study specific

flux distributions in more detail. FBA is associated with

linear programming (Chvatal, 1983), wherein the maximum

value of an objective function (e.g., synthesis of biomass

precursors) is located in the solution space. Some notable

recent work in FBA focused on identification and characteri-

zation of objective functions (Burgard and Maranas, 2003;

Lee et al., 2000; Mahadevan et al., 2002; Segre et al., 2002).

Metabolic flux analysis (MFA), closely related to FBA,

attempts to constrain the space more completely by deter-

mining certain internal fluxes experimentally (Bonarius

et al., 1998; Wiechert and de Graaf, 1996); however, it must

be noted that such measurements do not represent ‘‘hard’’
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constraints. It has been shown both computationally using

extreme pathway analysis (Papin et al., 2002a; Price et al.,

2002) and experimentally (Flores et al., 2002) that a high

degree of redundancy exists in metabolic networks; orga-

nisms may use any of a number of routes to generate pre-

cursors or byproducts (see Fig. 3). The uses of MFA and

FBA have been reviewed in detail elsewhere (Edwards et al.,

2002; Stephanopoulos et al., 1998).

The elimination of systemically (i.e., not reaction by

reaction) thermodynamically infeasible solutions yields an

additional set of useful physicochemical constraints to deter-

mine allowable behaviors of biochemical reaction networks.

Incorporation of the systemic thermodynamic constraints

leads to energy balance analysis (EBA) (Beard and Liang,

2002). The importance of adding these constraints into

genome-scale models needs to be evaluated. EBA, as

presented by Beard et al. (2002), provides a foundation for

constraints-based analysis of reaction free energies in large-

scale biochemical systems and thus expands the scope of

information available from constraints-based modeling of

biochemical networks.

Thus far, the constraints noted in connectionwith genome-

scale models have focused primarily onmetabolic processes.

Such models fail to accurately predict cell behavior when

transcriptional regulatory processes have a dominant effect

on phenotype (Edwards and Palsson, 2000; Varma and

Palsson, 1994). To expand the scope and predictive

capability of these models, a formalism for incorporation

of regulatory constraints was developed (Covert et al.,

2001b). Boolean rules to describe regulation and a time delay

for protein synthesis/degradation are specified for each gene

in the model. The resulting regulatory network determines

the constraint imposed on every reaction in the metabolic

network over time. Because the time constants that describe

regulation and cell growth are significantly slower than those

for metabolism (milliseconds to tens of seconds vs. tens of

minutes to hours or days), metabolism may be considered to

be at quasi-steady state for appropriately short time periods

(Varma and Palsson, 1994). Simulation of cellular metab-

olism leads to calculation of flux changes and external

metabolite/biomass concentrations; these outputs lead to a

reinterpretation of the Boolean rules in the regulatory

network and, possibly, to a change in the expressed

metabolic network (Covert and Palsson, 2002). Integration

of a metabolism simulation module (i.e., FBA) and a

transcriptional regulation simulationmodule (i.e., evaluation

of Boolean logic) is greatly facilitated by the recognition that

regulatory events simply impose constraints.

This framework, which has been called regulatory flux

balance analysis (rFBA), has been applied to a central meta-

bolic/regulatory model of E. coli, accounting for 149 genes,

including 16 regulatory proteins and 73 enzymes (Covert and

Palsson, 2002). Comparisonwith experimentally determined

mutant phenotypes and gene expression data has shown that

the application of regulatory constraints to regulatorymodels

led not only to more accurate predictive capabilities, but also

to a broader predictive scope. For example,mutant regulatory

gene phenotypesmay nowbe predicted, as well as qualitative

gene expression (Covert and Palsson, 2002). The metabolic/

regulatory model ofE. coli has recently been expanded to the

genome scale and now accounts for over 1000 genes in this

organism (Reed et al., 2003; Covert et al., submitted).

CONSTRAINTS-BASED MODELS IN THE FUTURE

Several constraints relevant to cells, especially microor-

ganisms, have been enumerated. A framework has been

presented whereby impossible behaviors are eliminated and

the resulting solution space is used to analyze, interpret, and

predict cell phenotype in the context of genotype and exter-

nal environment. We have attempted to show how the recent

incorporation of new constraints, such as energy balance and

transcriptional regulation, results in both a broader scope of

simulation and more accurate predictive capability.

This leads us to the following question: Which constraints

can we incorporate in the future to add more functionality to

our models? The primary challenges to integrating new

constraints into cell models include obtaining the necessary

data to define a constraint mathematically and developing

the framework to incorporate the constraint in an existing

model (for an insightful discussion and review of such

approaches, see Bailey [1998]). For example, most of the

constraints discussed herein have involved fluxes through

biochemical reactions. One can anticipate that similar

analyses will be developed for defining limits on allowable

ranges of intracellular concentration as well as bracketing

numerical values of kinetic parameters (Lee et al., 1999;

Ronen et al., 2002). Importantly, not all constraints are of

equal value with respect to modeling, and determination of

the factors that are most constraining of cell function under

various conditions will result in more accurate and mean-

ingful simulations.

These challenges will likely be answered in a dialogue

between experimental biologists, who are generally more

aware of biological constraints, and computational biolo-

gists, who are equipped to describe constraints mathe-

matically. As such dialogues multiply and grow, we believe

that genome-scale constraints-based models will develop

to include all major cellular processes and enable predic-

tion and interpretation of large-scale data sets. Such models

will be of fundamental importance in understanding bio-

logical systems.

APPENDIX 1

Some representative calculations illustrating certain physic-

ochemical constraints in biology are given in what follows.

These examples are computationally simple, but have much

biological importance.

(i) Growth rate constraints and chromosome replication.

The growth rate of a cell is limited by the time required to

synthesize all necessary cellular components, such as cell
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membrane, proteins, and chromosome. Accordingly, the

synthesis time of each set of components can be calculated

and interpreted as a constraint on growth rate. Chromosome

replication in E. coli K-12 is considered here. Replication

rate, rrep, can be calculated as:

rrep ¼
f � rf
lg

� �

where rf is the rate of replication for one replication fork, f is

the number of replication forks, and lg is the genome length.

Given a genome size of roughly 4.3 � 106 bp, two replication
forks, and a fork replication rate of approximately 750 bp per

second (Marians, 1996), the average time required for

genome replication is approximately 45 minutes. E. coli is

also capable of increasing its growth rate by multiplexing

DNA replication, resulting in an average of 4.2 replication

forks per cell and an estimated doubling time of about

23 minutes (Neidhardt et al., 1990). As another example, the

S, G2, and M phases of the cell cycle in mammalian systems

last about 8, 3, and 1 hours, respectively, resulting in a

doubling time of approximately 12 hours (Alberts et al.,

2002). The outcome of this computation leads to the fol-

lowing question: Which constraint dominates when E. coli

grows at maximum or near-maximum growth rates?

(ii) Maximum enzyme capacity. Physicochemical con-

straints impose an upper limit on the maximum enzyme

turnover rate. The enzyme association rate:

Sþ E!k1 SE

where S and E are the substrate and enzyme, respectively, is

generally the limiting step in the enzymatic conversions of

metabolites. The maximum turnover rate of this step, Vmax =

k1[S][E], is determined by the collision rate constant, k1, as

well as metabolite and enzyme concentrations in the cell.

The substrate concentration may be approximated to be

about 100 AM, assuming that the average compound

concentration for 1000 different metabolites is about

100 g/mol molecular weight, and that 1% of the dry weight

is composed of metabolic intermediates and that the cell

density is about 1 g/cm3 (Ingraham et al., 1983). The

average enzyme concentration can be estimated similarly,

assuming 1000 different enzymes in the cell with an average

molecular weight of 40,000 g/mol, composing 15% of the

dry weight (Ingraham et al., 1983). The enzyme concen-

tration is thereby estimated to be about 1 AM. Using a

typical collision rate constant of k1 = 108 M�1 s�1 and the

average enzyme and metabolite concentrations calculated

earlier, a maximum enzymatic rate limit of 106 molecules

Am�3 s�1 is computed. This upper limit implies that the

enzymatic reactions may never exceed rates faster than

106 molecules Am�3 s�1. Measured experimental fluxes

appear to coincide with this calculation; for example, in E.

coli, a glucose uptake rate of 15 mmol g�1 h�1 corresponds

to about 0.7 � 106 molecules Am�3 s�1, which falls within

the estimated maximum rate.

(iii) Evolution and chance. As explained in the text, the

probability of rolling a particular number may be low for one

roll, but is driven to virtual inevitability as the number of

rolls increases (de Duve, 1996). Similarly, we can ask the

question: To what extent does ‘‘chance’’ govern the evo-

lutionary process in a cell? A rough estimate may be

obtained using simple statistics. The probability of obtaining

a mutation in a particular base, Pm, after n replications, may

be calculated using the replication error rate, Perr, by:

Pm ¼ 1� ð1� PerrÞn

In other words, the chance of not getting the mutation of

interest after n generations is subtracted from one. Given that

the replication error rate of E. coli is generally about one

error in 1010 bases (but can be increased under stress)

(Neidhardt et al., 1990), the number of replications required

for the mutation to occur with 99.9% probability is 7 � 1010,
corresponding to only 36 generations. Therefore, the

appearance of any particular mutation in a population is

extremely likely after a relatively short time (e.g., hours

to days with E. coli), indicating that the environment may

be a more constraining factor than the probability of a de-

sired mutation.

The authors thank Markus Herrgard and Jason Papin for helpful

discussions and reviews.
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