A probabilistic approach to Lexical-Functional Grammar

Ronald M. Kaplan
Xerox Palo Alto Research Center

Based on joint work with
Rens Bod, Khalil Sima’an, Remko Scha

1. R. M. Kaplan, A probabilistic approach to LFG, LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996.
Linguistic Theories provide

Formal encoding of grammatical relations

Representations

Rules

Determine representations for all possible utterances

Usual goal: *minimal, nonredundant* set of *independent* generalizations with *free interactions*

Carry explanatory burden

Competence Hypothesis

- Language user *applies* internalized rules to produce internal representations

- Language user *acquires* rules by abstraction of grammatical experience guided by universal principles and constraints
Alternative view: Representations only, no rules

- Language user acquires *examples of representations* from syntactic experience
- Language user applies *operations on representations* to produce representations for new utterances
- Linguistic theory specifies representations and operations
- Rules perhaps appear in scientific discourse, but are not part of native speaker’s “competence”

Productivity from examples
(following Scha, Bod: *Data Oriented Parsing*)

Given: corpus annotated with representations
(e.g. phrase structures)

1. Break structures into fragments--remember them

2. Combine fragments to get structures for new sentences

DOP illustration

Given: corpus annotated with representations:

```
S
  NP
  |  VP
  |   V
  |   NP
  John  likes  Mary

S
  NP
  |  VP
  |   V
  |   NP
  Peter  hates  Susan
```

1. Break structures into fragments

NP
|
| Mary

NP
|
| Susan

S

NP
|
| VP

V

NP
|
| hates

S

NP
|
| VP

V

NP
|
| likes

NP
|
| John

V

NP
|
| likes

NP
|
| Mary

e tc.

7. R. M. Kaplan, A probabilistic approach to LFG, LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996.
2. Combine fragments to get structures for new utterances

In DOP, \(\circ \) is left-most substitution

Another derivation of the same structure:

Observations

• Fragments are not minimal
 – Range from context-free rule equivalent \((S \rightarrow NP \, VP)\)
 to whole-utterance structure.
 – Some large fragments may represent idiosyncratic constructions, others may not. We don’t care.
 – We don’t even care how many fragments there are (in principle).

• Fragments are redundant, with overlapping information.

• Multiple results, not derivations, correspond to ambiguity
Probabilities

Resolve ambiguities, implicitly identify most useful fragments

• Frequency affects language-user interpretations: governs choice among several grammatical alternatives
 Mehler & Carey (68)....Tanenhaus and Trueswell (95)

• Typically, probabilities are defined on rules (stochastic grammars)

• DOP: Probabilities are defined on representations, not rules
 Scha (90) Bod (95)
A corpus-oriented, representation-based approach requires

1. A theory of well-formed utterance representations.

2. A definition of productive representation fragments.

3. A definition of a fragment-combination operation °.

4. A probability model for utterance representations.

A linguistic theory provides 1, 2, 3 but no other descriptive devices

For DOP

1. Representations: phrase structure trees.

2. Fragments: connected subtrees.

3. Operation \(\circ \): substitution of leftmost matching category.

4. Probability model: ...later.
For LFG:

1. Representations: valid* c-structures and f-structures in correspondence.

*No nonbranching dominance chains
2. Fragments: loosely, connected subtrees in correspondence with connected sub-f-structures

Intuition says: some possible fragments are implausible
Examples of theory-based restrictions

Lexical predicates: If a fragment includes an f-structure lexical predicate, the fragment must also include a corresponding lexical node.

Head chains: If a fragment includes node n corresponding to f-structure f, then all other nodes under n corresponding to f must be included.

Control: If a fragment contains one path of a control identity, it must contain the other.

Sisters: If a fragment includes a node n, it must include all of n’s sisters (from DOP).

3. Operation: Left-most substitution of matching categories followed by unification of corresponding fragment f-structures

Derivation

A derivation for an utterance \(u \) is a sequence of fragments \(<f_1, f_2, \ldots, f_n> \) such that the composition operator \(\circ \) applied from left to right results in a valid representation \(R \) whose yield is \(u \):

\[
R = (\ldots((f_1 \circ f_2) \circ \ldots) \circ f_n)
\]

\[
= <\text{c-structure, } \phi, \text{ f-structure}>
\]

Theory of representation defines “valid”:

- e.g. no nonbranching dominance chains,
- complete and coherent f-structure.

Theory of representation defines “yield”:

- e.g. the terminal string of the c-structure.
4. Probability Model

Let C be a corpus of structures and $Bag(C)$ be the bag containing all fragments derived from C. $\#(f)$ is the number of times that fragment f appears in the bag.

The probability of each fragment is estimated by its corpus frequency:

$$P(f) = \frac{\#(f)}{\sum_{g \in Bag(C)} \#(g)}$$
Probability of a derivation

A derivation for an utterance \(u \) results in a representation \(R \) whose yield is \(u \).

- We assume a fragment sequence \(s = \langle f_1, f_2, ..., f_n \rangle \) is constructed from the bag by random sampling with replacement. Then its sequence probability is
 \[
P(s) = \prod_i P(f_i)
 \]

- There may be infinitely many sequences that result in no representation or which result in a representation whose yield is not \(u \). We are not interested in those. For a given derivation \(d \) of \(u \) we obtain
 \[
P(d \mid d \text{ yields } u) = \frac{P(d)}{\sum_s \text{ yields } u P(s)}
 \]
 The linguistic theory must guarantee for every \(u \) a maximum derivation length. (E.g. no nonbranching chains)
Probability of an utterance representation

In general there are many derivations of a particular representation R for an utterance u. Assuming these derivations are independent, we have

$$P(R) = \sum_{d \text{ results in } R} P(d \mid d \text{ yields } u)$$

We assign the most probable R as the best analysis of u.

The most probable R: the one most likely to have been derived.
Other approaches

- **Stochastic grammars**: Assign probabilities to rules

The most probable R: the one with the most probable derivation

- **Johnson (1996)**: Assign probabilities to f-structure relations

The most probable R: the one with the most probable f-structure independent of any derivation

 “Model theory vs. proof theory”
Summary

• A productive system based on representations, not rules

• Clear, but different, role for linguistic theory

• Different claims about what a native-speaker “knows”, what needs to be explained

• Theory of acquisition combined with theory of processing (Although it may be impractical...)