
SEMANTICS VIA F-STRUCTURE REWRITING

Dick Crouch and Tracy Holloway King
Palo Alto Research Center

Proceedings of the LFG06 Conference
Universität Konstanz

Miriam Butt and Tracy Holloway King (Editors)

2006

CSLI Publications
http://csli-publications.stanford.edu/

Abstract

This paper discusses how the XLE general purpose ordered rewrite rule system is used to produce
semantic representations from syntactic f-structures. The rules apply efficiently because they oper-
ate on the packed input of f-structures to produce packed semantic structures. In addition to rules
which convert the syntactic structure to a semantic one, there are rules that use external resources to
replace words with concepts and grammatical functions with roles. Although the system described
here could by no means be described as a theory of the syntax-semantics interface, from a practical
stand point it can efficiently and robustly produce semantic structures from broad-coverage syntactic
ones.

1 Introduction

This paper discusses the use of the XLE’s [Crouch et al.(2006), Maxwell and Kaplan(1996)] transfer
system [Crouch(2005), Frank(1999)] for mapping f-structures into semantic representations. The
technique has been robustly applied to f-structures obtained by parsing open text, such as the Wall
Street Journal and New York Times.

The semantics gives a flat representation of the sentence’s predicate argument structure and the
semantic contexts in which those predications hold. Contrast the f-structure and semantics in (1).

(1) a. Jane did not hop.

b.

"Jane did not hop."

'hop<[1:Jane]>'PRED

'Jane'PRED

morphology_LEX-SOURCECHECK

NAME-TYPE first_name, PROPER-TYPE namePROPERNSEM

properNSYN
NTYPE

CASE nom, GEND-SEM female, HUMAN +, NUM sg, PERS 31

SUBJ

'not'PRED
negADJUNCT-TYPE60

ADJUNCT

V-SUBJ_SUBCAT-FRAMECHECK

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main30

c. alias(Jane:1,[Jane])
context head(t,not:10)
context head(ctx(hop:17),hop:17)
in context(t,cardinality(Jane:1,sg))
in context(t,role(mod(degree),ctx(hop:17),not:10,normal))
in context(ctx(hop:17),past(hop:17))
in context(ctx(hop:17),proper name(Jane:1,person,Jane))
in context(ctx(hop:17),role(Theme,hop:17,Jane:1))
lex class(hop:17,[vnclass(run-51 3 2)])
lex class(not:10,[sadv,impl pn np])
sortal restriction(Jane:1,[7127])
word(Jane:1,Jane,noun,0,1,t,[[9482706]])
word(hop:17,hop,verb,0,17,ctx(hop:17),[[1948772], [2076532], [1823521], [2076385],

[2076247], [2076113]])
word(not:10,not,adv,0,10,t,[[24548]])

Note how each clause of the core of the representation is set within a context (in context). Contexts
are introduced by clausal complements (COMP, XCOMP) in f-structure, but can also be lexically intro-
duced, as shown by the sentential adverb not. Nominal and event arguments are skolemized: instead
of quantifiers binding variables, terms like hop:17 are used in place of the bound variables. In ad-
dition, roles are introduced in place of grammatical relations and PREDs are replaced by concepts
which here are numbers that represent WordNet synonym sets (section 6.1).

The transfer system applies an ordered set of rewrite rules, which progressively consume the in-
put f-structure replacing it by the output semantic representation. The system permits a form of input-
limited recursion, where a rule can apply to its own ouptut provided that each application consumes
some more of the rules’ original input (thus ensuring termination of the recursion). This is required
for capturing the contextual structure induced by the recursive embedding of complements within
f-structure. The rewrite-based system can, and has, been used in place of components constructing
semantic representations by more standard means, such as Glue Semantics [Dalrymple(2003)].

2 Brief System Introduction

In this section we provide a brief introduction to the XLE system that is used in producing XFR
semantics. The syntactic component, including the morphology and tokenizer, is described in detail
in [Riezler et al.(2002), Kaplan et al.(2004)]. XLE is described in [Maxwell and Kaplan(1996)] and
many details are available in the on-line XLE documentation [Crouch et al.(2006)].

(2) Input: string
tokenizer

morphology XLE parser
LFG grammar

Output of parser/Input to rewriting:
c- and f-structure

XFR semantics rules XLE rewrite system
Output: semantic facts

2.1 Types of Rewrite Rules

A somewhat contrived example of a rewrite rule is:

(3) PRED(%V, eat), SUBJ(%V, %S), OBJ(%V, %O), –OBL(%V, %%)
==
word(%V, eat, verb), role(Agent, %V, %S), role(Theme, %V, %O).

This rule looks at a set of clauses describing an f-structure to see if there is some node %V (the % is
used to indicate a variable), with a subject %S and object %O, but no oblique. If the left hand side
of the rule is matched, the matching PRED, SUBJ and OBJ clauses are removed from the description,
and are replaced by the word and role clauses on the right hand side of the rule. More generally, the
format for rewrite rules is shown in figure 1.

The left hand sides of rules contain Boolean combinations of patterns over clauses. Clauses
are atomic predicates heading a set of argument terms, where the terms may be non-atomic: e.g.,
“SUBJ(var(0), var(1))”, where SUBJ is the predicate and var(0) and var(1) are the non-atomic argu-
ments (var(#) is the XLE representation for LFG f-structure nodes). In patterns over clauses, some of
the argument terms can be, or can contain, variables. For example, the pattern “SUBJ(%V, var(%Y))”

Rule ::= LHS == RHS. Obligatory rewrite
LHS ?= RHS. Optional rewrite
LHS *= RHS. Recursive rewrite
– Clause. Permanent, unresourced fact

LHS ::= Clause Match & delete atomic clause
+Clause Match & preserve atomic clause
LHS, LHS Boolean conjunction
(LHS LHS) Boolean disjunction
–LHS Boolean negation
ProcedureCall Procedural attachment

RHS ::= Clauses Set of replacement clauses
0 Empty set of replacement clauses
stop Abandon the analysis

Clause ::= Atom(Term,. . . ,Term) Clause with atomic predicate
Atom Atomic clause
qp(Variable, [Term ,. . . , Term]) Clause with unknown predicate

and arguments
Term ::= Variable

Clause

Figure 1: Format of Rewrite Rules

will match “SUBJ(var(0), var(1))”, setting %V to var(0) and %Y to 1. Second-order quantification
over atomic predicates is also available, where qp(%P, [%V, %Y]) matches “SUBJ(var(0), var(1))”,
setting the predicate variable %P to SUBJ and the list of argument variables [%V, %Y] to var(0) and
var(1).

By prefixing a clause pattern on the left hand side of a rule with a “+”, you can indicate that
the rule should check for the presence of a matching clause in the input without deleting the clause.
Likewise, a prefix of “–” checks that a pattern is not matched by the input. Boolean combinations of
clause patterns are possible, as are calls to external procedures. External procedures cannot directly
manipulate the full set of input clauses; instead they allow you to perform table lookup or tests on
terms, such as subsumption checking in the Cyc generalization hierarchy, or looking up the synset
of a word in WordNet (section 6.1).

The right hand side of a rule can be a comma separated set of clause patterns, including the empty
set represented as 0. The right hand side can also be the directive stop, which means that the analysis
path should be deleted.

Rules can be obligatory, optional or recursive rewrites, and can also introduce permanent non-
consumable facts. If the left hand side of an obligatory rule is matched, then the consumed clauses
(i.e. those not marked with a “+” or a “–”) have to be removed from the set of input clauses, and
replaced by the clauses on the right hand side of the rule. For an optional rule, conceptually speaking,
there is a fork in the set of output clauses. On one fork the rule applies, and the consumed clauses
on the left hand side are replaced by those on the right hand side. On the other fork the rule does not
apply, and the set of clauses remains unchanged. But instead of forking the sets of clauses, the choice
space is split to record the alternatives where the rule is and is not applied (section 2.2). A recursive
rule can re-apply to its own output, provided that each recursion also consumes some of the input
that was present before the first recursive application; this ensures termination of the recursion.

Rules are ordered: rule 1 applies to the input, rule 2 applies to the output of rule 1, and so on.
Rule ordering can be exploited, e.g., to encode sequences of defaults, but the feeding and bleeding

behavior needs to be handled with care. The rule ordering also means that the scope of any recursion
is strictly limited to a single rule. Note that the order of the discussion of the rules in this paper does
not necessarily reflect their order in the system.

Clauses preceded by a – are included as permanent, non-consumable facts. These are part of
neither the input nor the output, but can be called on to provide tests or data. For example, a more
sensible way of achieving the effects of (3) would be:

(4) a. – concept-map(eat, V-SUBJ-OBJ, Agent, Theme).
– concept-map(drink, V-SUBJ-OBJ, Agent, Theme).

. . .

b. PRED(%V, %P), SUBJ(%V, %S), OBJ(%V, %O), –OBL(%V, %%),
concept-map(%P, V-SUBJ-OBJ, %SR, %OR)
==
word(%V, %P, verb), role(%SR, %V, %S), role(%OR, %V, %O).

In this way, a large number of lexical mappings can be asserted permanently (similar to lexical en-
tries), as in (4a) and a single rule takes care of the concept mapping for transitive verbs, as in (4b)
instead of having one rule for each verb.

The formalism also allows macros to be used to parameterize commonly occurring patterns in
rules, and templates to parameterize commonly occurring sequences of rules. This is an alternative
to using a type hierarchy [Oepen et al.(2004)] for producing compact rule sets.

2.2 Packing

Although constraints can sometimes be applied at the semantics level (or subsequent mapping to
knowledge representation) to resolve syntactic ambiguities, others will pass through to the semantics
level, and yet more may be introduced by things such as word sense ambiguity. Here we briefly de-
scribe the ambiguity packing mechanism used by the XLE rewrite system; for more detail on packing
in the rewriting system see [Crouch(2005)] and for packing in general see [Maxwell and Kaplan(1991)].

Alternative interpretations are represented in a packed form. An example will give an idea of
what these packed representations are like (shown somewhat abbreviated, e.g., cardinality and sortal
restriction facts, which would all be in the top choice 1, are not shown):

(5) John saw a man with a telescope.

(6) choice: (A1 xor A2) iff 1

1 alias(John:1,[John])
1 context head(t,see:32)
1 in context(t,past(see:32))
1 in context(t,specifier(man:12,a))
1 in context(t,specifier(telescope:23,a))
1 in context(t,proper name(John:1,person,John))
1 in context(t,role(Experiencer,see:32,John:1))
1 in context(t,role(Stimulus,see:32,man:12))

A1 in context(t,role(prep(with),man:12,telescope:23))
A2 in context(t,role(prep(with),see:32,telescope:23))

1 word(John:1,John,noun,0,1,t,[[9487097]])
1 word(man:12,man,noun,0,12,t,[[10133569], [10423788], [10135377], [2449786],

[10135514], [10135101]])
1 word(see:32,see,verb,0,32,t,[[2109658], [583923], [2109242], [1620934],

[682517], [591374], [2131231], [911004]])
1 word(telescope:23,telescope,noun,0,23,t,[[4351615]]))

The standard prepositional attachment ambiguity is reflected in the semantics (6) by two alternative
role restrictions: the telescope either modifies the seeing event, or the man. The two alternatives are
labeled by the distinct choices A1 and A2. As the first line in the representation states, A1 and A2 are
mutually exclusive (xor = exclusive or) ways of partitioning the true choice labeled 1. Most parts of
the representation are common to both possible interpretations, and are thus labeled with the choice
1. It is only the two role assignments for telescope:23 that are put under distinct choice labels.

A slightly more complex case of prepositional attachment ambiguity gives rise to the following
semantic representation (shown somewhat abbreviated):

(7) John saw a man in a park with a telescope.

(8) choice: (A1 xor A2) iff 1
choice: (B1 xor B2 xor B3) iff A1
choice: (C1 xor C2) iff A2

1 alias(John:1,[John])),
1 context head(t,see:42)),
1 in context(t,past(see:42))),
1 in context(t,specifier(man:12,a))),
1 in context(t,specifier(park:21,a))),
1 in context(t,specifier(telescope:33,a))),
1 in context(t,proper name(John:1,person,John))),
1 in context(t,role(Experiencer,see:42,John:1))),
1 in context(t,role(Stimulus,see:42,man:12))),

A1 in context(t,role(prep(in),man:12,park:21))),
A2 in context(t,role(prep(in),see:42,park:21))),
B3 in context(t,role(prep(with),man:12,telescope:33))),

or(B2,C2) in context(t,role(prep(with),park:21,telescope:33))),
or(B1,C1) in context(t,role(prep(with),see:42,telescope:33))),

1 word(John:1,John,noun,0,1,t,[[9487097]])),
1 word(man:12,man,noun,0,12,t,[[10133569], [10423788], [10135377],

[2449786], [10135514], [10135101]])),
1 word(park:21,park,noun,0,21,t,[[8494974], [8495199], [2756453], [11059588],

[8495445], [3847283]])),
1 word(see:42,see,verb,0,42,t,[[2109658], [583923], [2109242], [1620934],

[682517], [591374], [2131231], [911004]])),
1 word(telescope:33,telescope,noun,0,33,t,[[4351615]]))

Here there are interactions between the attachments: if the location of the man is the park (A1), then
with a telescope can modify either the seeing (B1), the park (B2), or the man (B3). But if the location
of the seeing event is the park (A2), then with a telescope can only modify either the seeing (C1) or the
park (C2). This is reflected in the choice structure, which says that A1 and A2 are a disjoint partition
of 1, and that A1 is in turn partitioned into B1, B2, and B3, while A2 is partitioned into C1 and C2.

Note that the five possible readings for (7) are represented in not much more space than the two
readings for (5). It is possible to count the number of readings by looking only at the choice space:
A1 has three alternatives sitting under it, A2 has two, and A1 and A2 are disjoint, so there are
alternatives altogether.

3 Flattening of Context-relative Predications

The semantics rules use input limited recursion to capture, and flatten, the structural embeddings in
f-structure as context-relative predications. Flattening replaces embedded expressions with complex
internal structure, such as clausal complements, with atomic first order terms, which are called con-
texts. The information about the level of embedding of an expression is preserved by associating
its content with the corresponding context. Negation and intensional operators also trigger the in-
troduction of new contexts. Contexts thus serve as scope markers since their use enables globally
represented information, such as the scope of operators, to be made locally accessible.1

3.1 Flattening of Verbal F-structures

We will illustrate the use of recursive rules to flatten out the contextual structure implicit in f-structure.
F-structures are recursive, with one node being embedded inside another, yet it is straightforward to
represent this as a flat set of clauses. For (9) these might be along the (abbreviated) lines of (10).

(9) Mary knew that Ed ate turnips.

(10) PRED(var(0), know),
SUBJ(var(0), var(1)), PRED(var(1), Mary)
COMP(var(0), var(3)), PRED(var(3), eat)
SUBJ(var(3), var(2)), PRED(var(2), Ed)
OBJ(var(3), var(4)), PRED(var(4), turnip)
TNS-ASP(var(0), var(5)), TENSE(var(5), past)
TNS-ASP(var(3), var(6)), TENSE(var(6), past)

The f-structure node var(3) is embedded under var(0), and var(2) is in turn embedded under var(3).
But not all of the f-structure embeddings lead to context embeddings in the semantics: in fact, it is
only the nodes var(0) and var(3) that introduce semantic contexts.

The f-structure to semantics rewrite rules therefore need to make a recursive traversal of the f-
structure, linking each f-structure node to the nearest dominating node that introduces a semantic
context. This is achieved in three stages. First, nodes introducing a context are identified and labeled
(where c(.. .) is wrapped around a node to indicate its context):

(11) +COMP(%N1, %N2)
==
new context(%N2, c(%N2)), in context(%N2, c(%N2)).

Second, immediate links between f-structure nodes are created, as in (12), so that for each sub-f-
structure there is a link fact. This fact will be used by the final flattening rule in (13) to create the
in context labels.

1If you view the traditional semantics for sentences in terms of possible words, a context intuitively delimits a sensible
chunk of a possible world, which is used to show how the bigger semantic picture is composed out of its parts.

(12) +SUBJ(%N1, %N2) == link(%N1, %N2).
+OBJ(%N1, %N2) == link(%N1, %N2).
+COMP(%N1, %N2) == link(%N1, %N2).
+TNS-ASP(%N1, %N2) == link(%N1, %N2).

Finally, a recursive rule traverses the links propagating the in context labels.

(13) +in context(%N1, %C), link(%N1, %N2), –new context(%N2,%%)
*=
in context(%N2, %C).

Each recursive step will consume one of the link(.. . ,. . .) facts, ensuring that the recursion terminates.
The recursion will simultaneously start at all the nodes initially labeled as being in context by rule
(11), and the negative test on new context ensures that nodes are only connected back to their im-
mediately dominating context. It is important to remember that this rule only applies recursively to
its own output. This is unlike more general recursion in a set of unordered rules, where rules can
recursively apply to the output of other rules.

Modals such as can and should, behave similarly to other context inducing verbs, despite their
distinctive syntactic structure. Since modals take XCOMPs in the f-structure, the rules described
above apply relatively straightforwardly to them. Later processing, such as mapping to KR, can
make further distinctions among the different modals for applications.

3.2 Negation and Other Context-inducing Adverbs

In the f-structure, sentential negation is an adverb in the ADJUNCT set. However, in the semantic
structure, negation introduces a context. Thus a sentence like (14a) has a simplified f-structure like
(14b) but a simplified semantics like (14c).

(14) a. Jane did not hop.

b. PRED hop SUBJ

SUBJ PRED Jane

ADJUNCT
PRED not

ADJUNCT-TYPE neg

c. context head(t,not:10)
context head(ctx(hop:17),hop:17)
in context(t,role(mod(degree),ctx(hop:17),not:10,normal))
in context(ctx(hop:17),role(Theme,hop:17,Jane:1))
word(Jane:1,Jane,noun,0,1,t,[[9482706]])
word(hop:17,hop,verb,0,17,ctx(hop:17),[[1948772], [2076532], [1823521], [2076385],

[2076247], [2076113]])
word(not:10,not,adv,0,10,t,[[24548]])

There are other context inducing adverbs: these are ADJUNCTs in f-structure but introduce a con-
text in the semantics. The rules for these are similar to those for sentential negation and are lexi-
calized to apply only to adverbs of this class. Examples of such adverbs include sentential uses of
necessarily, possibly, probably, maybe, and certainly, as in (15). These can combine with each other
and with negation, as in (16), in which case a series of embedded contexts is created by the semantic
rewrite rules.

(15) a. Jane probably left.

b. Jane certainly left.

(16) Jane certainly did not leave.

The rules to introduce the contexts work as follows. The rules need to make the clause the ad-
verbs modifiy the first argument to the modifier. If there is a sequence of sentential modifiers, the
modified clause is made the first argument of the last modifier in the sequence, which is itself the
first argument of the penultimate modifier, and so on. This is done using limited recursion to build
up a list of sentential modifiers. First an empty list is created, by (17) for anything that has an ap-
propriate adjunct, is negative, or is imperative or interrogative (imperatives and interrogatives also
introduce contexts).

(17) +PRED(%A, %%),
(+ADJUNCT(%A,%%)

+is negated(%A,%%)
+CLAUSE-TYPE(%A,imp)
+CLAUSE-TYPE(%A,int)

)
==
sentential mods([], %A, %A).

The empty sentential modifiers list is then filled with the sentential modifiers in order by the rules
in (18). (18a) first puts negation on the list. Then the recursive rule (18b) puts the other sentential
modifiers on the list, checking for the relative scope of the adjuncts where the scope is provided by
the f-structure scopes fact.2

(18) a. sentential mods([], %A, %A), is negated(%A, %NMod)
==
sentential mods([%NMod], %A, %A).

b. +ADJUNCT(%H,%M), in set(%N,%M), sentential mod(%N),
–(in set(%N1, %M), sentential mod(%N1), scopes(%N1, %N)),
sentential mods(%Mods,%H, %H)

sentential mods([%N %Mods],%H, %H).

Finally, the rules do head switching of the modifiee and the last modifier: everything that was
expecting the modifiee as an argument now takes the last modifier. When the adverbs modify the
main (root) clause, the rules indicate that the node of the last modifier becomes the root node since
it is important that all semantic structures, like f-structures, are rooted and connected.

4 Cannonicalization of F-structures

A number of syntactic constructions are cannonicalized very early in the semantic rules. These are
relatively straight-forward rewrites that then feed the more complex semantic rules (section 5).

2In the English LFG grammar used here, the scopes fact reflects the linear order of the adjuncts; other strategies could
be used.

Passive constructions are turned into their corresponding actives.3 For passives with overt agent
by phrases, as in (19a), this results in a structure similar to that of their active counterpart. For pas-
sives without overt agents, as in (19b), a special agent pronoun is put into the subject role. The or-
dered rules to achieve this are shown in (20).

(19) a. The cake was eaten by John.

b. The cake was eaten.

(20) a. +VTYPE(%V, %%), +PASSIVE(%V,+), SUBJ(%V, %LogicalObj)
==
OBJ(%V, %LogicalObj).

b. +VTYPE(%V, %%), +PASSIVE(%V,+),
OBL-AG(%V, %LogicalSubj), PFORM(%LogicalSubj,%%)
==
SUBJ(%V, %LogicalSubj).

c. +VTYPE(%V, %%), +PASSIVE(%V,+), –SUBJ(%V,%%)
==
SUBJ(%V,%AgtPro), PRED(%AgtPro,agent pro), PRON-TYPE(%AgtPro, null).

(20a) takes the subject of a passive verb and makes it the object. Then (20b) takes the OBL-AG of a
passive verb and makes it the subject. Finally, (20c) creates a dummy subject for any passive verb
that does not have one provided by (20b).

A number of constructions are assigned null pronominal subjects in the f-structure. In many
cases, the semantics substitutes in the most likely subject instead. Some example constructions are
shown in (21) with the rule for (21a) shown in (22).

(21) a. Before leaving, I fixed it. (=I leaving)

b. To open it, John broke the seal. (=John to open it)

c. Having arrived early, Mary sat down. (=Mary arrived early)

d. Broken by the wind, the gate fell. (=the gate broken by the wind)

(22) +SUBJ(%Main,%MainSubj), +ADJUNCT(%Main,%Adj), +OBJ(%Adj,%AdjObj),
SUBJ(%AdjObj,%AdjObjSubj), arg(%AdjObj,1,%AdjObjSubj),
PRON-TYPE(%AdjObjSubj,null), PRED(%AdjObjSubj,%%)
==
SUBJ(%AdjObj,%MainSubj), arg(%AdjObj,1,%MainSubj).

(22) looks for an f-structure %Main which has a subject and an adjunct. That adjunct must take an ob-
ject with a null subject (in examples like (21a) leaving is the object of before). This subject is replaced
by the subject of the main clause. Note that the + in front of the first fact +SUBJ(%Main,%MainSubj)
ensures that the main clause subject is not deleted.

Similar cannonicalization occurs for comparatives, measure phrases, and related scalars. These
have a number of different overt expressions in the syntax which are all regularized to allow the
semantics to operate on them more directly.

3This rule can only apply after rules, such as anaphora resolution, which need to make reference to syntactic subject
have applied.

(23) a. John is happier.

b. John is happier than Mary.

c. John is much happier than Mary.

(24) in context(ctx(happy:14),comparative diff(happy:14,John:1,Mary:23,pos,much:10))

(24) shows the cannonicalized semantic form for the comparative adjective happier in (24c). Mary:23
is the comparison class, the pos indicates that it is more happy as opposed to less happy, and much:10
indicates the amount of difference. The comparison class and the amount of difference can be un-
specified, e.g., for sentences like (24a).

5 Semantic Rewrites

There are a set of rules in the semantic rewrite rules which correspond to more traditional, theoretical
semantic rules. These include treating coordination by semantic instead of syntactic type, creating
structures for deverbal nouns, and providing appropriate scope and cannonicalizations for quanti-
fiers. In this section we discuss how these are done in the rewrite rules.

5.1 Quantifiers

Unlike in the Glue semantic [Dalrymple(2003)] approach to manipulating f-structures to create se-
mantic structures, using the semantic rewrite rules does not provide a theoretically motivated treat-
ment of quantifier scope possibilities. Instead, the rules determine one scope.4 For example, the
scope of indefinite subjects is raised relative to that of negation. Relatedly, the modals must, ought,
and should are rescoped relative to sentential negation, while other modals are not.

One interesting rule for quantifiers derives negative sentential modifiers from downward mono-
tone nominal arguments. The basic idea is to mark anything with a downward monotone nominal ar-
gument as negated, and then introduce a new not context. For example, the sentence No girl hopped.
has a semantics as in (25) in which there are two contexts, one introduced by no (ctx(hop:15)), and
in which there is a word fact similar to that for sentential negation.

(25) context head(t,not:n(147)
context head(ctx(hop:15),hop:15)
in context(t,role(mod(degree),ctx(hop:15),not:147,normal))
in context(ctx(hop:15),past(hop:15))
in context(ctx(hop:15),cardinality(girl:4,sg))
in context(ctx(hop:15),proportion(girl:4,no))
in context(ctx(hop:15),role(Theme,hop:15,girl:4))
word(girl:4,girl,noun,0,4,ctx(hop:15),[[9979060], [9934281], [9844392], [9979885],

[9979646]])
word(hop:15,hop,verb,0,15,ctx(hop:15),[[1948772], [2076532], [1823521], [2076385],

[2076247], [2076113]])
word(not:147,not,adv,0,147,t,[[24548]])

4Multiple scopes can be produced in certain situations by using optional rules. However, this has not proven a useful
or efficient strategy in using the rewrite rules to produce semantic representations.

The semantic rewrite rule to handle these cases first looks for the appropriate quantified arguments of
a verb, introducing a fact that the verb is negated. Then a second rule creates the negative adjunct for
the verb which then triggers the same rule that introduces the context for sentential negation (section
3.2).

5.2 Coordination

In the f-structure, coordination is represented as a set with a feature indicating what level in the c-
structure the coordination occured at (e.g., N, NP). Coordination of nominals indicates the resolved
number and person of the set but otherwise is identical to coordination of verbs and sentences. The
f-structure for Mary and Jane hopped. is shown in (26).

(26) PRED hop SUBJ

SUBJ

PRED Mary

NUM sg

PRED Jane

NUM sg

NUM pl

COORD-FORM and

COORD-LEVEL NP

In contrast, the semantics differentiates between nominal, verbal, and adjunct coordinations. The
rules first determine which type of coordination is present, typing them as nominal, sentential, verbal,
predicative, number, or adjunct. A typed PRED is then created for the coordinate structure (note in
(26) that the SUBJ f-structure has not PRED of its own). It is this new PRED that will then act as an
argument, with its elements listed as additional semantics facts, as in (27).

(27) context head(t,hop:18)
in context(t,cardinality(Jane:1,sg))
in context(t,cardinality(Mary:10,sg))
in context(t,cardinality(group object:2,pl))
in context(t,is element(Jane:1,group object:2))
in context(t,is element(Mary:10,group object:2))
in context(t,role(Theme,hop:18,group object:2))
word(Jane:1,Jane,noun,0,1,t,[[9482706]])
word(Mary:10,Mary,noun,0,10,t,[[9482706]])
word(group object:2,group object,implicit,0,2,t,[[1740]])
word(hop:18,hop,verb,0,18,t,[[1948772], [2076532], [1823521], [2076385], [2076247],

[2076113]])

The syntax treats all coordinators similarly. However, the semantics differentiates between co-
ordinators like and which do not introduce new contexts, as seen in (27), and ones like or which do.
Compare the analysis of Jane or Mary hopped. in (28) to that in (27) for Jane and Mary hopped.

(28) context head(t,hop:20)
context head(ctx(Jane:1),Jane:1)
context head(ctx(Mary:9),Mary:9)

in context(t,coord or([ctx(Jane:1),ctx(Mary:9)]))
in context(t,cardinality(group object:2,sg))
in context(t,role(Theme,hop:20,group object:2))
in context(ctx(Jane:1),cardinality(Jane:1,sg))
in context(ctx(Jane:1),is element(Jane:1,group object:2))
in context(ctx(Mary:9),cardinality(Mary:9,sg))
in context(ctx(Mary:9),is element(Mary:9,group object:2))
word(Jane:1,Jane,noun,0,1,ctx(Jane:1),[[9482706]])
word(Mary:9,Mary,noun,0,9,ctx(Mary:9),[[9482706]])
word(group object:2,group object,implicit,0,2,t,[[1740]])
word(hop:20,hop,verb,0,20,t,[[1948772], [2076532], [1823521], [2076385], [2076247],

[2076113]])

There are two contexts related to the top context t by the COORD OR fact. The group object is still
the Theme of hop but which element (Jane or Mary) is in that set depends on the context.

5.3 Deverbal Nouns

Deverbal nouns, or nominalizations, can pose serious challenges for knowledge-based systems. Sen-
tences (29) and (30) describe the same event of destruction, which has the same two participants in
both cases. However, the event is expressed by a verb in the first case and a noun in the second case.

(29) Alexander destroyed the city in 332 BC.

(30) Alexander’s destruction of the city happened in 332 BC.

The f-structure for these differ significantly. However, these are cannonicalized in the semantics so
that both resemble events with roles from VerbNet (section 6.2) and verbal concepts from WordNet
(section 6.1). That is, the goal of the rules is to take the nominal and map it to its verbal counterpart.
This is in many ways a simpler task than taking a semantic representation of an event and determining
how it can be syntactically realized as a nominal.

An external database of deverbal nouns is created indicating the noun, the corresponding verb,
the type of deverbal (in the current set, -ee and -er deverbals are differentiated from all others; more
types would be possible), and how lexicalized it is.5 Note that gerunds are treated productively by
the syntax and so do not need entries in the database.

(31) deverbal(destruction, destroy, null, only).
deverbal(parolee, parole, ee, only).
deverbal(teacher, teach, er, both).

The semantic rewrite rules first identify deverbal nouns and indicate whether they have a COMP

or XCOMP argument. Then a set of rules determine for each type of deverbal (e.g., null, er) how the
different specifiers and adjuncts map to the argument of the verb. In (30) the POSS maps to the subject
and the of adjunct to the object. There are several of these rules to account for the different types of
deverbals with different combinations of arguments. In certain cases, this can result in ambiguities
(e.g., the Romans’ destruction); the semantics rules will split the choice space, allowing for both
analyses. Consider the rule for deverbals like a teacher of poetry shown in (32).

5Extremely lexicalized deverbals like building are not mapped on to events.

(32) may be deverbal(%N, %V, er, %HasComp),
@isPrepAdjunct(%N,of,%Obj),
@hasTransMapping(%V, %HasComp, %SubCat)
==
is deverbal(%N, %V, %SubCat, needs arg, %Obj), is er deverbal(%N).

(33) states that a noun %N, which has been identified as an er deverbal, has a prepositional of ad-
junct and that the corresponding verb form %V has a transitive mapping. This creates a new fact
is deverbal with the transitive frame, no subject (needs arg), and the of phrase as the object. A later
rule then creates a subject for the verb from the er deverbal itself. That is, the subject of the teach
event is the teacher while the object is the poetry, as in (33).

(33) in context(ctx(teach:3),role(Agent,teach:3,teacher:3))
in context(ctx(teach:3),role(Recipient,teach:3,implicit arg:2))
in context(ctx(teach:3),role(Topic,teach:3,poetry:14))
lex class(teach:3,[vnclass(transfer mesg-37 1-1-1)])
word(implicit arg:2,implicit,implicit,0,0,ctx(teach:3),[[1740]])
word(poetry:14,poetry,noun,0,14,ctx(teach:3),[[6995243], [6995943]])
word(teach:3,teach,verb,0,3,ctx(teach:3),[[820277], [270355]])
word(teacher:3,teacher,noun,0,3,t,[[10533902], [5781275]])

For more details of this approach to deverbal nouns, see [Gurevich et al.(2006)].

5.4 Other Rules

There are rules which are not strictly speaking semantic from a theoretical perspective but which
are useful for applications and for deeper processing such as mapping to knowledge representation
([Crouch(2005)]). An example of these is the alias fact. Proper nouns receive an alias fact which
ties the skolem of that noun to the surface form. For example, the proper noun John would receive
a fact as in (34).

(34) alias(John:67,[John])

This records the string that corresponds to the proper noun, thereby providing more identification
information. This is necessary because the concept for all proper nouns referring to male people is
the same (and similarly for companies, locations, and other proper noun classes).

In addition, the alias fact for multiword proper nouns contains variants of the noun that are useful
for applications. For example, a name like Mr. John Smith would have an alias fact like that in (35).

(35) alias(John:67,[John, Smith, John Smith, Mr. John Smith])

This allows the proper noun to be more easily matched with occurrences in other sentences and texts.

6 Incorporation of Lexical-semantic Resources

This section discusses how further lexical-semantic resources (in particular, WordNet and VerbNet)
can be used in the semantic rules. Incorporation of external lexical resources saves time in lexical
development, but it comes at a cost both for finding ways in which to integrate the resources and in
dealing with errors in those resources.

6.1 WordNet Concepts

WordNet is used to assign concepts to words. WordNet [Fellbaum(1998)] contains words with their
part of speech organized into synonym sets (synsets) which represent underlying lexical concepts;
these synonym sets are linked by relations such as hypernyms (e.g., auction is a type of sell which
is a type of exchange, change, interchange which is a type of transfer). The semantic rewrite rules
assign concepts to words by looking up the word with its associated part of speech. Some words will
belong to just one synset while others belong to many. To accommodate words with more than one
synset, the synset concepts are stored as a list. The concept becomes part of the word fact associated
with a skolem. An example is shown in (36).

(36) word(hop:17,hop,verb,0,17,t,[[1948772], [2076532], [1823521], [2076385], [2076247],
[2076113]])

The word facts contain the string, part of speech, and context as well as the skolem and synsets. This
information is all stored for use in further processing, such as in the mapping to KR.

In theory, the contents of WordNet could be dumped into a lexicon of non-resourced facts or an
external database that the semantic rewrite rules could refer to. However, instead the rules call the
WordNet interface directly via a procedural attachment (indicated in the rewrite rules by). This
calling of an external resource directly contrasts with the way in which VerbNet is incorporated into
the rules, as described below.

In addition to the general lookup of word concepts in WordNet, certain classes of words are as-
signed WordNet synsets in a more constrained fashion. These lookups are done before the more
general lookups since they are the more specific case and take precedence over the default case.
For example, proper nouns are not looked up based on their string form6 but instead by their proper
noun type as assigned by the morphological analyzer that is used by the syntax. Proper nouns can
be classed as locations, organizations, companies, male persons, female persons, etc. These are as-
signed a synset appropriate for this class by rules such as (37b) in conjunction with the non-resourced
fact in (37a).

(37) a. – name synset(company, , , company, 7948427).

b. +in context(%%,proper name(%NameSk,%Type,%%)),
node label(%V, %NameSk), NTYPE(%V,%%),
name synset(%Type, %G, %H, %WNWord, %S),
wn all hypers(%WNWord,noun,%S,%HL,%SS) ,

@get word context(%V,%Ctx),
%NameSk = %Pro:n(%SN,%N)

==
synsets(%NameSk, %SS), word(%NameSk, %Pro, noun, %N, %SN, %Ctx,%HL).

Pronouns work similarly in that they are assigned synsets based on an appropriately predefined set
of features. Some of the nonresourced facts used in the pronoun mapping are shown in (38).

(38) – pronoun synset(he, male‘ person, 9487097).
– pronoun synset(she, female‘ person, 9482706).
– pronoun synset(we, person, 7626).
– pronoun synset(you, person, 7626).
– pronoun synset(it, entity, 1740).

6WordNet has entries for many proper nouns. However, these entries are spotty and can result in rather unexpected
behavior in applications.

6.2 VerbNet Roles

VerbNet is used to assign roles to the arguments of verbs. VerbNet [Kipper et al.(2000)] classifies
verbs according to Levin verb classes [Levin(1993)]. It includes syntactic subcategorization infor-
mation, information about thematic roles (e.g., agent, patient), and basic lexical semantics. In order
to use the VerbNet material, we extracted it into a Unified Lexicon (UL) ([Crouch and King(2005)])
which contained information about the XLE syntactic subcat frames, WordNet synsets, and VerbNet,
as well as some lexical class information used in the later semantics to KR mapping rules.

As discussed in [Crouch and King(2005)], there were some problems in converting VerbNet into
a format that could be used by the semantics rules. The first was converting VerbNet subcategoriza-
tion frames into ones that were compatible with the XLE syntactic lexicon. This was difficult because
the VerbNet subcategorization information is listed not as grammatical function information but as
abstractions over a cannonical phrase structure tree. This extraction becomes extremely involved for
verbs which take NP small clauses, particles, expletives, or verbal complements. The second issue
in the VerbNet extraction was ensuring that a verb belonging to a particular VerbNet class inherited
all the correct role restrictions from the classes above it. The final issue with VerbNet was that many
verb frames have implicit roles. These roles are determined by looking at the semantics provided for
the verb. If there is a thematic role mentioned that is preceded by a ? (question mark), e.g., ?Topic,
this indicates that it is implicitly present in the verb frame and may have role restrictions on it. For
example, the transcribe-25.4 class for The secretary transcribed the speech has an implicit Destina-
tion role which is restricted to being concrete. Note that this role is overt in other frames for this
verb, as in The secretary transcribed the speech into the record.

In the semantics rules, the VerbNet role mapping works by looking up the head word and subcat
frame in the UL to see whether there are VerbNet roles associated with the arguments. In the building
of the UL, words with subcat frames which did not have a direct listing in VerbNet are sometimes as-
signed a VerbNet mapping from a similar frame (e.g., a version with an oblique prepositional phrase
may be able to use the mapping for the base transitive, with a guessed role for the oblique). If there
are roles in the UL, then the grammatical functions are converted to the relevant VerbNet roles. Thus,
the f-structure SUBJ and OBJ for a sentence like The girl ate the cake. are mapped into the roles in
(39) by a simplified rule like (40) using the UL entry in (41). The UL itself is stored as a database
that the rules access ([Crouch et al.(2006)]).

(39) in context(t,role(Agent,eat:22,girl:5))
in context(t,role(Patient,eat:22,cake:18))

(40) +word(%VSk,%Verb,verb,%%,%%,%%,%%),
verb mapping(%Origin, %Verb, %SubCat, %Source, %VerbClass, %WN, %VSk,%Ctx,

%GF1, %Restr1, %Sk1,
%GF2, %Restr2, %Sk2,
%Mapping),

@get subcat(%VSk, %SubCat),
@get gf(%VSk, %Sk1, %GF1),
@check selectional restriction(%Sk1, %Restr1, %%C1),
@get gf(%VSk, %Sk2, %GF2),
@check selectional restriction(%Sk2, %Restr2, %%C2)
==
%Mapping,
lookup subcat(%VSk, %SubCat, [%Origin, %Source]),
wordnet classes(%VSk, %WN),

source of concept mapping(%VSk, %Source),
lex class(%VSk, %VerbClass),
sortal restriction(%Sk1, %Restr1),
sortal restriction(%Sk2, %Restr2).

(41) verb map(eat, V-SUBJ-OBJ, verbnet, [vnclass(eat-39 1-1)],
[wn(1155228,verb(consumption)), wn(1157345,verb(consumption)),
wn(1168626,verb(consumption))], %Ev, [],
subj, [15024,4359], %subj,
obj, [1740], %obj,

implicit args(%Ev, []),
concept for(%Ev, eat),
source of concept(%Ev, guessed verb),
verbnet role(Agent, %Ev, %subj),
verbnet role(Patient, %Ev, %obj),
vn sem(take in(during(%Ev), %subj, %obj))).

First consider the UL entry in (41). It corresponds to the word eat in its transitive V-SUBJ-OBJ use
and has a VerbNet class with WordNet correspondences. The subj and obj arguments have selec-
tional restrictions of WordNet synsets [15024, 4359] and [1740]. Then the VerbNet mapping indi-
cates that there are no implicit arguments and that the concept of the event is the string eat (a seman-
tics rewrite rule will assign the appropriate WordNet synset (section 6.1)). The verbnet role facts
assign the Agent role to the subject and the Patient role to the object.7 Finally, the VerbNet seman-
tics is recorded; this is not currently used by the semantic rules.

Even with the UL tuned for the XLE semantic rules, there are some discrepencies which must be
taken into account. For example, many VerbNet mappings refer to OBL(ique) arguments. Due to the
f-structure assignments, these may be either a syntactic OBL or in the ADJUNCT set as prepositional
phrases. As such, the rewrite rules look first for an OBL and if none if found, then for a PP in the
ADJUNCT set.

The UL entry and the semantic rewrite rule that does the mapping mention sortal restrictions(eat
subj = [15024, 4359]; obj = [1740]). VerbNet, and other resources, provide sortal restrictions on
the arguments of verbs. However, applying sortal restrictions obligatorily may be very dangerous
because if the argument does not match the sortal restriction, then the only mapping of the verb can
be eliminated. Mismatches on sortal restrictions can come from a variety of sources. Sometimes
the concept for the restriction or for the argument is incorrect. More often, the mismatch reflects a
type of coercion; for example, organizations are often treated as volitional and/or animate. As such,
sortal restrictions should be implemented with an optimality mechanism similar to that used in XLE
parsing ([Frank et al.(2001)]). Currently, such a mechanism is not in place in the rewrite system used
by the semantic rules and so although the sortal restrictions are recorded, they are not enforced in the
rules.

7The thematic roles in VerbNet and the semantics discussed here have the same problems that have been noticed in the
theoretical linguistics literature. As such, we are working on determining which combinations of roles are most effective
for applications based on the semantics.

7 Discussion, and Conclusions

7.1 Comparison to Glue

The rewrite-based system is used in place of components constructing semantic representations by
more standard means, such as Glue Semantics [Dalrymple(2003)]. A comparison of Glue and rewrite
semantic construction reveals a number of theoretical and practical pros and cons.

In practical terms, the transfer/rewriting system provides a relatively straightforward tool for
efficiently manipulating f-structures, which should be accessible to grammarians with little or no
background in formal theories of semantic construction like Glue- or Montague-semantics. This tool
comes with the XLE.

Theoretically, the rewrite system imposes few interesting constraints on what kinds of represen-
tation can be constructed. Unlike Glue, for example, there is no elegant account of scope ambiguity
derived from the theory of semantic construction. The rewrite approach allows semantic construc-
tion to be sensitive to features of the meaning language in a way that Glue expressly forbids. This
can be convenient when quickly developing a broad-coverage system, but it provides few constraints
and guides to the rule writer, allowing for theoretically unsound analyses and implementations.

The feeding and bleeding nature of the rewrite rules means that, unlike unification- or Glue-based
semantics, the semantic construction rules cannot easily be run in reverse for generation purposes.
Given that the XLE LFG grammars can be run in both the parsing and generation direction, having
an accompanying semantics for both parsing and generation is desirable and opens a broader range
of applications. Without inherent reversibility, the semantic rewrite rules have to be written in two
sets and maintenance becomes a serious issue since a change in the f-structure to semantics rules can
necessitate a corresponding change in the semantics to f-structure rules.

While it would be a stretch to call the rewrite approach a theory of the syntax-semantics interface
or semantic construction, it does provide a powerful and efficient tool for the task. But the way in
which they are produced has no bearing on the theoretical validity of the semantic representations
themsleves: we would claim that the representations described are thoroughly defensible from the
point of view of formal semantics.

7.2 Cross-linguistic Application

The technique of mapping from f-structures to semantics described in this paper can be applied cross-
linguistically. Given the degree of abstraction and generality already present in f-structures for dif-
ferent languages [Butt et al.(1999)], one can port semantic rules from one language to another. As an
experiment, an initial port of the rules to Japanese, using the Japanese ParGram grammar as a basis
([Masuichi and Ohkuma(2003)]), was successfully conducted ([Umemoto(2006)]).

Some of the rules described above, such as the context-inducing adverbs, are lexicalized. These
need to be ported to apply to the corresponding lexical items in other languages. In addition, some
constructions that are present in English and that need to be manipulated by the semantic rules may
not be present in other languages. Leaving rules for these in the semantics will not hurt in that they
will never trigger, but for clarity they should be removed. Similarly, other languages may have con-
structions which are not covered by the rules described here because English does not have them.
We anticipate that it should be possible to use the rewrite system to process such constructions effi-
ciently.

A more serious problem in the cross-linguistic application of this approach is in the mapping
of concepts and roles which depended on WordNet and VerbNet respectively. There are WordNets,
and ontologies, for a variety of languages and so for these languages it is possible to incorporate

these resources as the English semantics uses WordNet. Broad-coverage role mapping resources like
VerbNet are much rarer for other languages and so if this type of role is needed for the semantics, then
the lexical resources may need to be boot-strapped in some way. Fortunately, however, the semantic
rules can run independently of concepts and roles, applying only the rules which convert f-structures
into semantic structures, such as the context-introducing and flattening rules (section 3). For many
purposes, these may be sufficient even without concepts and roles.

7.3 Summary

This paper discussed how the XLE general purpose ordered rewrite rule system is used to produce
semantic representations from syntactic f-structures. The rules apply efficiently because they oper-
ate on the packed input of f-structures to produce packed semantic structures. In addition to rules
which convert the syntactic structure to a semantic one, there are rules that use external resources to
replace words with concepts and grammatical functions with roles. Although the system described
here could by no means be described as a theory of semantic construction or the syntax-semantic
interface, from a practical stand point it can efficiently and robustly produce theoretically defensible
semantic structures from broad-coverage syntactic ones.

Appendix: Complex Example

Sentence: Mary does not believe that a small boy is five inches taller than John.

F-structure:

"Mary does not believe that a small boy is five inches taller than John."

'believe<[1:Mary], [156:be]>'PRED

'Mary'PRED

properNSYNNTYPE

HUMAN +, NUM sg, PERS 31

SUBJ

'be<[446:tall]>[209:boy]'PRED

'boy'PRED

'small'PRED311ADJUNCT

countCOMMONNSEM

commonNSYN
NTYPE

'a'PREDDETSPEC

NUM sg, PERS 3209

SUBJ

'tall<[209:boy]>'PRED
[209:boy]SUBJ

'more<[468:than]>'PRED

'than<[479:John]>'PRED

'John'PRED

properNSYNNTYPE

HUMAN +, NUM sg, PERS 3479

OBJ

468

OBL-COMPAR

'inch'PRED

measureCOMMONNSEM

commonNSYN
NTYPE

'five'PRED385NUMBERSPEC

NUM pl, PERS 3409

ADJUNCT

ADJUNCT-TYPE degree, NUM pl-3

ADJUNCT

446

XCOMP-PRED

PERF -_, PROG -_, TENSE presTNS-ASP

CLAUSE-TYPE decl, PASSIVE -156

COMP

'not'PRED
negADJUNCT-TYPE122

ADJUNCT

PERF -_, PROG -_, TENSE presTNS-ASP

CLAUSE-TYPE decl, PASSIVE -30

Semantics:

context head(t,not:11)
context head(ctx(be:40),be:40)
context head(ctx(believe:71),believe:71)
context head(ctx(tall:55),tall:55)

in context(t,cardinality(Mary:1,sg))
in context(t,role(mod(degree),ctx(believe:71),not:11,normal))
in context(ctx(be:40),pres(be:40))
in context(ctx(be:40),role(copula,be:40,ctx(tall:55)))
in context(ctx(believe:71),pres(believe:71))
in context(ctx(believe:71),proper name(Mary:1,person,Mary))
in context(ctx(believe:71),role(Agent,believe:71,Mary:1))
in context(ctx(believe:71),role(Theme,believe:71,ctx(be:40)))
in context(ctx(tall:55),cardinality(John:67,sg))
in context(ctx(tall:55),cardinality(boy:36,sg))
in context(ctx(tall:55),specifier(boy:36,a))
in context(ctx(tall:55),measure(inch:48,inch:48,five))
in context(ctx(tall:55),proper name(John:67,person,John))
in context(ctx(tall:55),role(mod(degree),boy:36,small:30,normal))
in context(ctx(tall:55),comparative diff(tall:55,boy:36,John:67,pos,inch:48))

lex class(believe:71,[vnclass(consider-29 9-2),prop-attitude])
lex class(not:11,[sadv,impl pn np])
sortal restriction(ctx(be:40),[1740])
sortal restriction(Mary:1,[7899136,15024])
alias(John:67,[John])
alias(Mary:1,[Mary])
word(John:67,John,noun,0,67,ctx(tall:55),[[9487097]])
word(Mary:1,Mary,noun,0,1,t,[[9482706]])
word(be:40,be,verb,0,40,ctx(be:40),[[2579744], [2591280], [2629830], [2578719],

[2725216], [2639228], [2595485], [2422266]])
word(believe:71,believe,verb,0,71,ctx(believe:71),[[675183], [681247], [712804],

[676176], [675971]])
word(boy:36,boy,noun,0,36,ctx(tall:55),[[10131706], [9725282], [10464570], [9500236]])
word(inch:48,inch,noun,0,48,ctx(tall:55),[[13469892], [13533066]])
word(not:11,not,adv,0,11,t,[[24548]])
word(small:30,small,adj,0,30,ctx(tall:55),[[1443454], [1467170], [2419704], [1708858],

[1588010]])
word(tall:55,tall,adj,0,55,ctx(tall:55),[[2466583], [2088817], [786375], [678281]])

References

[Butt et al.(1999)] Butt, Miriam, Stefani Dipper, Anette Frank, and Tracy Holloway King. 1999.
Writing large scale parallel grammars for English, French and German. In Proceedings of
LFG99.

[Crouch(2005)] Crouch, Dick. 2005. Packed rewriting for mapping semantics to KR. In Proceed-
ings of the Sixth International Workshop on Computational Semantics.

[Crouch et al.(2006)] Crouch, Dick, Mary Dalrymple, Ron Kaplan, Tracy
King, John Maxwell, and Paula Newman. 2006. XLE documentation.
http://www2.parc.com/isl/groups/nltt/xle/doc/xle toc.html.

[Crouch and King(2005)] Crouch, Dick and Tracy Holloway King. 2005. Unifying lexical re-
sources. In Proceedings of the Interdisciplinary Workshop on the Identification and Repre-
sentation of Verb Features and Verb Classes.

[Dalrymple(2003)] Dalrymple, Mary. 2003. Lexical Functional Grammar. Academic Press. Syntax
and Semantics, vol 34.

[Oepen et al.(2004)] et al., Stefan Oepen. 2004. Som a hoppe etter wirkola? unpublished
manuscript.

[Fellbaum(1998)] Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database. The
MIT Press.

[Frank(1999)] Frank, Anette. 1999. From parallel grammar development towards machine transla-
tion. In Proceedings of the MT Summit VII.

[Frank et al.(2001)] Frank, Anette, Tracy Holloway King, Jonas Kuhn, and John T. Maxwell III.
2001. Optimality theory style constraint ranking in large-scale lfg grammars. In P. Sells, ed.,
Formal and Empirical Issues in Optimality Theoretic Syntax. CSLI Publications.

[Gurevich et al.(2006)] Gurevich, Olga, Richard Crouch, Tracy Holloway King, and Valeria
de Paiva. 2006. Deverbal nouns in knowledge representation. In Proceedings of FLAIRS.

[Kaplan et al.(2004)] Kaplan, Ron, John T. Maxwell III, Tracy Holloway King, and Richard
Crouch. 2004. Integrating finite-state technology with deep LFG grammars. In Proceedings of
the Workshop on Combining Shallow and Deep Processing for NLP (ESSLLI).

[Kipper et al.(2000)] Kipper, Karin, Hoa Trang Dang, and Martha Palmer. 2000. Class-based con-
struction of a verb lexicon. In AAAI-2000 17th National Conference on Artificial Intelligence.

[Levin(1993)] Levin, Beth. 1993. English Verb Classes and Alternations. Chicago University Press.

[Masuichi and Ohkuma(2003)] Masuichi, Hiroshi and Tomoko Ohkuma. 2003. Constructing a
practical Japanese parser based on Lexical-Functional Grammar. Journal of Natural Language
Processing 10:79–109. in Japanese.

[Maxwell and Kaplan(1991)] Maxwell, John and Ron Kaplan. 1991. A method for disjunctive con-
straint satisfaction. Current Issues in Parsing Technologies .

[Maxwell and Kaplan(1996)] Maxwell, John and Ron Kaplan. 1996. An efficient parser for LFG.
In M. Butt and T. H. King, eds., Proceedings of the First LFG Conference. CSLI On-line Pub-
lications.

[Riezler et al.(2002)] Riezler, Stefan, Tracy Holloway King, Ron Kaplan, Dick Crouch, John
Maxwell, and Mark Johnson. 2002. Parsing the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

[Umemoto(2006)] Umemoto, Hiroshi. 2006. Implementing a Japanese semantic parser based on
Glue approach. In Proceedings of The 20th Pacific Asia Conference on Language, Information
and Computation.

