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Minireview

Metabolic modelling of microbes: 
the flux-balance approach

of living; the task that lies ahead is to integrate these
details in such a way that we can better understand life as
a whole, and not just the sum of its parts.

Metabolic modelling

One area of active research in this area has focused on
bacterial metabolism (van Gulik and Heijnen, 1995; Liao
et al., 1996; Lee et al., 1997; Sauer et al., 1998; Edwards
and Palsson, 1999; Sauer and Bailey, 1999; Schilling
et al., 1999; Edwards and Palsson, 2000a, b; Schilling
et al., 2000; Edwards et al., 2001a, b). Genomic infor-
mation, coupled with biochemical and strain-specific 
information, has been used to reconstruct whole-cell
metabolic networks for sequenced organisms (Edwards
and Palsson, 1999; Schilling and Palsson, 2000) (Fig. 1).
However, this information is not sufficient to specify com-
pletely the metabolic phenotypes that will be expressed
under given environmental conditions. Metabolic pheno-
types can be defined in terms of flux distributions through
a metabolic network. Interpreting and predicting metabolic
flux distributions requires the application of mathematical
modelling and computer simulation. There exists a long
history of quantitative metabolic modelling (Bailey, 1998)
that will not be detailed here. Currently, several well de-
veloped mathematical approaches exist for the dynamic
analysis of cellular metabolism and its regulation (Shuler
and Domach, 1983; Liao, 1993; Palsson and Lee, 1993;
Fell, 1996; Barkai and Leibler, 1997; Bailey, 1998; Novak
et al., 1999; Tomita et al., 1999; Varner and Ramkrishna,
1999; Vaseghi et al., 1999). Most of these methods
require detailed kinetic and concentration information
about enzymes and various cofactors. Even though bio-
logical information is growing rapidly, we still do not have
enough information to describe cellular metabolism in
mathematical detail for a single cell (Bailey, 2001). The
human red blood cell remains the only exception
(Holzhutter et al., 1985; Schuster et al., 1988; Joshi and
Palsson, 1989; Rae et al., 1990; Lee and Palsson, 1991;
Mulquiney and Kuchel, 1999)

Flux-balance analysis (FBA)

To overcome our lack of detailed kinetic information, a
paradigm shift in our approach to modelling metabolic
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Where is the Life we have lost in living? . . .
Where is the knowledge we have lost in information?

T.S. Eliot, Choruses from the Rock

Introduction

The history of biological research has witnessed many
great successes, and many more are expected in the
future. The anticipation of great findings has increased
with the development of high-throughput technologies,
which enable the rapid generation of sequence, transcript,
and proteomic data, to name but a few examples. As a
result, it has become clear that further biological discovery
will be limited not by the availability of biological data
(Blaine Metting and Romine, 1997), but by the lack of
available tools to analyse and interpret these data. While
the new fields of genomics (Gaasterland and Oprea,
2001), proteomics (Naaby-Hansen et al., 2001), transcrip-
tomics (Devaux et al., 2001) and metabolomics (Fiehn
et al., 2000; Raamsdonk et al., 2001) are essential and
important studies in their own right, they also serve as 
precursors to the greater goal of using high-throughput
information to understand the phenotypic characteristics
of a particular organism. The fields of bioinformatics and
theoretical biology are now moving to the forefront of 
biological discovery as scientists attempt to generate new
knowledge from the flood of information now readily avail-
able, through automated genome annotation, metabolic
network reconstruction, protein structure determination
and, more recently, regulatory network reconstruction from
microarray data. As cellular functions rely on the coordi-
nated activity of multiple gene products and environ-
mental factors, understanding the interrelatedness and
connectivity of these elements now becomes critical. In
other words, referring to the above quote by T.S. Eliot, we
are in a position, to a certain extent, to describe the details
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systems must be developed. One potential shift in think-
ing goes as follows: rather than attempting to calculate
and predict exactly what a metabolic network does, we
should be able to narrow the range of possible pheno-
types that a metabolic systems can display based on the
successive imposition of governing physicochemical 
constraints (Palsson, 2000).

This constraints-based approach provides a basis for
understanding the structure and function of biochemical
reaction networks through an incremental process. This
incremental refinement presently occurs as shown in
Fig. 2, involving the consideration of fundamentally differ-
ent physicochemical constraints. Each step provides an
increasing amount of information that can be used to
reduce further the range of feasible flux distributions 
and phenotypes that a metabolic network can display.
Additionally, each of these constraints can be described

mathematically, offering a concise geometric interpreta-
tion of the effect that each successive constraint places
on metabolic function.

First, the dynamics of integrated metabolic networks
are described in the form of dynamic mass balances.
These balances simply state that the concentration
change of a metabolite over time is equal to the difference
between the rates at which the metabolite is produced
and consumed. In a steady state, these equations are
represented by a matrix equation as shown in Fig. 2 
(formally analogous to Kirchhoff’s first law for electrical 
circuits).

Once the system has been defined in terms of these
mass balance constraints, the constraints imposed by the
thermodynamics (e.g. effective reversibility or irreversibil-
ity of reactions) and enzyme or transporter capacities
(e.g. maximum uptake or reaction rates) are considered
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Fig. 1. From a reductionist to a holistic approach in biology. High-throughput sequencing technology and automated genome annotation tools
enable identification and functional assignment of most of the metabolic genes in an organism. Once the gene functions are known, they may
be integrated into a metabolic network, which can then be subjected to methods such as flux-balance analysis to analyse, interpret and
predict cellular behaviour.
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and incorporated into the model. It should be emphasized
that these constraints are based on what may be con-
sidered ‘hard-wired’ physicochemical constraints that the
metabolic system must obey. The addition of these con-
straints results in the definition of a bounded solution
space wherein every possible flux distribution, or every
possible metabolic phenotype of the cell, must lie. The
solution to the flux balance equations must lie in the
closed solution space. It should also be noted that 
experimental measurements can be incorporated as con-
straints to aid in the calculation of the entire metabolic flux
distribution (Vallino and Stephanopoulos, 1993; Zupke
and Stephanopoulos, 1994; Wiechert and de Graaf, 1996;
Sauer et al., 1997; Klapa et al., 1999); however, the 
measurements do not depict ‘hard-wired’ constraints, but
rather constraints to the specific condition.

Thus, we can calculate what the metabolic network
cannot do, although we cannot calculate the exact flux dis-
tribution. We can, however, study the properties of the
constraint-defined solution spaces. An approach based on
linear optimization principles for studying convex systems,
commonly termed flux balance analysis (FBA), has been

developed (Varma and Palsson, 1994a; Bonarius et al.,
1997; Pramanik and Keasling, 1997; Sauer et al., 1998;
Edwards, 1999; Edwards et al., 1999). FBA can be used
to calculate, interpret and predict metabolic flux distribu-
tions and to analyse the capabilities of a metabolic network
based on the systemic stoichiometric, thermodynamic and
reaction capacity constraints. Subject to these constraints,
optimal metabolic flux distributions can be calculated
using linear programming. By calculating and examining
optimal flux distributions under various conditions, it is
possible to generate quantitative hypotheses in silico that
may be tested experimentally.

There are several important issues that arise when
analysing the optimal metabolic flux distribution. First, the
optimal solution may not correspond to the actual flux dis-
tribution. To make statements regarding cellular behaviour
based on the optimal solution we must hypothesize 
that the cell has identified the optimal solution through
evolution and that the objective function we have mathe-
matically imposed is consistent with the evolutionary
objective. Although other objective functions can be uti-
lized (Savinell and Palsson, 1992a; Bonarius et al., 1996;
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Fig. 2. Flux-balance analysis. Once the metabolic network has been reconstructed, mass balances are written around every metabolite in the
network. Known physicochemical constraints are then applied to the system and linear programming is used to determine optimal flux
distributions based on objectives such as cell growth and metabolic by-product secretion.



Bonarius et al., 1997), experimental data have shown that
optimal solutions are consistent with cellular behaviour for
growth on acetate and succinate (Edwards et al., 2001b).
The other important issue involves the uniqueness of the
optimal solution, and methods are needed to assess the
uniqueness of the optimal solution and identify all alter-
native optima when applicable. Lee et al. (2000) have
developed a recursive mixed-integer linear programming
algorithm to find all alternative optima. When one is 
cognizant of these, and other issues, FBA can be used in
many different applications and greatly contribute to the
biological sciences.

Applications of FBA

FBA has been used for over 15 years to study cellular
metabolism extensively (Fig. 3), most thoroughly for
Escherichia coli. The E. coli metabolic genotype was gen-
erated using its annotated genome sequence (Blattner
et al., 1997), metabolic databases (Karp et al., 1998;
Ogata et al., 1998; Selkov et al., 1998) and biochemical
information (Neidhardt, 1996). This metabolic genotype
includes 695 genes encoding metabolic enzymes; 47 of

these genes do not currently have open reading frame
(ORF) assignments but are included based on biochem-
ical data. Based on the annotated genetic sequence 
and biochemical data, the E. coli metabolic genotype
catalyses 720 internal metabolic reactions and transport
processes operating on a network of 436 internal metabo-
lites. The research performed in this study was based on
the assumption that microbial organisms optimize for the
production of biomass precursors in relative quantities
that correspond to measured values (i.e. growth) 
(Neidhardt and Umbarger, 1996).

Alterations of the metabolic network

E. coli MG1655 in silico has been used to examine the
systemic effects of altering the genotype, in terms of 
both gene deletions (Edwards and Palsson, 2000a, c;
Badarinarayana et al., 2001; Burgard and Maranas, 2001)
and additions (Burgard and Maranas, 2001). In one study,
the in silico organism was subjected to deletion of each
individual gene product in the central metabolic pathways
(glycolysis, pentose phosphate pathway, tricarboxylic acid
cycle, respiration processes), and the maximal capability
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Fig. 3. A timeline depicting some highlights of the development of flux-balance analysis (Papoutsakis, 1984; Papoutsakis and Meyer, 1985a,b;
Fell and Small, 1986; Majewski and Domach, 1990; Savinell and Palsson, 1992a,b; Varma et al., 1993; Varma and Palsson, 1993a,b,
1994a,b,c, 1995; Pramanik and Keasling, 1997, 1998; Pramanik et al., 1998, 1999; Burgard and Maranas, 2001; Covert et al., 2001).
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of each ‘in silico mutant’ metabolic network to support
growth was assessed with FBA. Gene deletions (or
equivalently, loss of gene product function) are simulated
by restricting the flux through a particular reaction to zero.
Equivalently, the column(s) corresponding to the gene in
question can be removed from the stoichiometric matrix.
Genes that code for isozymes or genes that code for 
components of the same enzyme complex were simulta-
neously removed (e.g. aceEF, sucCD).

The in silico gene deletion study results were compared
with growth data from known mutants (Edwards and
Palsson, 2000a). The growth characteristics of a series of
E. coli mutants on several different carbon sources were
examined and compared with the in silico deletion results.
From this analysis, 68 of 79 cases or 86% of the in silico
predictions were consistent with the experimental obser-
vations. Although the degree of agreement is remarkable,
the failures are of more interest. Further analysis reveals
that there are three failure modes:

1 failure to incorporate gene regulatory events (four
genes: aceEF, eno, pfk, ppc);

2 failure to specify metabolic network demands correctly
(one gene: pgi);

3 failure to account for toxic intermediate build-up (two
genes: fba, tpi).

In the first case, the in silico strain utilizes genes
repressed by glucose. The second case is simply a matter
of re-examining the model definition for required biomass
components, as the production of certain components 
by the network is probably not required for growth. The
model can be adjusted in both cases to reconcile the 
predicted and experimental results. In the third case,
however, FBA fundamentally fails. It cannot predict build-
up of toxic metabolic intermediates, and this failure helps
define the limitations of FBA.

Phenotype phase plane analysis

Metabolic flux maps are typically calculated under single
growth conditions, giving a limited view of the metabolic
genotype–phenotype relation. However, an approach that
provides a global perspective on the genotype–phenotype
relation is imperative. To this end, we have developed an
analysis methodology that allows us to map all the growth
conditions represented by two environmental variables
into a single plane. This methodology is called phenotypic
phase plane (PhPP) analysis (Edwards et al., 2002).
PhPP analysis was developed to consider all possible
variations in two constraining environmental variables, i.e.
the carbon substrate and oxygen uptake rates.

Using an in silico representation of E. coli MG1655
metabolism, experimentally testable hypotheses were for-
mulated describing the quantitative relationship between

the uptake rate of the primary carbon source (acetate or
succinate), oxygen uptake rate and cellular growth rate.
Experiments with E. coli were performed and the mem-
brane transport fluxes were measured to test the in 
silico-derived hypotheses. The experimental data were
consistent with our hypothesis: the E. coli metabolic
network is optimized to maximize growth under the ex-
perimental conditions considered (Edwards et al., 2001b).
Additional data for malate and several other substrates
show a similar agreement to predicted optimal growth 
performance (unpublished results).

Further constraining the solution space

In summary, FBA, based on the principles of constraints-
based analysis, is one approach to modelling cellular 
systemic behaviour which can make quantitative predic-
tions in the absence of detailed kinetic information. FBA
has been used in many applications, some of which 
were highlighted here using E. coli as an example. The
use of the E. coli model has expanded our ability to 
interpret and even predict the behaviour of this organism,
and it is to be expected that, as genome annotation
updates (Serres et al., 2001) and new experimental data
are made public, the predictive capabilities of these
models will increase.

The next step in developing these models is to deter-
mine, define and incorporate other constraints which
effect cellular behaviour. Although these FBA models of
E. coli and other organisms have enjoyed success in
many instances, there are also notable instances where
they fail. These failures are generally due to the presence
of as an unknown constraint on the cell that change its
range of allowable behaviours.

For example, the models have assumed that all gene
products in the metabolic reaction network are available
to contribute to an optimal solution, unrestricted by 
regulatory processes. This assumption leads to some
false predictions, as the gene deletion study shows. For
FBA to be used effectively to predict cell behaviour on a
more general scale, the effects of regulation must be
incorporated. It has recently been demonstrated that the 
FBA models can be integrated with a set of transcriptional
regulatory rules that are represented by Boolean logic
equations (Covert et al., 2001). The resulting regulatory
constraints differ from the constraints previously
described in that they are (1) self-imposed, as the cell
responds to changing environmental conditions; and (2)
time dependent, as opposed to the fixed invariant con-
straints described above. As these and other constraints
are considered and integrated to the current metabolic
models, the scope of such prediction may be expected to
increase.

Constraints-based cellular modelling, such as FBA,
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represents a new modelling philosophy. FBA is particu-
larly applicable for studying cellular metabolism because
of the lack of complete kinetic data required for traditional
mathematical modelling. The first generation of FBA
models have been successful, but many questions remain
unanswered.
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