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Abstract

Deep grammars that include tokenization, morphology, syntax, and se-
mantic layers have obtained broad coverage in conjunction with high effi-
ciency. This allows them to play a crucial role in applications. However,
these grammars are often developed as a general purpose grammar, expect-
ing “standard” input, and have to be specialized for the application domain.
This paper discusses some engineering tools that are used in the XLE gram-
mar development platform to allow for domain specialization. It provides ex-
amples of techniques used to allow specialization via overlay grammars at the
level of tokenization, morphology, syntax, the lexicon, and semantics. As an
example, the paper focuses on the use of the broad coverage, general purpose
ParGram English grammar and semantics in the context of an Intelligent Doc-
ument Security Solutions (IDSS) system. Within this system, the grammar is
used to automatically identify sensitive entities and relations among entities,
which can then be redacted to protect the content.

1 Introduction

Deep grammars that include tokenization, morphology, syntax, and semantic lay-
ers have obtained broad coverage in conjunction with high efficiency (e.g., Kaplan
et al., 2004b). This allows them to play a crucial role in applications. Sometimes
grammars are developed exclusively for a given application in a given domain. How-
ever, a grammar is often developed as a general purpose grammar, expecting “stan-
dard” input, and has to be specialized for the application domain. This is done, for
example, in MedSLT which is a speech translation system built on top of the Reg-
ulus platform (Rayner et al., 2006; Chatzichrisafis et al., 2006).

This paper discusses engineering tools that are used in the XLE grammar devel-
opment platform (Maxwell and Kaplan, 1996; Crouch et al., 2007) to allow for the
domain specialization necessary for applications. Some of the techniques used are
similar to those developed for building parallel cross-linguistic grammars (Bender
et al., 2002; Butt et al., 2002) but many of them are more fine-grained and involve
components that are unlikely to be shared across languages. The focus of this pa-
per is not on how to determine which components to specialize, but instead on what
tools have proven useful in allowing the specializations required by the grammar
engineers. As an example, the paper focuses on the use of the broad coverage, gen-
eral purpose ParGram English grammar and semantics in the context of an Intelli-
gent Document Security Solutions (IDSS) system. Within this system, the gram-
mar is used to automatically identify sensitive entities and relations among entities,
which can then be redacted via mechanisms such as encryption in order to protect
the content.

The IDSS portions of this work were supported in part by Xerox Corporation. We thank the au-
dience of GEAF2007 for comments on the presented version of this paper, and Eric Bier and Jessica
Staddon for input on the IDSS application description.



1.1 The IDSS Application

The IDSS application takes document collections, helps a knowledge worker find
sensitive entities and relations among entities, and then provides the user to choose
mechanisms to protect these entities, including encrypting them so that these sensi-
tive items are only available to those with appropriate keys. The application can be
used, for example, to redact documents with sensitive material in them. The doc-
uments can simply be printed or produced as a pdf file with the redacted material
“black boxed”. However, the availability of fine-grained encryption in conjunction
with detailed entity and relation analysis allows for documents to be created where
each entity type is tied to a particular encryption key. Different end users will have
different keys and hence be able to view different parts of the same redacted docu-
ment. For example, with mortgage documents, some users could see phone number,
name, and address information, while others might have access to social security
numbers and financial information.

A deep grammar is used to provide an initial list of entities and of relations
among entities that the knowledge worker might be interested in. This component
is discussed in detail in this paper. There are two other major system components.
One is a user interface called Entity Workspace (Bier et al., 2006) which is used to
manipulate the document collection and the entities and relations, including adding
sensitive entities and relations that were missed by the initial automatic extraction.
This component also allows the specification of how much to redact: entities can be
redacted at the entity level, the sentence level (any sentence with a sensitive entity is
redacted), or the paragraph level (and paragraph with a sensitive entity is redacted).

The second major component is the encryption system that is used to redact en-
tities and relations. This system not only provides the encryption of the sensitive
entities, but also allows for fine-grained specification of who can decrypt which sec-
tions of the document. This ability to do selective encryption/decription is impor-
tant in an increasingly electronic workplace where documents are passed from user
to user without being printed and where different users of the same document may
have much different information needs and rights.

To return to the automatic extraction of entities and relations, as an example, a
sentence like (1a) or (1b) would yield the list of facts in (2a) or (2b). These facts
are identical except for some byte position information and the word facts for work
and employ. Each fact is designated as being an entity, a relation between entities,
or a content word. Entities and relations are typed (e.g. person, location, works-
for). Entities can occur with lists of alternative realizations or aliases (e.g. [Robin,
Abramov, Robin Abramov] in (2a)). Content words can occur with a list of syn-
onyms (e.g. [hire, use] in (2b)). Facts are associated with sentence numbers within
the document and with byte position of the entity within the sentence.

(1) a. Robin Abramov works for International Business Machines.

b. Robin Abramov is employed by International Business Machines.



(2) a. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin,
Abramov, Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(25), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(25),

[company])
WORD(work, sent num(1), byte position(15), [work, influence, make,
cultivate, shape, bring, function, knead, exploit, solve, ferment, sour,

exercise])
sentence num(1)

b. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin, Abramov,
Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(27), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(27),

[company])
WORD(employ, sent num(1), byte position(15), [hire, use])
sentence num(1)

The details of these representations and how they are produced in the IDSS appli-
cation are discussed in more detail later in the paper.

1.2 The IDSS Natural Language Component

The general XLE parsing pipeline used in the IDSS system is shown in (3).1

1There is a Makefile which produces a run-time version of the entire pipeline. This depends on
XLE’s release-grammar mechanisms that allow a single-directory version to be created and frozen for
export into the run-time application. In addition to putting the grammar files in a single directory, the
release version can include version number information and encrypts the lexicon files (the grammar
files themselves are not encrypted).



(3) XLE Grammar Processing
input text

text breaker (FST)
sentences

tokenizer (FST)
tokens

morphologies (FST)
stems + morphological tags

syntax (LFG)
constituent-structure (tree)
functional-structure (dependencies)

semantics (ORDERED REWRITING)
IDSS: entities/relations

This paper focusses on how application-specific extensions were made to the core
pipeline, which is used in several different applications and research projects.

Extensions to the finite-state morphologies were needed to allow for additional
entities, to the lexicon for Arabic and Russian names, and to the grammar for un-
usual punctuation and lists. The semantics was extended to pick up the additional
entities, to find entities and entity relations, and to delete all other semantic facts.
In all cases, we want to ensure that upgrades to the base system can be included in
the IDSS application without losing any of the application-specific specialization.
We achieve this by allowing for overlay systems at each level. The tools for these
overlays, along with examples of how they are applied, are described in this paper.

2 Tokenizers and Morphologies

In the XLE grammars, there is a configuration file for the text breaker, tokenizers,
and morphologies. The file specifies which text breaker, tokenizer, and morphology
are used by the grammar. When there is more than one tokenizer or morphology, the
configuration file specifies how they are combined, e.g., the morphology for recog-
nizing phone numbers may take precendence over the general English morphology
which in turn takes precedence over the guesser. The morphology configuration file,
called the morphconfig, is called by the syntactic grammar. The XLE ParGram En-
glish grammar uses finite-state (FST) text breakers, tokenizers, and morphologies
(Kaplan et al., 2004a; Beesley and Karttunen, 2003); these are described in this sec-
tion.

The input string is first run through the text breaker. The text breaker determin-
istically breaks the text into sentences. It is a high-precision text breaker: if it is un-
sure whether something represents a sentence boundary, it will put in a mark (+SB)
instead of forcing a sentence break. This way the grammar can be used to provide
further information in complex cases. Such cases can occur, for example, when the
string Dr. appears followed by a form that could be either a common or a proper
noun (e.g. Dr. Bush); in such cases the text breaker cannot determine whether the



Dr. is a sentence final abbreviation for Drive or a sentence internal abbreviation for
the title Doctor. If this uncertainty is marked and passed through to the syntax, syn-
tactic knowledge can be used to determine whether there should be one sentence or
two.

After textbreaking, the tokenizer non-deterministically breaks the string into to-
kens.2 The tokenized string is run through an industrial morphology produced by
Inxight which in the parsing direction converts inflected forms into lemmas and a
set of morphological tags (4a). This morphology covers many proper names, (4b,
c), as well as the inflected forms of common nouns, verbs, adjectives, etc.

(4) a. hunts hunt +Noun +Pl hunt +Verb +3sg

b. Robin Robin +Prop +Giv +Fem +Sg Robin +Prop +Giv +Masc +Sg

c. Detroit Detroit +Prop +Place +City

In addition, the tokens are run through a set of specialized FSTs to recognise
times and dates (5a) and to convert spelled out numbers into digits (5b).

(5) a. April 23rd month(4) day(23)

b. twenty-four 24

Items unrecognized by the morphology or one of the specialized FSTs are run
through a guesser that uses clues such as capitalization or string ending (e.g. ing, s)
to posit part of speech and other morphological tags. The guesser is currently quite
simplistic. An example is shown in (6).

(6) fooing foo +Noun +VProg +Sg +Guessed
+Verb +Prog +Guessed
+Adj +VProg +Guessed

Applications often require special entity recognizers to either supplement or
override the morphology. The morphconfig file allows additional FST machines
to be called either in an override (USEFIRST) or a supplemental (USEALL) capac-
ity. The override is used when only the analyses in that FST are to be used. For
example, the FST that recognizes phone numbers could override any analyses that
would recognize the same string as a range of numbers. The supplemental version
is used to add in additional analyses. For example, the FST that recognizes years as
dates (e.g., They left in 2000.) is used in a supplemental capacity in order to allow
the analysis of these digits as regular numbers (e.g., They bought 2000 boxes.).

2The IDSS application did not involve extensions to the tokenizer since the texts parsed followed
standard written English punctuation conventions. Other overlays, such as the header/title grammar
for parsing technical manuals and web pages, where much of the input has initial upper case or all
upper case letters, do use different tokenizer versions.



For IDSS, an FST was added to recognize phone numbers, addresses, and so-
cial security numbers. These are provided with unique tags (i.e., +PhoneNumber,
+Address, +SSNumber); the syntax and semantics were then extended to recognize
these tags and form nouns based on the forms with the tags. An example of the
output of the stages of the system for a phone number are shown in (7). The +Pho-
neNumber tag provides the NE-TYPE phone feature in the syntax which in turn pro-
vides the ENTITY( , phone, ) feature in the semantics. These all key off of the
specialized output of the IDSS FST.

(7) a. Input: They called 123-4567.

b. Tokenizer/morphology: 123-4567 +PhoneNumber +Sg +PreferMorph

c. Syntax:

PRED 123-4567

NTYPE NSYN common

NE-TYPE phone

NUM sg

PERS 3

d. Semantics:
ENTITY(123-4567, phone, sent num(1), byte position(13))
WORD(123-4567, sent num(1), byte position(13), [entity])

The IDSS entity FST was given priority over other FSTs so that only the special
named entity analyses would surface. An additional guesser was created to hypoth-
esize certain common person names for nationalities that the standard morphology
did not have lists for, namely Arabic and Russian last names; as will be seen in the
next section, the grammar was also supplemented with lexicons for the more com-
mon of these names. The lexical entries for names provide additional information
such as gender and are given higher confidence ratings relative to purely guessed
names.

Since the morphology configuration calls both the FSTs for the base grammar
and those for the IDSS grammar, any improvements to the base grammar FSTs (e.g.,
a new time-date FST) can be incorporated into the system by a version update to
those files. The morphology configuration allows relative path names so that the
FSTs do not need to be copied into the IDSS grammar directory but instead can
automatically reference the current version of the base grammar FSTs.

Although not used in the IDSS overlay, XLE also has a command that allows
tokenizers to be pushed onto the front of the transducer stack (or popped off of it).
That is, the grammar is loaded with the tokenizers specified in the grammar mor-
phconfig, but then an additional tokenizer is run before the ones in the grammar.



This can be used, for example, to have a FST that does spelling correction or named
entity markup apply before the regular grammar.3

3 Syntax

The output of the tokenizers and morphologies serves as input to the syntax, form-
ing the leaves of a syntactic tree structure. The output of the syntax is a pairing of
trees (referred to as c(onstituent)-structures) and dependencies in an attribute value
matrix (referred to as f(unctional)-structures). The structures for the sentence in
(8a) are shown in (8b,c). The c-structure and f-structure categories are relatively
detailed in comparison to most theoretical LFG descriptions (Dalrymple, 2001).
XLE’s computational approach to syntax and semantics manages ambiguity by com-
bining alternative interpretations into a single packed structure that can be further
processed without the typically exponential cost of unpacking (e.g., Robin as a man’s
name and as a woman’s). The XLE syntax and semantics use the same packing
mechanism (Maxwell and Kaplan, 1991; Crouch, 2005b).4

3If there is only one grammar being used by the system, then modifying the tokenizer FST via an
overlay morphology configuration can be done. However, if multiple versions of the grammar are
being run (e.g., one for headers and one for regular text), then using the pop/push facility can save
space compared to having two grammars loaded.

4There are, in fact, two c-structures for (8a) which differ at the sublexical level due to the two
analyses for Robin related to the two morphological analyses shown in (4b). Since the display in
(8c) does not show the sublexical structure, the difference between the trees is not visible. The two
different sublexical trees are shown in (i).

(i) a.

CS 1: NAME

NAME_BASE

Robin

PROP_SFX_BASE

+Prop

NAMETYPE_SFX_BASE

+Giv

GEND_SFX_BASE

+Masc

NNUM_SFX_BASE

+Sg

b.

CS 2: NAME

NAME_BASE

Robin

PROP_SFX_BASE

+Prop

NAMETYPE_SFX_BASE

+Giv

GEND_SFX_BASE

+Fem

NNUM_SFX_BASE

+Sg



(8) a. Robin Abramov is employed by International Business Machines.

b.

c.

CS 1: ROOT

Sadj[fin]

S[fin]

NP

NPadj

NPzero

N

Robin

N

Abramov

VPall[fin]

VP[pass,fin]

AUX[pass,fin]

is

VPv[pass]

V[pass]

employed

PPcase

P

by

NP

NPadj

NPzero

N

International Business Machines

PERIOD

.

The syntax comprises a configuration file, lexicons, and LFG annotated phrase



structure rules. The lexicons and phrase structure rules can call grammar-defined
templates. The configuration file, in conjunction with complex lexicon edit entries
(Kaplan and Newman, 1997), is what allows for overlay grammars (Kaplan et al.,
2002). The configuration file states which lexicon, rule, template, and system pa-
rameter files are used by the grammar. It also states the priority order of these so
that application-specific changes take precedence over the more general rules. In
addition, a configuration file can state that it is identical to another configuration file
except for any stated changes. Such inheritances can be deeply nested, although in
practice for this application they only go three levels deep with the standard English
grammar as the ultimate base, as is described below for IDSS.

The IDSS syntax overlay is relatively simple; more complex overlays are re-
quired for applications used with “non-standard” English, including unedited En-
glish or the English used in emails. The IDSS English calls the Aquaint grammar
(Bobrow et al., 2005, 2007) which the semantics generally assumes as its input; the
Aquaint grammar in turn calls the standard English grammar configuration as its
base.5 In addition, the IDSS grammar calls:

two lexicon files (one for 1900 Arabic names and one for 2300 Russian
names)

the morphology configuration as described in the previous section

a rule file with two sublexical rules for the phone and address entities and a
modified version of the sentence final punctuation rule

The configuration file also calls a system parameter file which uses OT mark rank-
ings to effectively remove some unused rules in the standard grammar for efficiency
and coverage reasons (e.g., topicalization, initial vocatives) and to set time, mem-
ory, and processing limitations for the IDSS system.6 The IDSS configuration file
is shown in (9).

(9) AQUAINT ENGLISH CONFIG (1.0)

BASECONFIGFILE ../english-aquaint.lfg
PERFORMANCEVARSFILE

+idss-performance-vars.txt.
MORPHOLOGY (IDSS ENGLISH).
RULES (STANDARD ENGLISH)

(AQUAINT ENGLISH)
(IDSS ENGLISH).

5Over time, more general solutions are integrated into the standard grammar. Currently, the main
overlay in the Aquaint grammar is for certain types of coreference markup used in anaphora resolu-
tion.

6These could be defined via XLE commands when the system is loaded. However, by including
them in the grammar, it is easier to ensure that they are always loaded and always set to the same
values. These values can be overridden on the XLE command line to allow for experimentation.



FILES +eng-lex-arabic-names.lfg
+eng-lex-russian-names.lfg
+english-idss-morphconfig.lfg
+english-idss-rules.lfg

3.1 Overlay Rules

The relative simplicity of the IDSS overlay grammar is due both to the design of
the configuration file which allows inheritance and fine-grained modification and
to the design of the syntax rules which are divided into subrules to allow for sub-
stitution in overlay grammars. The sublexical rules, e.g., the rules used to compose
verbs and nouns from combinations of stems and morphological tags (Kaplan et al.,
2004a), and the root level rules are particularly finely divided because most appli-
cations have required some overlay to these rules. For example, corpora for differ-
ent applications differ widely as to the type of punctuation allowed sentence finally.
As such, there is a rule ROOT-DECL-PUNCT which states the punction options for
matrix (root) declarative clauses. In the IDSS grammar, this is redefined to allow
colons and, dispreferedly, nothing (as represented in (10) by e), in addition to the
usual period and exclamation point.

(10) ROOT-DECL-PUNCT –
PERIOD
EXCL-POINT
COLON
e: @(OT-MARK NoFinalPunct)

.

This situation highlights the fact that having the proper system tools for overlay
grammars is not enough: the grammar developer must design the grammar itself in
anticipation of its modification for applications. Fortunately, any changes in modu-
larity to the base grammar benefit all overlay grammars and future applications, and
often such changes, such as increased subdivision of rules, are simple to implement.
At this point, such subdivisions rarely have to be made; when the standard grammar
was first used with overlays, approximately twenty rules were refactored.

3.2 Lexicons

The IDSS grammar calls two lexicon files (one for 1900 Arabic names and one
for 2300 Russian names). These provide information that the forms are person
names and indicate whether they are family or given names. When the given name
is known as a woman’s or a man’s name, this information is also included (cf. the
discussion of the morphology associated with the English name Robin in (4)).

Overlay lexicons can be more complicated. New entries can be added for any
part of speech. In addition, entries that exist in the standard grammar can be: (1)



removed, (2) replaced, or (3) altered. This is controlled not just at the level of the
stem but also the part of speech and even the possible entries associated with each of
these. For example, if the standard grammar had the entry for push as in (11a), the
overlay grammar could have an enty as in (11b) which would produce the effective
entry as in (11c) where the two entries have been merged.

(11) a. push V XLE @(V-SUBJ-OBJ push); ETC.

b. push +V XLE @(V-SUBJ push); ETC.

c. push V XLE @(V-SUBJ-OBJ push) @(V-SUBJ push) ; ETC.

The mechanism for lexical edit entries is introduced in Kaplan and Newman (1997)
and the current state is described in the XLE documentation (Crouch et al., 2007).

3.3 Performance Variables

The IDSS grammar configuration also calls a system parameter file which effec-
tively removes some unused rules in the standard grammar for efficiency and cover-
age reasons and sets time, memory, and processing limitations for the IDSS system
to allow for effective parsing of large document collections.

The ability to remove and rerank rules takes advantage of the Optimality The-
ory (OT) mechanism in the XLE system (Frank et al., 2001). The XLE OT system
is inspired by theoretical OT (Prince and Smolensky, 1993) but differs from it in
crucial respects: in XLE, rules do not need to be ranked, preference as well as dis-
preference marks are available, and special status marks exist for allowing multiple
pass grammars and for declaring rules NOGOOD. Parts of the grammar and lexicon
associated with NOGOOD marks are removed from the compiled system.7 The abil-
ity to declare a given OT mark NOGOOD is extremely useful in overlay grammars
because both whole rules and specific disjuncts within them can be removed from
the grammar in this way. Consider the made-up simple rule in (12).

(12) S – (NP: (ˆ TOPIC)=!
(ˆ TOPIC)=(ˆ XCOMP* OBJ)
@(OT-MARK TopicMark))

NP: (ˆ SUBJ)=!
VP: ˆ =!

The rule states that an S can consist of an optional NP which will be the topic which
also serves as the object somewhere in the structure (e.g. Bagels, I like., Grammars,
I want to write.), an obligatory NP subject, and a VP that heads the S. The NP topic
annotations an OT mark called TopicMark. In the standard grammar, this mark is
dispreferred, and so topics will surface only when no more preferrable analysis is

7This contrasts with theoretical OT in which constraints can be very lowly ranked but are always
violable. NOGOODs could be thought of as inviolable constraints.



possible. However, in many overlay grammars used in applications including IDSS,
this mark is declared NOGOOD via the statement in (13) in the overlay performance
variables file.

(13) set-OT-rank TopicMark NOGOOD

This effectively creates the rule in (14) without having had to alter the one in (12)
in the standard grammar.

(14) S – NP: (ˆ SUBJ)=!
VP: ˆ =!

The OT marks can similarly be used in the template space to alter the effec-
tive behavior of the template. This is often used to control how dispreferred mis-
matched subject-verb agreement is. In the standard grammar, the OT mark NoVAgr
is heavily dispreferred because the grammar expects edited standard written En-
glish. However, when used in less formal domains, such as emails, this mark is only
slightly dispreferred. This reranking is done in the performance variables file and
hence the templates and rules themselves do not need to be altered or have explicit
overlay versions.

4 Semantics

The semantics for the ParGram English grammar is written using XLE’s ordered
rewrite system, referred to as XFR. It takes the f-structure output of the syntax and
converts it to a flattened, normalized, skolemized form (Crouch and King, 2006).
The output of the semantics is ideal for applications like IDSS because it abstracts
away from idiosyncracies of the syntax such as whether the verb was used in the
active or the passive.8 In addition, the semantics provides a mapping to WordNet
synsets while also retaining the stemmed word forms from the output of the mor-
phology and syntax. The full semantic structure produced for (15a) is shown in
(15b), where the numbers represent WordNet synonym sets (synsets). The output
produced from the overlay rules is shown in (15c). In (15c), only relevant entities
and relations are kept from the semantics, and the information in these have been
rearranged for the application (e.g., the overt marking of sentence and byte position
information, the deletion of context information).

(15) a. Robin Abramov is employed by International Business Machines.

b. alias(Abramov:n(7, 1), [Robin, Abramov, Robin Abramov])
alias(International Business Machines:n(30, 1), [International Business

8The semantics is a level of linguistic semantics. For greater abstraction, the system can further
map into Abstract Knowledge Representation (Crouch, 2005a; Bobrow et al., 2005, 2007). However,
this component is not yet as stable and well-developed.



Machines, IBM])
context head(t, employ:n(18, 1))
in context(t, pres(employ:n(18, 1)))
in context(t, cardinality(Abramov:n(7, 1), sg))
in context(t, cardinality(International Business Machines:n(30, 1), sg))
in context(t, proper name(Abramov:n(7, 1), name, Abramov))
in context(t, proper name(International Business Machines:n(30, 1),

company, International Business Machines))
in context(t, role(Agent, employ:n(18, 1), International Business

Machines:n(30, 1)))
in context(t, role(Patient, employ:n(18, 1), Abramov:n(7, 1)))
lex class(employ:n(18, 1), vnclass(unknown))
lex class(employ:n(18, 1), wnclass(1147708, verb(consumption)))
sortal restriction(Abramov:n(7, 1), Thing, employ)
sortal restriction(International Business Machines:n(30, 1), Thing,

employ)
word(Abramov:n(7, 1), Abramov, noun, 1, 7, t, [[9487097, 7626, 4576,

4359, 3122, 7127, 1930, 1740]])
word(International Business Machines:n(30, 1), International Business

Machines, noun, 1, 30, t, [[7948427, 7943952, 7899136, 7842951,
29714, 2236, 2119, 1740]])

word(employ:n(18, 1), employ, verb, 1, 18, t, [[1147708], [2385846]])

c. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin, Abramov,
Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(27), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(27),

[company])
WORD(employ, sent num(1), byte position(15), [hire, use])
sentence num(1)

Since the semantics is run on an ordered rewrite system, the overlays take the
form of additional rule sets which occur in the stack of ordered semantics rules. To
do this effectively, the rules have to be factored so that new rule sets can be inter-
woven in the stack without having to alter the base files. If the base files have to be
altered, then whenever a new version of the base semantics is released, the changes
for the overlay will be lost and have to be hand added. In order to overlay the se-
mantics, XLE provides a way to call the new, overlayed stack and to implement
application specific commands.



The semantics rules used in IDSS and as the base semantics for the ParGram
English grammar are divided into two main sets: semantic rewrites and anaphora
resolution. The semantic rewrites are further divided into six sets, including core
semantic rules, sense lookup rules, and cleanup rules. For IDSS, two additional rule
sets are added before the semantic rules and after the anaphora rules. For other ap-
plications, such as consumer search, different sense lookup rules may be overlayed.
The basic semantic XFR rule stack used in IDSS is shown in (16). Details of the
pre- and post-semantic rules are discussed in this section.

(16) Semantic XFR Rule Stack
Input: syntactic f- and c-structure

Pre-semantics

Semantic rules
core rules
sense lookup rules
cleanup rules

Anaphora rules

Post-semantic Rules
entity detection rules
relation detection rules
cleanup rules

Output: Entities and Relations

4.1 Pre-semantic Rewrite Rules

The IDSS pre-semantic rules are very simple (three calls to the same template) and
are used to pick up the special entities provided by the IDSS morphology, e.g., the
addresses, phone numbers. These convert the entities into a format that resembles
that of proper names and other aliased items and hence is recognized by the seman-
tics.

4.2 Post-semantic Rewrite Rules

The post-semantics/anaphora rule set is more complex. These rules operate on the
output of the semantics to extract the entities and entity relations needed for IDSS:
they identify entities such as proper nouns, time expressions, phone numbers, nouns
in certain classes (e.g., currencies and explosives); they identify relations such as
who works where, who lives where, and who knows whom; they provide informa-
tion such as synonyms of each content word.



The entity detection rules are relatively straightforward. They take a subset of
the word facts already present in the semantics and rewrite them to contain the infor-
mation needed in the IDSS application. For example, all proper nouns are marked
as entities and are included with information as to their type and location in the sen-
tence, as shown in (17).

(17) a. ENTITY(Detroit, location, sent num(1), byte position(24), [Detroit])

b. ENTITY(Smith, person, sent num(1), byte position(10), [John, Smith,
Mister Smith, Mister John Smith])

At the level of the semantics, no lexicon is needed to determine which entities to
mark. Instead, it is features from the syntactic f-structure such as the PROPER-TYPE

which provide the trigger for the rule.
The rules also allow for words with certain meanings to be extracted. This is

done by determining what WordNet (Fellbaum, 1998) synset describes the class of
interest and then creating entity facts for any words with this synset somewhere in
the hypernyms of the word’s semantics. For example, in certain application do-
mains, explosives and weapons may be of interest and hence should be recognized
as entities, which can then be highlighted or redacted as appropriate. If this is the
case, the extracted entities for a sentence like (18a) will include an entity fact as in
(18b) since WordNet knows that dynamite is a type of explosive.

(18) a. The dynamite arrived on Friday.

b. ENTITY(dynamite, explosive, sent num(1), byte position(1))

After the entities are identified, relations among them are posited. By identify-
ing the entities first, more general relation rules can be written that look for relations
between entities of a particular type, e.g. certain relations hold between person en-
tities and company entities but not between persons and other persons.

The rules to extract relations among entities are more complicated than the en-
tity detection rules. In general, the relations of interest are specific for a given IDSS
application. For example, some application domains have rules to extract informa-
tion as to which people work for which company. Detecting these relations at the
semantic level is simpler than at the text string or the syntactic f-structure level. For
example, all of the forms in (19) will have the same basic role relations in the se-
mantics.

(19) a. IBM employs Robin Abramov.

b. Robin Abramov is employed by IBM.

c. IBM’s employee, Robin Abramov,

d. IBM’s employment of Robin Abramov



e. Robin Abramov is an employee of IBM.

f. Robin Abramov’s employer is IBM.

These role relations are then used to extract an ENTITY-REL fact as in (15c). How-
ever, even at this highly normalized level, several rules can be required to extract
a given relation. In the works-for relation example in (15), the same relation ex-
pressed by the corresponding work for phrases have slightly different roles assigned
to them by the semantics. As such, for high value relations, there may be several
rules to extract the relevant relation facts.

There is a default rule for relation extraction that marks all entities in a sentence
as occuring together. This information could be reconstructed from the entity facts
because the sentence number is recorded as part of the fact. However, by combin-
ing them into a single fact, applications can immediately see co-occurrences. An
example is shown in (20).

(20) a. Mary left and John arrived.

b. ENTITY(John, person, sent num(1), byte position(15), [John])
ENTITY(Mary, person, sent num(1), byte position(1), [Mary])
ENTITY-REL(cooccuring(1), [Mary, John])

Once the entities and relations are identified, the rest of the semantic facts are
deleted, leaving just the IDSS specific information, as shown in (15c).

Since the rules operate after all the base semantic rules, improvements to the
semantics can be automatically incorporated by updating to the newest version of
the base semantics. If there is a change in analysis to the semantics, it may be nec-
essary to change the IDSS rules to be sensitive to these changes. The rules which
define the feature space of the base semantics, as well as the svn version control sys-
tem and the regular use of regression testing whenever changes are incorporated
(Chatzichrisafis et al., 2007), make such changes in the base semantics relatively
easy to track.

4.3 Flags

The rewrite system also allows flags to be set that can be used to trigger or block
rules. The rules check for the setting of the flags and then trigger (or not) based on
the setting for the run-time system. These flags are set when loading the rules to
produce the desired behavior.

Even in non-overlay grammars, a flag of this type is used to trigger feature check-
ing rules when used in debugging mode. Consider the feature checking rule in (21).
The flag debug(%%) is set to 1 when the system is being run in debug mode. If it
is, then the rule in (21) fires whenever there is a two argument predicate that is not
listed as a licensed feature.



(21) getp(debug(1)) ,
qp(%Feat, [%Arg1, %Arg2]), licensed feature(%Feat,2)
==
NOT LICENSED FEAT(qp(%Feat, [%Arg1, %Arg2])).

In the run-time system, this flag is turned off by setting debug(%%) to 0 in order to
avoid the insertion of warning messages in the output structures. The use of flags
in the current IDSS overlay system is kept to a minimum, being largely restricted to
debugging, but it does offer a feature similar to the syntactic OT marks for remov-
ing or inserting (but not ranking) rules without altering the XFR semantic rule files
themselves.

5 System Issues and Conclusions

System Issues All the above components are kept under an svn version control
system and undergo regular regression testing (Oepen et al., 1998, 2002; Chatzichrisafis
et al., 2007). The versioning allows easy access to previous versions of the system.
This is useful not only for backing out of changes that turned out not to be improve-
ments, but also for allowing the use of previous versions of the grammar and the se-
mantics until the overlay grammars can catch up to the changes made. In addition,
svn makes it possible for multiple developers to work on the system at the same
time, helping to merge changes made by different people. The regular regression
testing highlights changes, whether improvements or not, to each component and to
the system as a whole. Sometimes changes to a given component will have no ef-
fect on a specific application while at other times even small changes to components
can significantly alter the behavior of the system.

Conclusions Adapting a complex deep processing system to an application re-
quires changes to all levels of the processing pipeline. As such, it is important that
easy-to-use overlay mechanisms are provided at each level and that the levels are
modular. The form of these mechanisms may vary depending on the type of system
component (e.g., overlaying a unification-based grammar requires different tech-
niques than overlaying an ordered rewrite system). Having such mechanisms al-
lows the application to seamlessly incorporate improvements to the base system
over time, while maintaining the specialization features. This is particularly im-
portant when base components of the system are still undergoing rapid development
(e.g., with the semantics in the IDSS application described here), but even relatively
stable components will improve over time and applications need to take advantage
of these improvements without a major system overhaul.

This paper has outlined a series of tools that are used in XLE to overlay all levels
of analysis from tokenization to semantics, using the IDSS application as an exam-
ple. The XLE overlay mechanisms have been refined over time based on experi-
ences with a number of specialized domains and applications. Even with the over-
lay mechanisms in place, the base rules of each component have to be designed to



allow overlays through appropriate rule factoring and modularization of rule sets
and system components.
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