
2

Learning Dependency Languages

from a Teacher
Jérôme Besombes and Jean-Yves Marion

We investigate learning dependency grammar from partial data and
membership queries as a model of natural language acquisition. We
define a learning paradigm based on a dialogue between the learner
and a referent who knows the target language. This dialogue consists
in a presentation of structured partial sentences and queries about the
membership of original sentences constructed by the learner. We define
an efficient algorithm corresponding to this paradigm and illustrate it
on examples.

2.1 Introduction

For the definition of our model we consider several hypotheses which
are largely inspired by the works of the linguist Chomsky Chomsky
(1986) the psycholinguist Pinker Pinker (1994). First, the child learns
the language of his parents or more specifically, the language he hears.
Correct sentences are so presented to the learner, possibly partially un-
derstood and constitute the input data of the model. These data are
not only linear sentences but pre-calculated structures. Indeed, seman-
tic information or prosody are information included in the signal

The structures are commonly considered as tree in which nodes are
labelled by the words of the sentence. Since the linear order of the
words is conserved during the structuration process, we will consider
dependency trees as a relevant model of the input data (Figure 1).

17

Proceedings of Formal Grammar 2004.
Paola Monachesi, Gerhard Jäger,
Gerald Penn and Shuly Winter(eds.).
Copyright c© 2008, the individual authors.



18 / Jérôme Besombes and Jean-Yves Marion

the < rabbit < runs < fast +

runs

rabbit

the

fast

︸ ︷︷ ︸
linear order

︸ ︷︷ ︸
tree structuration

=

the rabbit runs fast

FIGURE 1 Dependency structure

Natural learning properties Algorithmic model properties
Finite set of correct sentences Input data are a finite set

are needed of partial positive examples
Chomsky’s universal grammar Learning algorithm independent

of a particular language
Structured data Dependency tree languages

Communication with a referent Membership queries

FIGURE 2 Correspondance between properties of the natural language
aquisition and properties of the algorithmic model

Pinker underlines that the learner and the referent take part in a
communication process; this communication is a key point of the learn-
ing process since it turns out that the language acquisition is not pos-
sible with no physical presence of the referent. If we suppose that a
new sentence produced by a child and not understood by the referent
can provide the conclusion that this sentence is not correct (doesn’t be-
long to the language he learns), we will take into account membership
queries: the algorithm submits sentences to an Oracle who replies yes
or no whether they belongs to te target language or not.

The algorithm A learns a class of language if and only if, for any
language L in the class, there is a finite set of partial data RS (rep-
resentative sample) such that A determines L from RS with help of
membership queries. Properties of A are summerized in Figure 2



Learning Dependency Languages from a Teacher / 19

Related works

Angluin first introduced the paradigm of learning with queries in An-
gluin (1987) for the case of regular languages and in Angluin (1988)
is studied a paradim of learning from positive examples, member-
ship queries and equivalence queries (the possibility to ask an Oracle
whether a guess language corresponds to the target language or not).
Obviously, for our motivation of modelling, this kind of queries are
not relevant. Angluin’s works have been extendend in particular by
Sakakibara Sakakibara (1987b,a, 1990) for the inference of context-free
grammars from structured data. The learnability of dependency lan-
guages has been studied in Besombes and Marion (2002); in this work,
an algorithm for a sub-class of lexical dependency languages has been
defined. As far as we know, the idea of learning from partial data and
membership queries is original.

2.2 Lexical dependency grammar

Following Dikovsky and Modina Dikovsky and Modina (2000), we
present a class of projective dependency grammars which was intro-
duced by Hays Hays (1961) and Gaifman Gaifman (1965).

A lexical dependency grammar (LDG) Γ is a quadruplet 〈Σ, N, P, S〉,
where:

. Σ is the set of terminal symbols,. N is the set of non-terminal symbols,. S ∈ N is the start symbol,. P is the set of productions.

Each production is of the form

X→X1 . . .Xp a Xp+1 . . .Xq

or of the form

X → a1

where X and each Xi are in N and a in Σ. The terminal symbol a is
called the head of the production. In other words, the head is the root
of the flat tree formed by the production right handside. Actually, if
we forget dependencies, we just deal with context free grammars.

Given a grammar G, partial dependency trees t generated by a non-
terminal X of G are recursively defined as follows.

. X is a partial dependency tree.

1This form is corresponding to the previous with p = q = 0.



20 / Jérôme Besombes and Jean-Yves Marion

. If . . .X ′ . . . b . . . is a partial dependency tree generated by X ,

and if X ′ → X1 . . .Xp a Xp+1 . . .Xq is a production of G, then

. . .X1 . . .Xp a Xp+1 . . .Xp . . . b . . . 2 is a partial dependency tree

generated by X .

We note X
∗→ t to express that t is generated by X .

A dependency tree generated by a non-terminal X is a partial de-
pendency tree generated by X in which all nodes are terminal sym-
bols. A dependency tree is a dependency sub-tree generated by S. The
language DL(G) is the set of all dependency trees (DL(G) = {d :

dependency tree and S
∗→ d}).

(1) Example. Consider the grammar G defined by:

G = 〈Σ, N, P, S〉
where.Σ = {a, b, c},.N = {S,X1, X2, X3, X4},.P is the following set of productions.

S → X2 a X3

X2 → X1 b X3 → c X4

X1 → X2 b X3 → c

X1 → b X4 → c X3

The language DL(G) is the set of dependency trees

{b . . . b a c . . . c}︸ ︷︷ ︸
n even

︸ ︷︷ ︸
m odd

2Dependencies can be drawn either over or under the word line for a reason of
clearity.



Learning Dependency Languages from a Teacher / 21

A subtree of a dependency tree is inductively defined as follows:

. of d = a for a terminal symbol a, then d is the only subtree of d,

. if d = d1 . . .dp a dp+1 . . . dq is a dependency tree then:. d is a subtree of d,. any subtree of di is a subtree of d.

If d is a dependency tree, S(d) is the set of subtrees of d and if D is a set
of dependency trees, S(D) is the set of all subtrees of the elements of D.
A context c[♯] of a dependency tree d is obtained by replacing exactly
one occurence of a subtree of d by a special symbol ♯. In particular ♯
is a context of all dependency trees. If d is a dependency tree, C(d) is
the set of contexts of d and if D is a set of dependency trees, C(D) is
the set of all contexts of the elements of D.

We will also use the notation d = c[d′] to express that d′ is a subtree
of d.

A grammar homomorphism φ between two grammarsG = 〈Σ, N, P, S〉
and G′ = 〈Σ, N ′, P ′, S′〉 is defined from a surjective mapping from N
to N ′ which satisfies the following properties:

. φ(S) = S′

. P ′ is the set of productions φ(X) → φ(X1) . . .φ(Xp) a φ(Xp+1) . . .φ(Xq)

for every production X → X1 . . .Xp a Xp+1 . . .Xq of P .

We note G′ = φ(G) and in this case we have DL(G) ⊆ DL(G′).

2.3 Observation table

Following Angluin Angluin (1988), information obtained from the mem-
bership queries is stored in a table. Let DL be a dependency language,
D a finite set of subtrees and C a finite set of contexts. The observation
table T = TDL(S(D), C) is the table defined by:

. rows are labelled by the subtrees of D,

. columns are labelled by elements of C,

. cells TDL(d, c[♯]), where d ∈ S(D) and c[♯] ∈ C, are labelled with 1

and 0 in such a way that:

TDL(d, c[♯]) =

{
1 if c[d] ∈ DL
0 otherwise



22 / Jérôme Besombes and Jean-Yves Marion

For any d ∈ S(D), we denote by rowT (d) the binary word corre-
sponding to the reading from left to right of the row labelled by d in
T .

(2) Example. Let be DL = DL(G) the dependency language defined

in Example 1, D the singleton {b b a c c c} and C the set of

contexts {♯, ♯ b a c c c, ♯ a c c c, b b a c c ♯, b b a c ♯, b b a ♯}.

The corresponding observation table T = TDL(S(D), C) is the
table of figure 2.

An observation table T = TDL(S(D), C) is coherent if and only if
for any pair (d, d′) of trees in D×D, rowT (d) = rowT (d

′). A coherent
observation table T = TDL(S(D), C) defines a grammar GT :

GT = 〈Σ, N, P, S〉
where:

. Σ is set of symbols occuring in D,. N = {rowT (d) : d ∈ S(D)}. S = rowT (d) for any dependency tree d ∈ D

. P is the set of productions of the form rowT (d1 . . . dp a dp+1 . . . dq)

→ rowT (d1) . . . rowT (dp) a rowT (dp+1) . . . rowT (dq)

for all d1 . . . dp a dp+1 . . . dq in S(D).

(3) Example. The table of Example 2 is coherent and the correspond-
ing grammar is φ(G), where G is the grammar given in Example 1
and φ the homomorphism defined by φ(S) = 100000, φ(X1) =
010000, φ(X2) = 001000, φ(X3) = 000101, φ(X4) = 000010.

A coherent table T = TDL(S(D), C) is consistent if and only if for ev-

ery dependency trees d =d1 . . . dp a dp+1 . . . dq and d′ =d′1 . . . d′p a d′p+1 . . . d′q



Learning Dependency Languages from a Teacher / 23

♯ ♯ b a c c c ♯ a c c c b b a c c ♯ b b a c ♯ b b a ♯

b b a c c c 1 0 0 0 0 0

b b 0 0 1 0 0 0

b 0 1 0 0 0 0

c c c 0 0 0 1 0 1

c c 0 0 0 0 1 0

c 0 0 0 1 0 1

FIGURE 3 An observation table



24 / Jérôme Besombes and Jean-Yves Marion

in S(D), for all i, rowT (di) = rowT (d
′
i) implies that rowT (d) =

rowT (d
′).

2.4 Representative sample

We now define the property, for a finite set of subtrees of a language,
to contain the minimum information necessary to explicitely iden-
tify this language. This constitutes a minimal hypothesis to conclude
in the learnability of the language. Let DL be a dependency lan-
guage generated by a grammar G. Any finite subset RS of S(DL)
is said to be representative for DL if and only if for any transi-

tion X → X1 . . .Xp a Xp+1 . . .Xq of G, there is an element d =

d1 . . . dp a dp+1 . . . dq in S(RS) such that for all i, Xi
∗→ di. Infor-

mally, a finite set RS is a representative sample for G if and only
if each production of G has been used at least once to produce the
elements of RS.

Lemma 1 Let G be a dependency grammar, RS a representative sam-
ple for DL(G) and C a finite set of contexts containing C(RS), if
TDL(G)(S(RS), C) is consistent then DL(GT ) = DL(G).

Theorem 2 The algorithm defined in Figure 4 learns the class of
dependency languages from representative samples and membership
queries.

The algorithm works as follows: it take a finite set of dependency
trees as input and this set is decomposed in a finite set of subtrees and
a finite set of contexts. With help of membership queries, a first obser-
vation table is constructed and the consistence is checked. If the table
is not consistent, new contexts are calculated and added in the table
which is then completed. The process stops as the table is consistent
and a grammar is then ouput.

2.5 Examples

(4) Example. The singleton {b b a c c c} is a representative sample

for the dependency tree language defined in Example 1. The
observation table of Figure 3 is constructed from this input with
help of membership queries; this table is consistent that implies



Learning Dependency Languages from a Teacher / 25

INPUT: a finite set of dependency trees D
INITIALIZATION: C = C(D); construct T = TDL(G)(S(D), C) with
help of queries
WHILE T not consistent DO

find two dependency trees d =d1 . . . dp a dp+1 . . .dq and

d′ =d′1 . . . d′p a d′p+1 . . . d′q
in S(D) such that forall i, rowT (di) = rowT (d

′
i) and

rowT (d) 6= rowT (d
′)

add every contexts d1 . . . ♯ . . . dp a dp+1 . . . dq and

d1 . . . dp a dp+1 . . . ♯ . . . dq in C
complete T = TDL(G)(S(D), C) with help of queries

ENDWHILE
RETURN GT

FIGURE 4 The learning algorithm

that the corresponding dependency grammar given in Example 3
is computed by the algorithm and the language is learnt imme-
diately (the loop is not processed).

The following example illustrates the iterative behavior of the algo-
rithm.

(5) Example. Let G be the following grammar:

S → aX1, aX2, bX2

X1 → dX3, c X3 → e

X2 → dX4 X4 → f

We have: DL = {b c, a c, a d e, b d e, a d f}.



26 / Jérôme Besombes and Jean-Yves Marion

Let now consider the following representative sample:

RS = {b c, a d e, d f}
From it, the algorithm constructs a first table that is not consis-
tent (Figure 5). Indeed we have:

rowT (e) = rowT (f)

but

rowT (d e) 6= rowT (d f)

The new context b d ♯ is computed and added to the table that
is completed with queries. The table obtained is then consistent
and the process stops with the construction of de grammar φ(G),
where φ is defined by φ(S) = 10000, φ(X1) = 01010, φ(X2) =
00010, φ(X3) = 00101, φ(X4) = 00100

References

Angluin, D. 1987. Learning regular sets from queries and counter examples.
Information and Control 75:87–106.

Angluin, D. 1988. Queries and concept learning. Machine learning 2:319–342.

Besombes, J. and J.Y. Marion. 2002. Apprentissage des langages réguliers
d’arbres et applications. Conférence d’Apprentissage, Orléans 17, 18 et 19
juin 2002 pages 55–70.

Chomsky, N. 1986. Knowlege of Language. Praeger, New York.

Dikovsky, A. and L. Modina. 2000. Dependencies on the other side of the
curtain. Traitement automatique des langues 41(1):67–96.

Gaifman, H. 1965. Dependency systems and phrase structure systems. In-
formation and Control 8(3):304–337.

Hays, D.G. 1961. Grouping and dependency theories. In National symp. on
machine translation.

Pinker, S. 1994. The language instinct . Harper.

Sakakibara, Y. 1987a. Inductive inference of logic programs based on alge-
braic semantics. Tech. Rep. ICOT, 79.

Sakakibara, Y. 1987b. Inferring parsers of context-free languages from struc-
tural examples. Tech. Rep. ICOT, 81.

Sakakibara, Y. 1990. Learning context-free grammars from structural data
in polynomial time. Theoretical Computer Science 76:223–242.



References / 27

♯ b ♯ a d ♯ a ♯

b c 1 0 0 0

c 0 1 0 1

a d e 1 0 0 0

d e 0 1 0 1

d f 0 0 0 1

e 0 0 1 0

f 0 0 1 0

⇓

♯ b ♯ a d ♯ a ♯ b d ♯

b c 1 0 0 0 0

c 0 1 0 1 0

a d e 1 0 0 0 0

d e 0 1 0 1 0

d f 0 0 0 1 0

e 0 0 1 0 1

f 0 0 1 0 0

FIGURE 5 The learning algorithm processing




