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k-Valued Link Grammars are

Learnable from Strings
Denis Béchet

Abstract The article is concerned with learning link grammars in the
model of Gold. We show that rigid and k-valued link grammars are
learnable from strings. In fact, we prove that the languages of link
structured lists of words associated to rigid link grammars have finite
elasticity and we show a learning algorithm. As a standard corollary,
this result leads to the learnability of rigid or k-valued link grammars
learned from strings.

1.1 Introduction

Link grammars, introduced in Sleator and Temperley (1991, 1993), are
a formal grammatical system for natural language processing. A sen-
tence is recognized if there is a way to connect correctly the specifica-
tion of the words in the lexicon using links. Very close to dependency
grammars (Mel’cuk, 1988), link grammars have the advantage to show
directly the connections of words in a graph (not only as a tree like de-
pendency grammars) which can be useful for a direct translation from
syntax to semantics.

Since link grammars are completely lexicalized, they are well adapted
to learning perspectives and an actual way of research is to determine
what are the lexicalized grammars that remain learnable in the sense
of Gold (1967). In fact, learning link grammars was mainly studied for
probabilistic variants (Della Pietra et al., 1994, Fong and Wu, 1995,
Kübler, 1998) or with a context where only one word is unknown and
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has to be inferred in a sentence (Pedersen and Chen, 1995).

Here, we recall that learning consists to define an algorithm on a
finite set of sentences that converge to obtain a grammar in the class
that generates the examples. Let G be a class of grammars that we wish
to learn from positive examples. Formally, let L(G) denote the language
associated with grammar G, and let V be a given alphabet. A learning
algorithm is a function φ from finite sets of words in V ∗ to G, such
that for G ∈ G with L(G) = (ei)i∈N there exist a grammar G′ ∈ G and
n0 ∈ N such that: ∀n > n0, φ({e1, . . . , en}) = G′ ∈ G and L(G′) =
L(G). After the initial pessimism following the unlearnability results in
Gold (1967), there has been a renewed interest due to learnability of
non trivial classes from Angluin (1980) and Shinohara (1990). Recent
works from Kanazawa (1998) have answered the problem for different
classes associated to classical categorial grammars. In the paper, we try
to answer to the question for link grammars: are they learnable from
strings?

The paper is organized as follows. Section 2 presents link grammars.
Section 3 reminds some useful properties on languages and learning
algorithms. Section 4 gives the main lemma: rigid untyped link net
grammars have finite elasticity and thus is learnable. This section ends
with a learning algorithm for this class of structured languages. Sec-
tion 5 extends this result and proves that k-valued link grammars are
learnable from strings. Section 6 concludes and gives some perspectives.

1.2 Link Grammar

A link grammar connects the words of a sentence by links so as to
satisfy:

• Planarity: The links do not cross.

• Connectivity: The graph is connected.

• Ordering: The lexicon gives the left and right possible linkages
of each word.

• Exclusion: No two links may connect the same pair of words.

For instance, the link grammar with the following nodes:
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•

the

D+

•

cat/mouse

S+D− •

•

eats

O+S− •

•

cat/mouse

•O−

D−

accepts the sentence “the cat eats the mouse”:

mousetheeatscatthe

D S D
O

A link is annotated with a primitive type that must match the left and
right constraints of the two linked words. It corresponds to a functional
dependency: S for subject, D for determinant, O for object.

1.2.1 Formal Definitions

• Let Σ be an alphabet and Pr a set of primitive types.

• A link net is a non-empty, planar and connected graph with a total
order on vertices which must be on the border of the graph and
where edges are annotated by primitive types and vertices by words.
The set of link nets over Σ is noted NPr(Σ). Formally, let (V ,≤)
be a totally ordered set (N for instance), a link net is a structure
(V, w, E, t) where:
- V ⊆ V , the vertices, is a non-empty finite subset of V written

(v1, . . . , vn) where n = #V and v1 < · · · < vn;
- w : V 7→ Σ maps each vertex to a word;
- E ⊆ V ×V , the edges, is a symmetrical1 and anti-reflexive2 subset

of V × V ;
- t : E 7→ Pr maps each edge to a primitive type;
- The edges do not cross3: if (a, b) ∈ E and (c, d) ∈ E such that

a < b and c < d then it is not possible that a < c < b < d or
c < a < d < b.

- The graph (V, E) is connected.4

1A relation E is symmetrical iff (x, y) ∈ E ⇔ (y, x) ∈ E
2A relation E is anti-reflexive iff (x, x) 6∈ E
3Thus the graph (V, E) is planar and the vertices are on its border.
4For every pair of vertices, there exists a path between them.
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FIGURE 1 A link net

• An untyped link net is a link net where edges are not annotated
by primitive types. If N = (V, w, E, t) is a link net, we write
untyped(N) = (V, w, E) the corresponding untyped link net. The
set of untyped link nets over Σ is noted N (Σ).
• The yield of a link net N = ((v1, . . . , vn), w, E, t) or of an untyped

link net N = ((v1, . . . , vn), w, E) is yield(N) = w(v1) · · ·w(vn) ∈
Σ+.
• The set of link nodes over Pr noted Tp is the set of pairs of finite

lists of Pr. A link node X has a left list of ports noted t−n , . . . , t−1 and
a right list of ports noted t+1 , . . . , t+m. The left arity noted al(X) is n
and the right arity noted ar(X) is m. A link node is noted by its ports
t−n , . . . , t−1 , t+1 , . . . , t+m. An untyped link node is just characterized by
its left and right arity.

word

· · ·G−1 G−n

•

• •

•

D+
m D+

1· · ·

...
...

FIGURE 2 A link node

• For each vertex v of a link net N = (V, w, E, t), the set of edges
ending in v can be split into a left and a right lists (xn, v), . . . , (x1, v)
and (v, y1), . . . , (v, ym) where xn < xn−1 < · · · < x1 < v < y1 <
· · · < ym−1 < ym. Thus, v is associated to the link node node(v) =
t(xn, v)−, . . . , t(x1, v)−, t(v, y1)

+, . . . , t(v, ym)+.
• A link grammar is a structure G = (Σ, I) where I : Σ 7→ Pf(Tp) is

a function that maps to each element of Σ a finite set of link nodes.
• For a ∈ Σ, if A ∈ I(a), G associates A to a (written G : a 7→ A).
• A link net ((v1, . . . , vn), w, E, t) is generated by G iff G : w(vi) 7→

t(vi) for all i, 0 ≤ i ≤ n.
• An untyped link net N is generated by G iff it exists a link net N ′

such that N = untyped(N ′) and N ′ is generated by G.
• A sentence c1 · · · cn ∈ Σ+ is generated by G iff it exists a link net N

such that c1 · · · cn = yield(N) and N is generated by G.
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• The language of link nets of G, noted LNPr(Σ)(G) is the set of link
nets generated by G.
• The language of untyped link nets of G, noted LN (Σ)(G) is the set

of untyped link nets generated by G.
• The language of strings of G, noted LΣ+(G) is the set of sentences

generated by G.
• Link grammars that associate at most k link nodes to each symbol

of Σ are called k-valued.
• 1-valued grammars are also called rigid.

1.3 Learnability and Finite Elasticity

We have seen in the introduction that a class of languages described by
a class of grammars G is learnable iff there exists a learning algorithm
φ from finite sets of words to G that converges to G5 for any G ∈ G
and for any growing partial enumeration of L(G).

Learnability and unlearnability properties have been widely studied
from a theoretical point of view. A very useful property for our purpose
is the finite elasticity property of a class of languages. This term was
first introduced in Wright (1989), Motoki et al. (1991) and, in fact,
it induces learnability. A very nice presentation of this notion can be
found in Kanazawa (1998).

Definition
• A class CL of languages has infinite elasticity iff ∃(ei)i∈N an infinite

sequence of sentences, ∃(Li)i∈N an infinite sequence of languages of
CL such that ∀i ∈ N : ei 6∈ Li and {e0, . . . , ei−1} ⊆ Li.
• A class has finite elasticity iff it has not infinite elasticity.

Theorem 1 [Wright 1989] A class that is not learnable has infinite
elasticity.

Corollary 2 A class that has finite elasticity is learnable.

Finite elasticity is a very nice property because it can be extended
from a class to another one that is obtained by a finite-valued relation.6

We use here a version of the theorem that has been proved in Kanazawa
(1998) and is useful for various kind of languages (strings, structures,
nets) that can be described by lists of elements of some alphabets.

Theorem 3 [Kanasawa 1998] LetM be a class of languages over Γ
that has finite elasticity, and let R ⊆ Σ∗×Γ∗ be a finite-valued relation.

5In fact, it is not the output grammars that converge but their associated
languages.

6A relation R ⊆ Σ∗ × Γ∗ is finite-valued iff for every s ∈ Σ∗, there are at most
finitely many u ∈ Γ∗ such that (s, u) ∈ R.
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Then the class of languages {R−1[M ] = {s ∈ Σ∗ | ∃u ∈ M ∧ (s, u) ∈
R} |M ∈M} has finite elasticity.

1.4 Finite Elasticity of Rigid Untyped Link Net
Grammars

This section is concerned by grammars of untyped link nets rather
than grammars of strings. The following theorem is essential because,
as a corollary, the corresponding class of rigid link grammars has finite
elasticity and thus is learnable from strings. This result can also be
extended to the class of k-valued link grammars for every k.

Theorem 4 Rigid link grammars define a class of languages of untyped
link nets that has finite elasticity.

Proof: We use a result of Shinohara (1990, 1991) that proves that
formal systems that has finite thickness has finite elasticity. In Shino-
hara (1991) this is applied to length-bounded elementary formal system
with at most k rules and also to context sensitive languages that are
definable by at most k rules. Formal systems in Shinohara (1991) do
not describe languages of strings only but also languages of terms. It
can be applied to typed or untyped link nets which can be seen as well-
bracketed strings (each link is associated to an opening and a closing
(typed) bracket). For the class of rigid untyped link net grammars, the
sketch of proof is as follows:

1. Definition. A link grammar G1 = (Σ1, I1) is included in a link
grammar G2 = (Σ2, I2) (notation G1 ⊆ G2) iff Σ1 ⊆ Σ2 and
∀x ∈ Σ1, I1(x) ⊆ I2(x).

2. Definition and lemma. The mapping LN (Σ) from link gram-
mars to untyped link net languages is monotonic: if G1 ⊆ G2 then
LN (Σ)(G1) ⊆ LN (Σ)(G2).

3. Definition. A grammar G is reduced with respect to a set X ⊆
N (Σ) iff X ⊆ LN (Σ)(G) and for each grammar G′ ⊆ G, X 6⊆
LN (Σ)(G

′). Intuitively, a grammar that is reduced with respect to
X , does not have redundant expression to cover all the structures
of X .

4. Lemma. For each finite set X ⊆ LN (Σ)(G), there is a finite set of
rigid untyped link net languages that correspond to the grammars
that are reduced from X . This is the main part of the proof. In
fact, if G = (Σ, I), a rigid untyped link net grammar, is reduced
with respect to X then each word that does not appear in one of
the untyped link net of X must be associated through I to the
empty set. The other words must be associated to exactly one
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type of Tp (the grammar is rigid). The left and the right arities
are given by the occurrences of the word in the untyped link nets
and they must be the same for all the occurrences because the
language we try to learn corresponds to a rigid untyped link net
grammar. If the sum of the left and right arities of each word in
X is bound by m, and if n is the number of words that appear in
X , the number of equivalent grammars7 is bound by the number
of partitions of a set of n×m elements.

5. Definition. Monotonicity and the previous property define a sys-
tem that has bounded finite thickness.

6. Theorem. Shinohara (1991) proves that a formal system that
has bounded finite thickness has finite elasticity.

7. Corollary. Rigid untyped link net languages have finite elasticity.

A learning algorithm for rigid untyped link net grammars

In fact, the notion of reduced grammars suggests a simple learning algo-
rithm for the class of rigid untyped link net grammars. The algorithm
φ1 takes a sequence of untyped link nets N1, . . . , Nl and produces a
link grammar that corresponds to the smallest rigid untyped link net
language that is compatible to the input. Of course, this algorithm re-
turns a failure if the sequence does not correspond to a rigid untyped
link net language.8

1. We collect the occurrences of each word together with its left and
right arities from the input sequence. The algorithm fails if a word
is used with different left or right arities.

2. For each word w, we associates n + m variables corresponding to
the n left ports and the m right ports: Xw

−n, . . . , Xw
−1, X

w
1 , . . . , Xw

m

3. Then, we extract equality constraints on the variables based on
the links that appear in the input untyped link nets: a link cor-
responds to two variables on both ends that must be equal.

4. The equality system is resolved and a primitive type is associated
to each equivalence class of variables noted Xw

i .

5. For each word w that appears in the sequence and is associated to
the n + m variables Xw

−n, . . . , Xw
−1, X

w
1 , . . . , Xw

m, the output link

grammar associates the link node Xw
−n

−
, . . . , Xw

−1

−
, Xw

1

+
, . . . , Xw

m

+

to w.

7Equivalent grammars are grammars that are associated to the same language.
A sufficient condition is the existence of a bijective relation between the primitive
types of both grammars.

8In other words, the algorithm returns a failure if this sequence is not included
in at least one of the rigid untyped link net languages.
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Theorem 5 φ1 learns rigid untyped link net grammars.

Proof: φ1 is monotonic: if S1 ⊆ S2 then φ1(S2) returns a failure or
φ1(S1) and φ1(S2) succeed and LN (Σ)(φ1(S1)) ⊆ LN (Σ)(φ1(S2)). This
is a consequence of the fact that the equality system corresponding to
S1 is a subset of the equality system corresponding to S2.

Let G = (Σ, I) be a rigid link grammar and (Ni)i∈N an infinite
sequence of untyped link nets that enumerates LN (Σ)(G). For i ∈ N ,
φ1(N0, . . . , Ni) does not return a failure because G is rigid so each word
in the untyped link nets of LN (Σ)(G) is used with the same left and right
arities. Because φ1 is monotonic, (Gi = φ1(N0, . . . , Ni))i∈N defines an
infinite sequence of growing languages LN (Σ)(G0) ⊆ LN (Σ)(G1) ⊆ · · · .
Because the class has finite elasticity, this sequence must converge
to a language L∞ that must be (equal or) a superset of LN (Σ)(G)
since the sequence enumerates LN (Σ)(G). In fact, for i ∈ N , G
verifies the equality system used by φ1 with N0, . . . , Ni as input,
so LN (Σ)(φ1(N0, . . . , Ni)) ⊆ LN (Σ)(G). Thus, we also have L∞ ⊆
LN (Σ)(G).

1.5 k-valued Link grammars are learnable from strings

Because the class of rigid untyped link net languages has finite elastic-
ity, we can find a finite-valued relation between rigid untyped link net
languages and k-valued link languages. In fact, we define two relations
and use twice Theorem 3. The first one from rigid untyped link net lan-
guages to rigid link languages and the second from rigid link languages
to k-valued link languages.

Lemma 6 Rigid link languages have finite elasticity.

Proof: An untyped link net ((v1, . . . , vn), w, E) over Σ is characterized
by the left and right arities of each vertex. Thus, it can be completely
described by the following string from the alphabet Σ ∪ {[ , ]} where [
and ] are not in Σ:

w(v1) [ · · · [︸ ︷︷ ︸
ar(v1)

] · · · ]︸ ︷︷ ︸
al(v2)

w(v2) [ · · · [︸ ︷︷ ︸
ar(v2)

· · · ] · · · ]︸ ︷︷ ︸
al(vn−1)

w(vn−1) [ · · · [︸ ︷︷ ︸
ar(vn−1)

] · · · ]︸ ︷︷ ︸
al(vn)

w(vn)

In fact, the relation between Σ+ and (Σ ∪ {[ , ]})+ that adds square
brackets such that the result corresponds to an untyped link net is
finite-valued. Then, because the class of languages of (Σ ∪ {[, ]})+ cor-
responding to rigid untyped link net grammars has finite elasticity, their
inverse images by the previous relation, which define exactly the class
of rigid link languages, have finite elasticity.

Lemma 7 k-valued link languages have finite elasticity.
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Proof: This is very standard. The finite-valued relation associates
k-valued link grammars over Σ and rigid link grammars over Σ ×
{1, . . . , k}. A rigid link grammar over Σ×{1, . . . , k} corresponds to the
k-valued link grammar where the types associated to (a, 1), . . . , (a, k)
are merged into the same entry for a.

1.6 Conclusion and perspectives

We have proved in the paper that the class of rigid untyped link net
languages has finite elasticity. We have given a learning algorithm for
this class of languages of untyped link nets. Finally, we have proved that
k-valued link grammars have also finite elasticity and thus is learnable
from strings.

This positive result may be compared to other learnability results
in the same domain in particular in the field of k-valued categorial
grammars. Kanazawa’s positive result on classical categorial grammar
is very similar to our result but other more complex but very close
systems like Lambek calculus or pregroups have been proved to be not
learnable from strings (Foret and Le Nir, 2002a,b). Due to the similarity
between link grammars and Lambek calculus or pregroups presented as
(proof) nets and their differences from the learnability point of view,
we can try to deduce general rules for learnable classes.

For us, the reason why k-valued Lambek calculus grammars are not
learnable comes from the fact that using a sequence of sentences, we
can not bound the possible “interactions” (in term of proof nets, it
means different set of axiom links) between two words which is not the
case for k-valued link grammars because for one type there is only one
possible interaction between two words. This remark may be interesting
for defining useful learnable classes of logical categorial grammars that
lay between classical categorial grammars and Lambek calculus.
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