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Abstract

This paper describes the Bridge system, a system designed to robustly
map from natural language sentences to abstract knowledge representations.
The system runs on PARC’s parser, generator, and ordered rewrite platform
XLE. The Bridge system has been extended to include a type of light infer-
ence, based on an entailment and contradiction detection algorithm which also
runs on XLE. The paper then describes a search and question answering ap-
plication, Asker, which uses the Bridge system to create a semantic index of
text passages and which allows a user to query the index in natural language.

1 Introduction

Bridge is a PARC system that robustly maps natural language sentences into a log-
ical abstract knowledge representation language (AKR). Using this mapping, we
have built an application, Asker, that supports high-precision question-answering
of natural language queries from large document collections (e.g., the Wikipedia,
newswire, financial reports). For example, if a collection includes the sentence The
reporter failed to discover that three young men were killed in the attack on Ryad.,
then the system could answer the query Did anyone die in the attack on Ryad? with
YES (perhaps indicating who died) and highlight the phrase in the document in the
collection that contains this information.

The basic system components and their connection is shown in the diagrams in
Figures 1–4. Natural language text is mapped into a first level of abstract knowl-
edge representation (AKR0) (see section 2). Text passages are then passed through
an expansion step to produce a representation with addtional inferrable facts (P-
AKR). In contrast, queries are passed through a simplification step to produce a
representation with fewer facts (Q-AKR), a smaller kernel from which the rest can
be inferred. Asker uses the expanded passage to compute index terms that capture
semantic roles in the representation (section 4.1). To retrieve potential answer pas-
sages from the collection, index terms from the query representation identify stored
texts with corresponding semantic structure (section 4.2); as a backoff, texts are re-
trieved that share expanded, normalized keywords with the query. Entailment and
contradiction detection (ECD) can be performed to determine subsumption rela-
tions between the passage and question and hence provide an answer (section 3).
ECD can be used separately to check whether a given passage text entails or con-
tradicts a given query/hypothesis text.
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Bridge Processing

input: text

1. preprocessing
2. syntax rules

3. semantics rules
4. basic AKR rules

output: AKR0

passage query
expansion simplification

output: P-AKR output: Q-AKR

Figure 1: Syntactic Lexical-Function Grammar (LFG) rules and semantic and KR-
specific ordered rewrite rules produce a basic knowledge representation for passage
and query texts. Passages expand inferences based on linguistic properties. Queries
are simplified to their core meaning to remove unnecessary structure.

Bridge ECD

input: passage text input: query text

Bridge mapping to P-AKR Bridge mapping to Q-AKR

Subsumption/inconsistency
check

output: YES, NO, UNKNOWN
output: wh-phrase alignment

Figure 2: Expanded passage representations are compared using subsumption with
simplified query representations to determine if the passage entails the query.



Asker Semantic Index Creation

input: text

1. Bridge mapping to P-AKR
2. index term extraction

output: semantic index

Figure 3: Index terms for each passage reflect the semantic roles of terms in a sen-
tence.

Asker Run-time Search and Question Answering

input: natural language query

Bridge mapping to Q

retrieval of retrieval of
semantic matches expanded keyword

matches

1. passage ranking
2. Bridge ECD on query and each passage

output: passages with answers

Figure 4: Use of index terms in the query supports more precise retrieval of rel-
evant sentences. Keywords, expanded with WordNet synonym sets (synsets) and
hypernyms, provide a backoff for recall.

The mapping from syntactic structures to (linguistic) semantics and then ab-
stract knowledge representations (AKR) runs on the XLE platform (Maxwell and
Kaplan, 1996; Crouch et al., 2007) and is described in Crouch and King (2006) and
Crouch (2005). The logic of the representations has been described in Bobrow et al.
(2005) and de Paiva et al. (2007). The linguistic, semantic rationale for the use
of concepts in AKR was originally described in Condoravdi et al. (2001, 2003).
Components of the system have been described in Crouch and King (2005), Gure-
vich et al. (2005), and Nairn et al. (2006). An earlier application to a collection of
copier repair tips written by Xerox technicians is described in Crouch et al. (2002)
and Everett et al. (2002). The more recent application to question-answering in



the framework of the PASCAL-organized1 competition Recognizing Textual En-
tailment (RTE) is described in Bobrow et al. (2007).

In this paper, we first describe the AKR language that our system uses (section
2). AKR is designed to meet two constraints that are somewhat in tension: a natural
representation of language constructs on the one hand and a straightforward compu-
tation of direct inferential relations between two texts on the other. Our entailment
and contradiction detection algorithm (section 3) implements this inference proce-
dure between two possibly ambiguous texts without the need for disambiguation.
Finally, we discuss the structure of the Asker repository which indexes sentences on
the basis of their AKR representation in a large scale database (over 10 documents)
and allows real-time semantic retrieval from this index (section 4).

2 Abstract Knowledge Representation (AKR)

We start our discussion of AKR representations with the sentence John Smith dis-
covered that three men died. The full AKR is as in (1).

(1) Conceptual Structure:
subconcept(discover:2, [detect-1, , identify-5])
role(Theme, discover:2, ctx(die:5))
role(Agent, discover:2, Smith:1)
subconcept(Smith:1, [male-2])
alias(Smith:1, [John, Smith, John Smith])
role(cardinality restriction, Smith:1, sg)
subconcept(die:5, [die-1, die-2, , die-11])
role(Theme, die:5, man:4)
subconcept(man:4, [man-1, , world-8])
role(cardinality restriction, man:4, 3)

Contextual Structure:
context(t)
context(ctx(die:5))
top context(t)
context lifting relation(veridical, t, ctx(die:5))
context relation(t, ctx(die:5), crel(Theme, discover:2))
instantiable(Smith:1, t)
instantiable(discover:2, t)
instantiable(die:5, ctx(die:5))
instantiable(man:4, ctx(die:5))

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, discover:2)
temporalRel(startsAfterEndingOf, Now, die:5)

1See the PASCAL website: www.pascal-netword.org



The representation for this sentence has two contexts: the top context t, speci-
fying what the author of the sentence is committed to as the true state of the world
by virtue of uttering the sentence; and ctx(die:5), specifying what was discovered
by John Smith, which is the proposition that three men died.

The verb discover carries a presupposition that what is described as being dis-
covered is true according to the author of the sentence; that is, one can only be said
to discover true facts. This is part of lexical knowledge and is captured in this exam-
ple by context lifting relation(veridical, t, ctx(die:5)). Because of this veridical
relation, in the expansion to P-AKR, the clauses:

(2) instantiable(die:5, t)
instantiable(man:4, t)

are added to the contextual structure. These instantiability statements capture exis-
tence commitments in our representation. As a result, the system will answer YES
to the passage-query pair John discovered that three men died. Did three men die?
In the top context t, we also have the instatiability claims:

(3) instantiable(Smith:1, t)
instantiable(discover:2, t)

Within the context of what was discovered by John Smith we have two concepts,
the dying event die:5, and the concept man:4. For each of these, the representation
has a subconcept expression. These expressions encode WordNet’s representation
of the verb die (a list of 11 synsets, corresponding to the 11 verb senses for die dif-
ferentiated in WordNet) and the noun man (a list of 8 synsets):

(4) subconcept(die:5, [die-1, die-2, die-3, , die-11])
subconcept(man:4, [man-1, serviceman-1, , world-8])

We are using WordNet (Fellbaum, 1998) as a surrogate for the taxonomic part of an
ontology because it is the largest available resource for mapping English words into
an (approximate) abstraction hierarchy through WordNet’s hypernyms. We have
patched WordNet in places where omissions and extra entries became problems for
the system. Since VerbNet, whose use is described below, links to WordNet, we
have also made these two resources more consistent.

To capture the fact that the number of dying men is three, the representation
includes a cardinality restriction on the concept man:4.2 The dying event is related
to its undergoer participants via role(Theme, die:5, man:4). In the top context
we have two more concepts, the concept for John Smith and the discovering event
discover:2, a subconcept of WordNet’s synsets for the verb discover.

2Our representations deal with quantifiers in general through a combination of instantiability state-
ments, contexts and cardinality restriction clauses.



While WordNet knows about some words used as names,3 it does not list every
man named John in history, nor does it list every masculine name. The English mor-
phology associated with the system’s syntactic grammar knows that John is a man’s
name, and the semantics uses this information to create a subconcept structure based
on WordNet: subconcept(Smith:1, [male-2]). The name itself is captured in an
alias fact. Incorporated into the system is a theory of when two aliases can refer to
the same individual. So John Smith can be mentioned later as John, Smith, or John
Smith. These three possiblities are included in the alias fact. Given a passage-query
pair like John Smith arrived and John Bowler left. Did Bowler leave? the system
will answer YES. Moreover, to the passage-query pair John Smith arrived and John
Bowler left. Did John leave? the system will answer YES: [John Bowler], since
at least one of the people named John in the passage did leave.

Finally, the concept discover:2 is restricted to have Smith:1 as its agent role
(role(Agent, discover:2, Smith:1)) and the context specifying what John discov-
ered as its theme role (role(Theme, discover:2, ctx(die:5))).

The temporal relations capture the relative time ordering of the events described
with respect to the time of utterance or writing of the sentence. Now (the time of
utterance) is after the discovering, and the dying, as represented by:

(5) temporalRel(startsAfterEndingOf, Now, discover:2)
temporalRel(startsAfterEndingOf, Now, die:5)

As indicated by this example, AKR representations can express the content of
beliefs, possible states of the world, counterfactuals, etc.

2.1 Existence and Restrictions

Terms like die:5 and man:4 do not refer to individuals, but to concepts (or types).
When the AKR makes reference to a subconcept man:4 of the kind [man-1, ser-
viceman-1, man-3, , world-8] restricted to be a kind of man that died, the AKR
does not make a commitment that there are any instances of this subconcept in the
world being described by the author of a sentence. For example, the sentence John
imagined that three men died., has in the AKR an embedded context representing
what is being imagined. Because this embedded context is not veridical with respect
to the top context, there is no commitment (by the author or in the representation)
about there actually being any dead men.

The instantiable assertions represent the existence of the kinds of objects de-
scribed. In the top-level context t, there is a commitment to an instance of a male
individual with the name John Smith and of a discover event discover:2 made by
him. While the three men and the dying event occur in the context of what was
discovered by John Smith, they become instantiable at the top context because dis-
cover with a that complement is marked as a factive verb (Nairn et al., 2006).

3For example, WordNet has synsets for the evangelist John and the English King John who signed
the Magna Carta. There are also entries for the common noun john.



Compared to traditional first order logic with complex quantifiers, AKR sepa-
rates the descriptions of types of events and objects (in the conceptual block) from
the commitments to existence (in the contextual block). The conceptual block in-
cludes subconcept assertions, role restrictions and cardinality constraints. The con-
textual block includes (un)instantiability of these concepts in contexts, and relations
between contexts, including context-lifting rules similar in spirit to those in Mc-
Carthy’s context logic (McCarthy, 1993). The use of contexts to capture a collec-
tion of statements true in a context and the use of contexts as arguments (reifying the
collection of statements) makes AKR technically not first order, but the reasoning
in the system preserves many first order properties locally.

2.2 Lexical resources

Mapping to AKR and textual inference depend crucially on words and ontological
relations between the concepts they map to. We have integrated a number of exist-
ing lexical resources into a Unified Lexicon (UL) (Crouch and King, 2005), adding
new annotations to classes of words to support desired inferences. The basic size
of the UL is shown in (6).

(6) Unified Lexicon: Part of Speech of Entries
POS Number of Entries
verbs 42,675
nouns 14,293
adjectives 8,537
deverbal adjectives 1,291
adverbs 13

Note that many words have no UL entry because their behavior in the mapping to
AKR is predictable from their syntactic structure (e.g., most nouns, adjectives, and
adverbs). In addition, adjectives and nouns that are predictably derived from verbs
(e.g, the hopping frog, the defeated champion, the writing of the book) do not need
entries in the UL to trigger the appropriate mapping rules.

2.2.1 Basic Concept and Role Lookup

The mapping rules and the UL use WordNet synsets and hypernyms. The system
maps the words recognized by WordNet into the associated synsets directly via the
WordNet API; a copy of WordNet is not included in the UL. Words not in Word-
Net are mapped to, generally singleton, synsets based on information from the XLE
morphology and syntax (e.g., the treatment of person names discussed above). Ini-
tially all synsets for a given word are retrieved; this list is then trimmed to a subset
of the WordNet concepts if additional information is available, for example from
VerbNet or from the context of the text. Noun-noun compounds (e.g., theme park)
and adjective-noun compounds (e.g., high school) known to WordNet are assigned
the appropriate WordNet synsets.



VerbNet (Kipper et al., 2000) is used to map from syntactic predicate-argument
structures to event structures with named roles, occasionally simplified by collaps-
ing certain role distinctions. These role and event structures have been heuristically
augmented to cover all of the verb-subcategorization frame pairs in the XLE syn-
tactic lexicon (e.g., the role assignments from verbs known to VerbNet can be used
to provide roles for other verbs in their WordNet synset with the same subcatego-
rization frames). This results in significant expansion of the coverage of VerbNet:
of the 42,000 verb entries in the UL, 25,000 are not directly from VerbNet. Ex-
amples of the VerbNet roles can be seen in the AKRs in examples such as (1).

2.2.2 Lexical Marking for Rule Triggering

In addition to these basic resources, the UL incorporates information about lexical
items that is needed to trigger mapping rules that affect the contextual facts, espe-
cially those involving relations between contexts (Nairn et al., 2006). These lexical
classes are shown in (7).

(7) Unified Lexicon: Lexical Marking for Rule Triggering
Lexical Class Number Example
factives 230 John discovered that Mary left.
implicatives 192 John managed to leave.
propositional attitude 762 John abhors that Mary left.
neutral 33 John sought a unicorn.4

temporal relation 721 John longs to leave.
temporal: forward shift 301 John authorized Mary to leave.
temporal: simultaneous 70 John attempted to leave.
sentential adverbs 13 Obviously John left.

For example, the factivity of the verb discover when used with a that complement is
marked. This marking indicates that discover’s Theme context argument is veridi-
cal with respect to its immediately higher context, enabling the lifting of instantia-
bility from the lower context to the higher one, as described in (1).

2.2.3 Lexical Marking for Normalization

Lexical resources are also used in the normalization of representations. Relevant
lexical classes are shown in (8). A canonical example of this type of normalization
is the mapping of eventive nominal expressions into equivalent verbal counterparts
(e.g., Rome’s destruction of Carthage is mapped to the same representation as Rome
destroyed Carthage.) (Gurevich et al., 2005). The UL contains related noun-verb

4This marking is meant for intensional predicates with respect to an argument position, distin-
guishing between seek and find, for instance. It results in having no instantiability assertion, capturing
an existential commitment, for the term corresponding to the relevant argument of the predicate (in
the case of seek the direct object). By default there is an instantiability assertion for every argument
of a predicate in the context of predication.



pairs which are used by the rules to map nouns and their associated phrases into their
verbal, eventive counterparts with appropriate arguments. These entries not only in-
clude the pairings (e.g. destruction-destroy, employer-employ) but also classifica-
tion information. Some of this information involves the mapping of arguments; for
example, agentive nominals like employer refer to the agent of the event, while -ee
nominals like employee refer to the patient. Other information involves the degree
of lexicalization; this determines whether the mapping to the eventive representa-
tion is obligatory or optional. These rules, in conjunction with the lexical class in-
formation, capture ambiguity in the language; for example, Rome’s destruction can
mean either that Rome is the patient of the destroying event or the agent.

(8) Unified Lexicon: Lexical Marking for Normalization
Lexical Class Number Example
deverbal nouns 5,484 Rome’s destruction of Carthage
become adjective 51 The child sickened.
become more adjective 121 John darkened the room.
pertainyms 289 Japanese children
conditional verb 29 John wasted the chance to leave.
ability nouns 11 John had the choice to leave.
asset nouns 15 John had the money to leave.
bravery nouns 16 John had the strength to leave.
chance nouns 19 John had the chance to leave.
effort nouns 13 John took the trouble to leave.
certainty adjectives 3 John is sure to leave.
consider verb 4 John considered the boy foolish.

The mapping of texts to AKR involves changes of representation to aid infer-
ence. Among these are the representation of linguistic paraphrases and idioms which
fall into classes that are lexicalized appropriately. For example, the “become ad-
jective” verbs like redden are rewritten to an AKR similar to that of become red.
Phrases such as take a turn for the worse are mapped to the representation for worsen.
An additional, related large class of items are light verbs such as take, where the
meaning of the verb phrase depends on an argument of the verb. Some examples of
light verb use include take a flight and use a hammer that can be transformed into
fly and hammer. Some verbs are marked as conditionally implicative because they
form implicative constructions with a particular class of nouns. For example, have
the foresight to X is semantically the same type as manage to X. As the best repre-
sentation for the output of these rules is still being explored, there are only a few
lexicalizations for each class currently implemented.

As mentioned above, many noun-noun compounds are known to WordNet and
hence are given the appropriate WordNet synset. However, many such compounds,
especially the less-lexicalized ones, are not in WordNet. The AKR mapping rules
define noun-noun relations based on the meaning of the head noun and the meaning
of its modifier, where the meanings are (upper level) WordNet synsets. For exam-



ple, a food solid modifying a type of tableware (e.g, meat plate) creates a for rela-
tion. These rules allow multiple mappings to reflect the multiple readings of many
noun-noun compounds (e.g., a wood box can mean either a box made of wood or a
box for holding wood).

Not all normalization is triggered by lexical classes that are encoded in the UL:
the structure of the representations is often sufficient to determine how to map them
into AKR. Our general approach is to capture the similar content of alternative lin-
guistic expressions by normalizing their AKR to a common representation. This
normalization occurs at many levels. For example, the syntax abstracts away from
word order and localizes dependencies (e.g. in John wants to leave., John is local-
ized as the subject of both want and leave), the semantics canonicalizes passives
to actives (The cake was eaten by John. becomes John ate the cake.)5 and nega-
tive quantifiers on subjects (No boy left. introduces a sentential negation similar to
not). Lexically-based inferences provide further information. One significant type
of such inferences is associated with verbs of change, such verbs of change of loca-
tion (e.g. from John left Athens. one concludes that John was in Athens before the
departure and was not there at least for a while afterwards). The information about
pre- and post-conditions of events described by verbs of change such as leave is
productively extracted from the VerbNet event structure into the UL and then used
by the mapping rules.

2.2.4 Lexical Marking for Expansion of Representation

Some mappings expand the representation instead of, or in addition to, normalizing
it. Most of these mappings expand just the passages and not the queries. Sample
lexical classes of this type are shown in (9).

(9) Unified Lexicon: Lexical Marking for Expansion of Representation
Lexical Class Number Example
lethal cause verbs 29 John strangled his victim.
symmetric nouns 2 John is Mary’s partner.

Such expansions are sometimes specific enough that they are done exclusively
in the rules and are not currently in the UL. For example, in a text, buy is inferred
from sell, with appropriate role substitutions, and vice versa. As a result, a query
about a buying event can match against a passage described in the text as a selling
event. These are done as relatively constrained lexical classes in order to correctly
map the arguments of one event to those of the other (e.g. win-lose maps its sur-
face arguments differently from buy-sell).6 Family relations such as husband-wife

5The choice to have the active-passive correspondence dealt with in the mapping component rather
than the UL reduces the size of the UL. The active-passive correspondence could, alternatively, be
encoded in the UL by matching every transitive verb entry with an entry for its passive counterpart,
thus substantially increasing the size of the UL.

6With appropriate, more complex lexical markings, such correspondences could be encoded in the
UL. Mapping rules would then be used to generate terms and role restrictions for the member of the
pair not explicit in the input sentence.



are also expanded in the passages to allow them to match with queries using the
converse relation.

A related aspect of our approach is to make information in the structure of cer-
tain phrases explicit. For example, date expressions (e.g., May 1, 2007) and loca-
tion expressions (e.g., Boise, Idaho) are decomposed into subfacts that allow basic
inferencing in conjunction with the rest of the representation. For example, mak-
ing explicit that Boise is in Idaho, not just part of the name of the place, makes it
possible to conclude from the fact that John lives in Boise, Idaho, that John lives in
Idaho.

As seen by the wide range of examples in this section, lexical resources are a
vital component of the Bridge system. The system incorporates existing resources,
such as VerbNet, as well as resources created especially for the system. Each set of
resources is used by the AKR mapping rules to create appropriate representations
of natural language texts. The efficacy of these resources and their implementation
is demonstrated by the ability of the system to use the resulting representations in
applications such as the Asker search and question answering system.

2.3 Ambiguity Management

A hallmark of our computational approach to syntax, semantics, and knowledge
mapping has been the ability to manage ambiguity by combining alternative in-
terpretations into a single packed structure that can be further processed without
the typically exponential cost of unpacking (Maxwell and Kaplan, 1991). For the
traditional example of John saw a girl with a telescope, the packed representation
compactly represents two interpretations: one where the seeing was done with a
telescope and the alternative where the girl was carrying a telescope. In the packed
representation, the common elements of both interpretations are represented only
once, and only the alternative connections need to be expressed. The packed AKR
representation is shown in (10). The alternate connections are shown in the lines
labeled A1 and A2.

(10) Choice Space:
xor(A1, A2) iff 1

Conceptual Structure:
subconcept(see:2, [see-1, , interpret-1])

A1: role(prep(with), see:2, telescope:9)
role(Stimulus, see:2, girl:6)
role(Experiencer, see:2, John:1)
subconcept(John:1, [male-2])
alias(John:1, [John])
role(cardinality restriction, John:1, sg)
subconcept(girl:6, [girl-1, , girl-5])

A2: role(prep(with), girl:6, telescope:9)



role(cardinality restriction, girl:6, sg)
subconcept(telescope:9, [telescope-1])
role(cardinality restriction, telescope:9, sg)

Contextual Structure:
context(t)
top context(t)
instantiable(John:1, t)
instantiable(girl:6, t)
instantiable(see:2, t)
instantiable(telescope:9, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:2)

The two distinct readings are labeled by A1 and A2, which are a disjoint partition
of the top level choice 1 (xor(A1, A2) iff 1). In reading A1, the seeing concept is
further restricted to be a seeing with a telescope, whereas in A2, the girl is restricted
to be a girl with a telescope.

The mapping from text to AKR via the syntactic and semantic representations
and the entailment and contradiction detection take advantage of the same ambigu-
ity management system, thereby gaining full efficiency by never unpacking.

Each level of representation provides possible sources of additional ambiguity.
Sometimes it is useful to choose a subset of the interpretations for efficiency reasons
or to interface with non-ambiguity-enabled modules and applications. Stochastic
models are used to order the interpretations by probability in the XLE system (Rie-
zler et al., 2002). In addition, rule-based optimality marks allow low probability in-
terpretations through only if there is no more optimal interpretation available (Frank
et al., 2001). This mechanism is used, for example, to apply VerbNet’s sortal restric-
tions on roles so that the subconcept associated with a verb’s arguments can be fur-
ther constrained, thereby increasing precision and decreasing ambiguity. The opti-
mality mechanism treats these sortal restrictions as soft constraints. If in an ambigu-
ous, packed representation one solution satisfies the sortal restrictions and one does
not, only the one that satisfies them appears in the final representation. However,
if all the solutions violate the sortal restrictions, the ones which violate the fewest
restrictions are used. The combination of efficient processing of packed ambiguous
structures with stochastic and rule-based methods for selecting among these repre-
sentations supports practical, robust analysis of natural language texts.

3 Entailment and Contradiction Detection (ECD)

So far we have described how the Bridge system produces AKR logical forms. These
are used for light reasoning, that we call entailment and contradiction detection. It
follows the form of the “textual inference” challenge problems that have been part
of the PASCAL initiative. The task of the challenge is: given two sentences, P (for
passage or premise) and Q (for query or question), determine whether P provides an



intuitive answer for Q as judged by a competent user of the language without any
special knowledge. Thus the goal is to decide whether Q follows from P plus some
background knowledge, according to the intuitions of an intelligent human reader.
This decision is supposed to be based simply on the language involved, factoring
out world knowledge, but this distinction is difficult to characterize precisely and
has become the topic of much current research.

We have developed a collection of algorithms for efficiently detecting entail-
ment and contradiction relations holding between AKRs for queries and AKRs for
candidate answer texts. We have taken a very strict approach, not including plausi-
ble inferences. Thus we deal only with a circumscribed set of textual inferences, but
ones that must be handled by any system aiming for the larger task. Our approach
is to expand the passage texts by using the linguistic inference patterns described
earlier. The system tests entailment and contradiction through a subsumption pro-
cess described below. Some special case reasoners support identification of named
objects, comparison of specificity of WordNet synsets, and compatibility of cardi-
nality restrictions. We call our strict form of textual inference “precision-focused
textual inference”; our approach and results are described in Bobrow et al. (2007).

As a simple example consider how we conclude from John saw a happy girl.
that A child was seen. The representations are shown in (11) and (12) respectively.

(11) John saw a happy girl.
Conceptual Structure:

subconcept(happy:12, [happy-1, felicitous-2, glad-2, happy-4])
subconcept(see:6, [see-1, understand-2, witness-2, , see-23])
role(Stimulus, see:6, girl:18)
role(Experiencer, see:6, John:1)
subconcept(John:1, [male-2])
alias(John:1, [John])
role(cardinality restriction, John:1, sg)
subconcept(girl:18, [girl-1, female child-1, girl-5])
role(cardinality restriction, girl:18, sg)
role(subsective, girl:18, happy:12)

Contextual Structure:
context(t)
top context(t)
instantiable(John:1, t)
instantiable(girl:18, t)
instantiable(see:6, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:6)

(12) A child was seen.
Conceptual Structure:

subconcept(see:13, [see-1, understand-2, witness-2, see-23])



role(Stimulus, see:13, child:3)
subconcept(child:3, [child-1, child-2, child-4])
role(cardinality restriction, child:3, sg)

Contextual Structure:
context(t)
top context(t)
instantiable(see:13, t)
instantiable(child:3, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:13)

ECD works on texts that have been analyzed into AKRs. Passage AKRs are ex-
panded to encode linguistically based inferences (none in (11)). The AKR for con-
cept and context denoting terms are aligned across the passage and question repre-
sentations, and rules defining a calculus of entailment and contradiction are applied.

Before determining specificity relations between terms in the premise and con-
clusion AKRs, it is necessary to align these terms: alignments are not always obvi-
ous. They are computed by a heuristic algorithm that considers all plausible align-
ments where there is sufficient conceptual overlap between terms. This may result
in multiple possible alignments with different likelihood scores. Term alignments
with wh-terms (who, what, where, etc.) provide the answers to wh-questions when
an entailment is detected. In the above example, the two seeing events are aligned,
as are the skolems for girl:18 and child:3.

We check each possible term alignment to see if there is an entailment or contra-
diction between the premise and conclusion representations. The technique detects
an entailment or contradiction if any interpretation of a premise entails or contra-
dicts any interpretation of the conclusion.

The detection mechanism is implemented using XLE’s packed rewrite system.
The core idea behind using the rewrite system is that if the premise representation
entails part of the conclusion representation, then that part of the conclusion can be
deleted (i.e. rewritten to nil). A conclusion is entailed if all of its component parts
have been removed. Hence, if there is a choice in which all of the conclusion rep-
resentation has been removed, then there is some interpretation of the premise and
the conclusion under which the premise entails the conclusion. Contradictions are
detected via rules that add a contradiction flag whenever there is a choice of premise
and conclusion interpretations such that parts of the representations conflict.

As a preliminary to deleting entailed conclusion facts or flagging contradictions,
rules are first applied to make explicit the subsumption and specificity relations hold-
ing between concept terms in the premise and conclusion.

The next set of rules explores the consequences of these specificity relations on
instantiability claims. For an upward monotone environment, instantiability of a
specific concept entails instantiability of a more general concept and uninstantia-
bility of a general concept entails uninstantiability of a more specific concept. For
downward monotone environments, the relations are reversed. This captures the



pattern that if A little girl hopped. then we know that A girl hopped., since little
girl is more specific than girl. From Girls hopped. we cannot infer that Little girls
hopped., as it is possible that all the hopping girls are big girls, but from All girls
hopped. we can infer that All little girls hopped., as the quantifier creates a speci-
ficity reversing situation.

To return to our example, it is determined from WordNet that a girl is a kind
of child. A happy girl (girl with the role subsective happy) is yet more specific.
Hence the seeing event in the passage is more specific than that in the hypothesis
and hence instantiable(see:6, t) entails instantiable(see:13, t). Instantiability
statements in t are existence statements, and the existence of an instance of a more
specific concept implies the existence of its generalizations (if there is a happy girl,
there is a girl, which means there is a child, and similarly for see).

The ECD algorithm separates the task of structure alignment from the task of
detecting logical relations between the representations. This separation makes the
method more robust than many graph alignment and matching approaches (Braz
et al., 2006) and is applicable to packed representations without full graph match-
ing. This implements a verifiable calculus of entailment and contradiction, which
in theory corresponds (closely) to Natural Logic entailment (van Benthem, 1986;
MacCartney and Manning, 2007). The differences reside in the introductions of
contexts and of packed representations. We believe that the ECD algorithm com-
bines the best of the inference-based and graph-matching approaches. Term align-
ment is robust to variations in the input structures and the absence of precisely for-
mulated axioms. The entailment calculus rules can be sensitive to non-local aspects
of structure and thus deal with more global constraints on entailment or contradic-
tion. In addition, since the approach is ambiguity-enabled, the system can detect
whether any one of the possible interpretations of the putative answer answers any
one of the possible interpretations of the question.

Given this ability to determine entailment and contradiction between a passage
and a query, the Asker system builds up a semantic index of AKRs for passages and
then at run-time produces AKRs for queries. These query AKRs are used to retrieve
possible answer passages and then ECD can be applied to provide answers to the
original query. This process is described in the next section.

4 Indexing and Retrieval

Asker is a search and question answering system. In order to retrieve relevant pas-
sages and documents from a large corpus, a specialized search index is constructed
that encodes the information from the AKR for each sentence. Typical keyword
search indices map words (or their stems) to their document occurrences, along with
word offset information and other metadata. The Asker semantic index contains this
information, but also maps each word’s synonyms and hypernyms to the passages
containing them, along with their semantic roles and relations. The index scales
to retrieve semantically related passages from very large corpora (millions of docu-



ments from a single server) in a second or less. The results correspond to the seman-
tic structure of the query, enabling much higher precision than free text searches.
The results of the semantic search can be evaluated by the ECD algorithms to test
for entailment or contradiction and hence answer the query.

4.1 Indexing

Each document in the corpus is broken into sentences, and the AKR for each sen-
tence is fed into the indexer (see Fig. 3). The lexical identifiers (literal strings or
identifiers from linguistic resources) for each word in the AKR are combined with
information about their semantic function in the passage to create a set of index
term strings. These strings are then associated with occurrence information, which
records the relationship of the identifier to the actual word (i.e., alias, synonym, or
hypernym and the number of levels in the ontology from the word to the hypernym),
along with the document, sentence, and predication containing the word, indicators
for montonicity, byte positions of the words in the sentence, and other information.

For example, the AKR for the sentence Ramazi knows Legrande. contains the
semantic roles Agent and Theme, describing the knowing relation between Ra-
mazi and Legrande. These semantic relations are encoded into index terms by com-
bining the term with the role and its position in the relation, e.g. know:Agent:1,
Ramazi:Agent:2 and know:Theme:1 and Legrande:Theme:2. These index terms
are associated in the search index with the information about how they occur in the
passage.

By looking up know:Agent:1, the system will find all occurrences of any agent
knowing anything, and Ramazi:Agent:2 will retrieve occurrences where Ramazi
is the agent of some event. By taking the intersection of these occurrence lists, the
system finds passages where Ramazi knows something. Likewise, the system finds
the intersection of occurrences where the Theme involves knowing Legrande. The
occurrence information specifies the predication containing these relations, so the
system can find those passages containing references to Ramazi knowing Legrande.

The actual index terms are generated using WordNet concept IDs and alias in-
formation, rather than the string. So in this example the term know is associated
with a number of WordNet IDs (synonyms and hypernyms of the term), and each of
these IDs is stored separately in the index. Thus, rather than know:Agent:1, the ac-
tual terms stored would be 587430:Agent:1, 588355:Agent:1, 588050:Agent:1,
etc. The passages associated with these index terms will be retrieved for any term
in a query mapping to the same Wordnet concept.

Finally, this information is inverted to enable efficient lookup of occurrences by
index term. The index format is designed to store all of this information for each
index term in a highly compressed encoding and to permit lookup with little or no
degradation of performance as the corpus grows. The occurrence lists (known as
postings) are arranged to take advantage of regularities in the occurrence data, using
variable-length integers and delta-encoding for compression (as well as bitvectors
for the most frequently occurring terms) and the data is localized using skip-lists



to enable efficient disk reads. Each sentence is associated with its containing doc-
ument, and an arbitrary amount of metadata can be stored for each document.

4.2 Retrieval

At query time (see Fig. 1), the semantic search module receives an AKR for the
natural language query. A set of index terms is generated from the query AKR in
the same manner used for indexing of passage AKRs, only with simplification of the
facts instead of augmentation. The postings for the index terms are retrieved, and
the data is processed to find documents containing the appropriately tagged terms
occurring in predications that correspond to those in query.

The system attempts to match each semantic fact in the query with each result
passage, checking to see that the terms align in corresponding predications. For
example, for a query like Does Ramazi know Legrande?, the results would include
the passage Legrand is known by Ramazi., but it would not include Ramazi knows
Hassan, Hussein knows Legrande, but no one knows the cell leader., where both
Ramazi and Legrande play roles in a knowing relationship, but not to each other.

This strategy results in high-precision retrieval. As a back-off strategy, the sys-
tem uses extended key word and key word search techniques. Extended key word
search takes advantage of the stemming of word forms and the mapping into Word-
Net concepts and, for proper nouns, alias facts in order to increase recall of standard
key word search. The results of these key word searches are presented separately
from the full retrieval results and are not input to ECD.

The retrieval process does not test for strict entailment and contradiction, how-
ever. For example, a query of Did Cheney go to Baghdad? Might return the passage
Cheney was believed to have gone to Baghdad., even though it is not entailed by the
query. To check for entailment and contradiction, the results of indexed search can
be filtered through the ECD component (section 3) to eliminate false positives for
answering the question.

5 Discussion and Conclusions

The Bridge system is a complexly engineered combination of linguistic formalisms
based on theoretical criteria. It provides the basis for applications, including entail-
ment and contradiction detection (ECD) and semantic retrieval (Asker). Because
the system is under development by a significant number of people working in par-
allel, it requires a support environment to ensure that changes improve the system
in the intended directions, without losing efficiency or accuracy. Some tools sup-
porting this system development are described in Chatzichrisafis et al. (2007).

The architecture provides a layered set of transformations of English text to an
abstract knowledge representation. The LFG-based syntactic parsing system pro-
duces a dependency structure. The semantics module produces a flattened repre-
sentation that normalizes these functional dependency structures. It maps grammat-



ical functions into semantic roles and further normalizes the syntactic dependencies,
e.g., transforming deverbal nouns and adjectives into their underlying verbal form.
Criteria for the syntactic and semantic representations include capturing linguistic
generalizations and parallelisms cross-linguistically (Butt et al., 1999, 2002).

The mapping rules for knowledge representation produce descriptions of the
concepts under discussion, and a contextual structure that captures the nested struc-
ture of contexts. They also specify for each concept whether it is instantiable in the
relevant contexts or not. Passage expansion rules add linguistically supported in-
ferences to the representation, to make the import of the sentence explicit in the rep-
resentation. The criteria for the AKR include natural representation of the distinct
meanings of a text, the ability to be transformed into an (extended) first order form
for use by other logical reasoners, and support for applications, especially Asker.

The architecture is supported by a collection of linguistic resources, some of
which were developed specifically for this system. The broad-coverage English
grammar, morphology, and lexicon were developed over many years for a range of
applications. The semantics module uses WordNet for its linguistic taxonomic on-
tology and VerbNet as a resource for transforming grammatical roles into semantic
roles. These resources have been extended using syntactic resources from the XLE
grammar to produce a Unified Lexicon (UL). In addition, the UL includes lexical
markings needed to support normalization, paraphrase, lexical inference, and struc-
tural inference. Classes of words that support specific extensions to the initial AKR
are lexicalized in the UL. For example, we have identified and categorized over 300
verbs that support pre-suppositional and implicative inference.

Our question answering architecture exploits the AKR representation of sen-
tences. The use of AKR structural components as index terms has significantly im-
proved precision of retrieval from our semantically indexed repository. ECD can
be used as a mechanism to answer questions, not just retrieve relevant passages.

References

Bobrow, Daniel G., Condoravdi, Cleo, Crouch, Richard, Kaplan, Ron, Karttunen,
Lauri, King, Tracy Holloway, de Paiva, Valeria and Zaenen, Annie. 2005. A Ba-
sic Logic for Textual Inference. In Proceedings of the AAAI Workshop on Infer-
ence for Textual Question Answering.

Bobrow, Daniel G., Condoravdi, Cleo, de Paiva, Valeria, Karttunen, Lauri, King,
Tracy Holloway, Nairn, Rowan, Price, Charlotte and Zaenen, Annie. 2007.
Precision-focused Textual Inference. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing.

Braz, Rodrigo, Girju, Roxana, Punyakanok, Vasin, Roth, Dan and Sammons,
Mark. 2006. An Inference Model for Semantic Entailment in Natural Language.
Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Ob-



ject Classification and Recognizing Textual Entailment, First PASCAL Machine
Learning Challenges Workshop pages 261–286.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The Parallel Grammar Project. In Proceedings of COLING-2002
Workshop on Grammar Engineering and Evaluation, pages 1–7.

Butt, Miriam, King, Tracy Holloway, Niño, Marı́a-Eugenia and Segond,
Frédérique. 1999. A Grammar Writer’s Cookbook. CSLI Publications.

Chatzichrisafis, Nikos, Crouch, Dick, King, Tracy Holloway, Nairn, Rowan,
Rayner, Manny and Santaholma, Marianne. 2007. Regression Testing For
Grammar-Based Systems. In Tracy Holloway King and Emily M. Bender (eds.),
Proceedings of the GEAF 2007 Workshop, CSLI Publications.

Condoravdi, Cleo, Crouch, Dick, Stolle, Rienhard, de Paiva, Valeria and Bobrow,
Daniel G. 2003. Entailment, Intensionality and Text Understanding. In Proceed-
ings Human Language Technology Conference, Workshop on Text Meaning.

Condoravdi, Cleo, Crouch, Richard, van der Berg, Martin, Everett, John O., Stolle,
Reinhard, de Paiva, Valeria and Bobrow, Daniel G. 2001. Preventing Existence.
In Proceedings of the Conference on Formal Ontologies in Information Systems.

Crouch, Dick, Condoravdi, Cleo, Stolle, Reinhard, King, Tracy Holloway,
de Paiva, Valeria, Everett, John O. and Bobrow, Daniel G. 2002. Scalability of
redundancy detection in focused document collections. In Proceedings First In-
ternational Workshop on Scalable Natural Language Understanding.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway,
Maxwell, John and Newman, Paula. 2007. XLE Documentation,
www2.parc.com/isl/groups/nltt/xle/doc/.

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via F-Structure Rewrit-
ing. In Proceedings of LFG06, pages 145–165, CSLI On-line publications.

Crouch, Richard. 2005. Packed Rewriting for Mapping Semantics to KR. In Pro-
ceedings Sixth International Workshop on Computational Semantics.

Crouch, Richard and King, Tracy Holloway. 2005. Unifying Lexical Resources. In
Proceedings of the Interdisciplinary Workshop on the Identification and Repre-
sentation of Verb Features and Verb Classes.

de Paiva, Valeria, Bobrow, Daniel G., Condoravdi, Cleo, Crouch, Richard, Kaplan,
Ron, Karttunen, Lauri, King, Tracy Holloway, Nairn, Rowan and Zaenen, An-
nie. 2007. Textual inference logic: Take two. In Proceedings of the Workshop on
Contexts and Ontologies: Representation and Reasoning, Workshop associated
with the 6th International Conference on Modeling and Using Context.



Everett, John O., Bobrow, Daniel G., Stolle, Reinhard, Crouch, Dick, Condoravdi,
Cleo, de Paiva, Valeria, van den Berg, Martin and Polanyi, Livia. 2002. Making
ontologies work for resolving redundancies across documents. In Communica-
tions of the ACM, volume 45, pages 55–60.

Fellbaum, Christiane (ed.). 1998. WordNet: An Electronic Lexical Database. The
MIT Press.

Frank, Anette, King, Tracy Holloway, Kuhn, Jonas and Maxwell, John T. 2001.
Optimality Theory Style Constraint Ranking in Large-scale LFG Grammars. In
Peter Sells (ed.), Formal and Empirical Issues in Optimality Theoretic Syntax,
pages 367–397, CSLI Publications.

Gurevich, Olga, Crouch, Richard, King, Tracy Holloway and de Paiva, Valeria.
2005. Deverbals in Knowledge Representation. In Proceedings of FLAIRS’06.

Kipper, Karin, Dang, Hoa Trang and Palmer, Martha. 2000. Class-based Construc-
tion of a Verb Lexicon. In AAAI-2000 17th National Conference on Artificial In-
telligence.

MacCartney, Bill and Manning, Christopher D. 2007. Natural Logic for Textual In-
ference. In Proceedings of the ACL 2007 Workshop on Textual Entailment and
Paraphrasing.

Maxwell, John and Kaplan, Ron. 1991. A Method for Disjunctive Constraint Satis-
faction. In Masaru Tomita (ed.), Current Issues in Parsing Technologies, pages
173–190, Kluwer.

Maxwell, John and Kaplan, Ron. 1996. An Efficient Parser for LFG. In Proceedings
of the First LFG Conference, CSLI Publications.

McCarthy, John. 1993. Notes on Formalizing Context. In Proceedings of the 13th
Joint Conference on Artificial Intelligence (IJCAI-93), pages 555–560.

Nairn, Rowan, Condoravdi, Cleo and Karttunen, Lauri. 2006. Computing Relative
Polarity for Textual Inference. In Proceedings of ICoS-5 (Inference in Computa-
tional Semantics).

Riezler, Stefan, King, Tracy Holloway, Kaplan, Ronald M., Crouch, Richard,
Maxwell, John T. and Johnson, Mark. 2002. Parsing the Wall Street Journal us-
ing a Lexical-Functional Grammar and discriminative estimation techniques. In
Proceedings of ACL02.

van Benthem, Johan. 1986. Essays in Logical Semantics. Reidel.


