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Abstract

Developing large-scale deep grammars in a constraintebfees@ework such
as Lexical Functional GrammarKg) is time-consuming and requires sig-
nificant linguistic insight. Recently, treebank-basedstaint-grammar ac-
quisition approaches have been developed as an altertatiand-crafting
such resources. While treebank-based approaches are oxdeage and
robust and achieve competitive evaluation results for manguages, the
granularity of the linguistic analyses provided by tredbdased resources
tends to be less fine-grained than what is offered by stathesfirt hand-
crafted grammars. This paper presents an approach to ettteriginglish
DCU LFG annotation algorithm with more detailed f-structure imh@tion
to provide probabilistic treebank-baseglc grammars with rich feature in-
formation comparable to that implemented by the hand-edafnglishxLE
grammar, while maintaining the robustness and the covesbgeebank-
based stochastic grammars.

1 Introduction

Robustly parsing natural language has been the focus dcingtséor the last de-
cades, with frameworks evolving that attempt to go beyordahalysis of con-
stituency and hierarchical order to provide a more absteaet of linguistic anal-
ysis. Lexical Functional GrammarKG) (Bresnan and Kaplan, 1982; Dalrymple,
2001), among others, is one approach that combines twaslebfeepresentation,
namely constituent structure and functional structureiciviare related by a pro-
jection architecture where functional information is ethed in terms of functional
descriptions annotated on constituents in phrase-steuctles. By employing
both representationsfFG provides insight into the surface as well as the deeper,
more abstract properties of natural language syntax. litiaddLFG has proven
to be a theory that can serve as the backbone for a computhtioalysis of nat-
ural language. These features have led to the developmeongbutational FG
grammars that allow for an automatic syntactic analysisatfiral language.

Over time, various methodologies of developing computatioFG grammars
have evolved. One approach that has proven highly suct¢ésshe employment
of a rule-basedLE LFG parser (Crouch et al., 2010) where the manual encoding of
syntactic rules and functional descriptions provides gp&eel highly detailed syn-
tactic analysis that forms the input to the computation afraantic representation
at a subsequent processing step (Crouch and King, 2006).

In general, manual development of large-scale deep gramfaees a num-
ber of challenges. First, language data is complex andd/arel some perfectly
legitimate constructions may be outside the coverage ofgthenmar. Second,
“real” input may contain typos and disfluencies not envisklgge the hand-crafted

tThis research is supported by the Science Foundation tt¢{@rant 07/CE/11142) as part of the
Centre for Next Generation Localisation (www.cngl.ie) afdin City University.
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grammar. Third, even highly efficiemfG parsing architectures operating on de-
tailed hand-crafted grammars can be significantly slownan some state-of-the-art
treebank-based stochastic parsers. Because of this,oft8r@ge on unrestricted
language data can often only be achieved by taking shost-&ither combining
fragment analyses in parser output or constraining the atmfucomputation to
only partially explore sections of the full parsing searphce.

An alternativebcu LFG approach (Cahill et al., 2004) uses robust treebank-
based stochastic parsers that automatically produce Pdmneebank style (Mar-
cus et al., 1993) trees. Functional information is providga@n f-structure annota-
tion algorithm (Burke, 2006) that automatically annotdtesbank-style trees with
f-structure information. In this approach, both trees astidcture information are
provided automatically, reducing human grammar develaypratfort. Up to now,
treebank-basedcu LFG f-structures encoded substantially less information com-
pared to the rich and detailed f-structures produced by #melttraftedxLE LFG
grammars, even though the treebank-based approach autperthe hand-crafted
grammars on the restricted core (preds-only and slightlgreled) feature sets in
the PARC700 evaluation gold standard (Cabhill et al., 2008). Becaidbe lack
of detail, however, to date treebank-based f-structurpututould not be used for
further semantic processing as implemented by Crouch ang (2006).

This paper attempts to combine the best of the two worldstinbeistic depth
and detail of the f-structures provided by hand-crafted LFG grammars with the
coverage, robustness and parse quality provided by thenatitbogrammar acqui-
sition methodology of the treebank-basedu LFG approach. In order to achieve
this, we extend the f-structure annotation algorithm otteebank-basedcu LFG
grammar for English with more detailed f-structure infotioa, approaching the
feature granularity and linguistic sophistication of ttetes-of-the-art hand-crafted
XLE LFG grammar for English.

We currently achieve an f-score of 80.20 against the fulluieaset produced
by the XLE parser for a test suite of 720 sentences designed to evdhetse-
mantic representation of theLe grammar, and 73.70 against the corresponding
semantic representations taking the treebank-baseddtste output as input to
the XFR-based semantic construction, substantially improvingantier rewriting-
based approaches to map treebank and annotation algdrédbket f-structures to
XLE output. Furthermore, evaluating the f-structure outpuheftreebank-based
parsing pipeline with the extended f-structure annotagilgiorithm against the fea-
tures of theeARC700 gold standard, we achieve an f-score of 83.59, outpuitfior
both earlierxLE- and treebank-basadG parsing results.

The paper is structured as follows: section 2 reviews ttie-gtathe-art in com-
putationalLFG grammars for English, followed by a particular linguisticaenple
and how the hand-craftexi E LFG and treebank- and annotation algorithm-based
DCU LFG grammars attempt to provide a linguistically motivatedlgsia for it.
Section 3 presents how the gap between theltmmgrammar development archi-
tectures can be closed. Section 4 presents evaluationsiefaliowed by remarks
on future work and the conclusion in section 5.
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2 State-of-the-Art

The aim of parsing natural language has resulted in compogtgrammars in
various constraint-based frameworks, among them Lekoaktional Grammar
(LFG) (Bresnan and Kaplan, 1982; Dalrymple, 2001).

LFG is able to provide cross-linguistically valid analyses bypdoying levels of
representation that abstract away from the surface steucfusentences. Further
more, due to its computational and mathematical tractgbitinas also proven an
excellent theory for use in computational linguistics (Met and Kaplan, 1996),
supporting a combination of theoretically-founded, déeguistic and computa-
tionally efficient analyses.

For the purpose of this paper, we restrict ourselves to diog two state-of-
the-artLFG grammars for English: the hand-craftade grammar in section 2.1
and thepcu LFG treebank- and annotation algorithm-based approach imsect
2.2, followed by an exemplary linguistic issue, namely a-tawal dependency,
and how the two approaches cope with it.

2.1 TheEnglish XLE grammar

XLE is an efficient rule-based grammar development platformeldped at Palo
Alto Research CentepARC) and consisting of cutting-edge algorithms for parsing
and generation usingrG grammars, along with a user interface for writing and
debugging.FG grammars and lexical resources (Crouch et al., 2010).

XLE provides the shared technology platform within the ParGe#fort (Butt
et al., 1999, 2002) that aims at developing paralfet grammars for various lan-
guages such as English, German, French, Norwegian, Japangkish and Urdu.
Besides providing computationally efficient analyses fatunal language, a main
focus of ParGram lies on the cross-linguistically validlgsis of natural language,
making theLFG analyses as parallel and informative as possible acrogsdaes.

The EnglishxLE grammar is part of a larger system that maps text to an Ab-
stract Knowledge RepresentationkR) which can then be used for applications
such as search, question answering (Bobrow et al., 2007)ealadting text (Bier
et al., 2009). Figure 1 shows the basic system pipeline.

In order to break text into sentences and sentences intmgpKaite-state
transducersHsTs) are applied. These are also used for the morphologicat com
ponent, where each word is analyzed and morphologicalrirdtion is passed on
to thexLE grammar. Hand-coded syntax rules in tkike grammar pick up the
morphological information and add constituent structurd functional informa-
tion. Like all rule-based FG grammars, the output of the syntax is a c-structure
(constituent structure) (Figure 2) that encodes constityend linear order, and
an f-structure (functional structure), encoding funcéibimformation such as the
predicate-argument structure and semantically impofeattires such, e.g. tense
and number (see Figure 3). In cases of syntactic ambiguiti as PP-attachment,
the XLE grammar outputs a packed representation of all possiblgsasa which
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Figure 1:XLE pipeline

allows optimality marks and a stochastic disambiguatiomponent to choose be-
tween them in further processing. Optimality Theory markshie syntax rules
indicate which analyses are (dis)preferred (Frank et 8881
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Figure 2: C-structure fov\e enjoy conferencing in Ottawa.

In a later step, the syntactic information contained in tis&dicture is passed
on toXFR ordered rewrite rules that map f-structure information s@mantic rep-
resentation by using external resources to replace worthlsooncepts and gram-
matical functions with semantic roles (Crouch and King, @0@-urther rewriting
by XFR rules converts the semantic representation into an Alsikaowledge
Representation.
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"We enjoy conferencing in Ottawa."

[PRED ‘enjoy<[21:we], [67:conferencing}’
2 [PRED 'we'
SUBJ 365 [NTYPE [NSYN pronoun ]

370 [CASE nom, HUMAN +, NUM pl, PERS 1, PRON-TYPE pers
[PRED  'conferencing<[21:we}>'
SUBJ [21:we]
[PRED ‘'in<[136:Ottawa}'

PRED 'Ottawa

136 CHECK[_LEX-SOURCEmorphology ]

OBJ 833 i i
ADJUNCT. 838 INTYPE NSEM[PROPERLOCATION-TYPEcity, PROPER-TYPElocation ]]]‘

XCOMP 1007 NSYN proper

ﬁgg 1017 |CASE obl, NUM sg, PERS 3
1199 [PSEM <|0C >
1312|PTYPE  sem

157

187 67|CHECK [ LEX-SOURCEguesser, _SUBCAT-FRAMEV-SUBJ ]
2001 1or3rNs-ASP [PERF-_,PROG + ]
2106 1433 |PASSIVE -, VTYPE main
2178|CHECK [ SUBCAT-FRAMEV-SUBJ-XCOMPprog
5}33 TNS-ASP  [MOOD indicative, PERF-  _, PROG- _, TENSEpres ]

1100 |CLAUSE-TYPEdecl, PASSIVE -, VTYPE main

Figure 3: F-structure fove enjoy conferencing in Ottawa.

In cases where the parser produces a large number of anakisesises a
stochastic disambiguation model (Riezler et al., 2002hédonLFG analyses for
a sub-set of Penn-Il Treebank sentences using some informfadm the Penn-I
Treebank trees to guide theE analyses. For sentences wherexhe grammar
cannot produce a spanning parse, i.e. a complete analystsefentire inputxLE
is able to produce a sequence of largest well-formed fratjaneasdyses. This pro-
vides a degree of robustness for language data outsidetbeage of the grammar
and also allows for “ungrammatical” or fragmented languyageuding typos etc.

2.2 TheDcuU LFG annotation algorithm

Annotation algorithms and wide-coverage treebank-basedsystems have been
developed in the Dublin City UniversitypCu) GramLab project for English, Chi-
nese, French, Spanish, Arabic and German. The treebaekHoas annotation al-
gorithm for English (Cahill, 2004; Cahill et al., 2008), ggates c- and f-structures
for sentences in a different manner than xn& grammar: making use of reliable
treebank-parsers, the f-structure annotation algorithnotates the nodes in the
tree with f-structure equations.

In general, the parsing pipeline comprises the followingtgafirst, a text
breaker splits running text into sentences. These are thesseg by a treebank-
trained stochastic parser (Charniak and Johnson, 2008},2i802), which creates
trees in the Penn-1l Treebank style (Marcus et al., 1993 tfdebank function la-
bel tagger (Chrupata et al., 2007) (also trained on the Pleaneebank) enriches the
barecFG parser output trees with further information by assignimgibank func-
tion labels (where possible), e.g. addiagJto subject noun phrasesi§-sBJ),
andLoc to locative prepositional phrases®LOC). This information helps the
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Figure 4:Dcu pipeline

f-structure annotation algorithm to assign f-structureaipns to the tree nodes
(including the terminal nodes). A constraint solver cdeand resolves the f-
structure equations and produces an f-structure. The tiggt the long-distance
dependency resolution module, resolves non-local depeieke using automati-
cally acquired subcategorisation frames and finite appratibns of functional-
uncertainty equations (all automatically extracted frdm t-structures automati-
cally generated from the training set of the original Peniidebank trees). See
Figure 4 for a schematic overview of tbeu pipeline.

S
NP-SBJ VP .
(TsuBj)=| =1
\ T
PRP VBP S
‘ (1 XCOMP) = |
We enjoy VP PP-LOC
T=1 | € (1 ADJUNCT)
\
VPG IN NP
| | 1=1
conferencing in |
NNP
\
Ottawa

Figure 5:Dcu tree with f-structure equations
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Figure 5 shows the Penn-Il Treebank-style treeVilarenjoy conferencing in
Ottawa with the functional equations added by the f-structure &atin algo-
rithm.1 As theCcFG-parser is trained on the Penn-Il Treebank, tree nodes arecha
according to Penn-II conventions and may not necessarihggpond to usualFG
textbook orxLE-style phrase-structure labels.

The Dcu LFG parsing pipeline including the f-structure annotationoaitgpm
has been successfully evaluated on gold standards sucle @arlkc700 (King
et al., 2003), outperforming the rule-based Enghsle grammar and parser by
more than 2% f-score absolute (Cahill et al., 2008).

This provides an excellent basis for further developmetii@bcu processing
pipeline, with a particular focus on the f-structure antiotaalgorithm. However,
as the originabcu system was tuned to produce only basis representations
concentrating on a restricted set of core syntactic and sénrfaatures, it lacks the
detail and linguistic sophistication of the f-structureequced by the hand-crafted
EnglishxLE grammar. In order to close this gap between the treebarddbasd
the hand-crafted grammars, we need to extend the restfietdédre space of the
DCU annotation algorithm to obtain f-structures as detailegLasf-structures.

2.3 An examplelinguistic issue for computational grammars

A recurring problem for computational grammars that gog®bd the analysis of
pure surface structure and provides a linguistically natéd analysis is the treat-
ment of non-local dependencies. Consider the exafgaenjoy conferencing in
Ottawa’. Here we have an unexpressed argument in the subordinasechaith
the subject of the main clause also being the subject of dutaie clause.

In the case of the hand-crafteéG grammar, we can express this information
by writing a lexical entry for the vernjoy, as given in Figure 6, which encodes
this dependency information:

enjoy V. * (" PRED) = ’enjoy (" SUBJ) (" XCOMP) '
( SUBJ) = (" XCOMP SUBJ)

Figure 6: TheLFG lexical entry forenjoy

Whenever the grammar finds a construction with the vepjdy that subcate-
gorizes for asuBJand anxcomp, the subject of the main clause is automatically
made the subject of thecomp.

For the treebank- and annotation algorithm-based parsing pipeline, the
situation is different. Instead of manually encoding infiation on the non-local
dependencies between the main and the subordinate clatiselexical entry, all
that is available is a parser output simplified Penn-Il teeddsstyle tree structure
as in Figure 7.

!Lexical equations are not shown.
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(S (NP (PRP We))
(VP (VBP enjoy)
(S (VP (VBG conferencing)
(PP (IN in)
(NP (NNP Ottawa))))))

Figure 7: Parser output tree

Treebank-traine@ FG parsers such as Charniak and Johnson (2005) and Bikel

(2002) do not capture non-local dependencies. The pargautdree for the exam-
ple sentence contains no information on the missing argtimehe subordinate
clause and does not record the non-local dependency betWweesubject of the
main clause and the subordinate clause. From this tree,almmbasic f-structure
annotation algorithm cannot recover the non-local depecnde

The long-distance dependency resolution module (Cah#il.et2004) in the
DCU LFG parsing pipeline employs statistical methods and workobaws: un-
like the simplified parser output trees, the original Pdanfiréebank contains co-
indexed paths for long-distance dependencies, that mankissing subject in the
subordinate clause with an empty notl#¢SBJ (-NONE*-1)) and relate it to the
subject in the main clause.

Cabhill et al. (2004) apply the f-structure annotation aidpon to the full Penn-
Il treebank trees producing fully non-local dependenseheed f-structures which
record non-local dependencies as corresponding reergsaimcf-structure. From
these non-local dependency-resolved f-structures, IGalal. (2004) learn subcat-
egorization frames and finite approximations of functiomatertainty equations.
These are used in an algorithm to resolve non-local depereteim the f-structure
output and the f-structure with the highest non-local depaeny resolution proba-
bility is chosen.

So instead of making use of lexical information in the vertrsiem as in thexLE
grammar, the long-distance dependencies are learned lfiBPenn-Il Treebank.

3 Closingthe gap

The overall aim of this paper is to show that the gap in detadl granularity of
linguistic representation between the hand-crafted EhglLE grammar and the
treebank-basedcu LFG approach for English can be closed by extendingothe
annotation algorithm.

The proof of concept has been shown by earlier experimeptstes in Hautli
and King (2009). However this paper present a different@ggr that substantially
outperforms previous experiments. This section presaetsno approaches, with
evaluations following in the next section.
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3.1 Using XFR rewriterules

A recent approach (Hautli and King, 2009) attempted to aweie the differences
between the hand-crafted E grammar and the treebank-basstu LFG approach
by using a set okFR rewrite rules that added missing f-structure information t
DCU LFG output, effectively treating thecu system as a black box. This means
that information about theFG tree structure is not taken into account, andxhr
rewrite rules solely operate on tbeu f-structure output. For a schematic view of
the experimental layout see Figure 8.

XFR rewrite rules

DCU annotation
algorithm

!

f-structures —

Figure 8: Schematic view of Hautli and King (2009)

In particular, thebcu LFG pipeline as described in the previous section and its
output was used as is. After reformatting theu LFG output for it to be readable
by XLE, XFR rewrite rules were defined and applied, adding informatiartte
level of f-structure that the@cu LFG system had not yet provided. Additionally,
existing information was modified, such as feature namesvahes, to make it
XLE-compatible.

Below, we provide a very simple example of the kind of ordexee rewrite
rule that is employed in this approach, and although beirmgreesvhat artificial ex-
ample, the principle remains the same for more complicategtcuctions. Figure
9 shows abcu LFG f-structure for the subject pronoun ‘we’ that is rewritteia v
an XFR rewrite rule. The rule works as follows: the facts on the hefbd side of
the rewrite rule (before the arrow) constitute the inputréisture facts that must be
matched for the rule to apply. If they cannot be matched, theedoes not apply.
In cases where the rule fires, the facts on the left side argttemvto the facts on
the right hand side of the rule (after the arrow). Forms bagip with a percent
sign @9 are variables that can be instantiated by f-structures.

Consider thexFr rule in Figure 9: the variabl&oXis the f-structure which
contains aubj ;thissubj isthen referred to by the varial#éSubj. This%Subj
f-structure must haveared attribute with valugoron , anumattribute with value
pl and apron _form attribute with the valuave in order for thexrr rule to
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input:

pred pro
subj [num pl
pronform we

XFRrule

subj(%X,%Subj), pred(%Subj,pron), num(%Subj,pl),

pron _form(%Subj,we)

==>

SUBJ(%X,%Subj), PRED(%Subj,we),

NTYPE(%Subj,%Ntype), NSYN(%Ntype,pronoun),

CASE(%Subj,nom), HUMAN(%Subj,+), NUM(%Subj,pl), PERS(% Subj,1),
PRON-TYPE(%Subj,pers).

output:

PRED pron
SUBJ|NTYPE [NSYN pronounﬂ
CASENOm HUMAN + NUM pl PERS1 PRONTYPE pers

Figure 9: Rewriting of the pronoune

match. The input f-structure in Figure 9 matches the facjsired by thexFRr rule,
and is rewritten to the output f-structure shown at the ottd Figure 9. In total,
the XFR system mapping fronbcu to XLE f-structures consists of 162 manually
coded rewrite rules that add and modify information from iway f-structures.

Evaluation shows that adding information to theu LFG f-structures byxFrR
rules and then evaluating these against the f-structureduped by the hand-
crafted XLE grammar proves successful. However, issues remain wheicalle
entries would have to be listed in th&R rules in order to make their analysis
parallel to thexLE analysis, e.g. in the case of distinguishing first and laste®g

An alternative approach based on extendingttbe LFG annotation algorithm
directly without the intermediate step ®FR rewriting will be discussed in the
following section.

3.2 Extending the bcu annotation algorithm

Instead of applying<Fr rewrite rules as in Hautli and King (2009), the approach
explored in this paper is to directly enrich theu annotation algorithm with the
full feature inventory, detail and sophistication of thentlecraftedxLE grammatr,
as shown in Figure 10. There is no intermediate step betweerandXLE output,
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and they are compared directly. In addition, we retain aiorrsf the original
annotation algorithm (Cabhill, 2004) and its feature space.

extended
DCU annotation
algorithm

!

f-structures —

Figure 10: Schematic view of 2010 experiment

The overallbcu pipeline is not changed for this paper, only the f-strucaumaota-
tion algorithm is extended, as shown in Figure 11.

raw text

|

text breaker

|

shallow parser

)
)

!
function tagger )
)
]

|

annotation algorithm

original ) [__extended

! |

constraint solver )

|

long-distance dependency resolver)

!

f-structures

A M MY M MY M

Figure 11: Extendedcu Annotation Algorithm

Apart from extending the feature space, some existing fegtwere also re-
named and their representation in the f-structure chanedive an overview of
the feature space of thecu LFG annotation algorithm, Table 1 lists the original
Dcu features (36 in total) with the newly added f-structure diees in bold (30
added). Besides adding features, we also extended the ofifigature values to
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make thebcu f-structures more informative, for instance the valuestfirame’
and ‘lastname’ of the featur® AME-TYPE.

original features added features
adegree, adjunct, aquant, comp, cgngdjunct-type, adv-type, atype, case,
coord-form, det-form, focus-int, mod, clause-type, coord, common, deg-
num, number, number-type, obj, ohj-dim, degree, deixis, det, focus, gend-
th, obl, obl-ag, obl-compar, passivesem, human, inf-type, mood, namg-
pcase, perf, poss, prog, pron-formtype, nsem, nsyn, ntype, part, prego-
pron-int, pron-rel, proper, prt-form, ord_form, proper-type, psem, ptype,
guant, stmt-type, subj, subord-formspec, time, tns-asp, vtype, xcomp-
tense, topic-rel, xcomp pred

ext ended features

Table 1: Original and extended feature space ofitbe annotation algorithm

Figures 12 and 13 show the f-structures \dg enjoy conferencing in Ottawa.,
exemplifying tense and aspect as it is represented in tiggnatiand the extended
DCU LFG annotation algorithm, respectively. Thense feature, which is on the
top level of the f-structure in the originalcu representation, is moved to thas-
AsP f-structure that is complemented by the aspectual featumesb, PERFand
PROG

subj  [num pl, pred pro, pron_formwe ]

adjunct |1 obj [num sg, pers 3, pred Ottawa, proper location ]
xcomp pform in

pred conference, prog +, stmt_type declarative

-1 |pred enjoy, stmt_type declarative tense pres

Figure 12: Tense and aspect in the originalu f-structures

Following the general methodology of making theu f-structures as closely
resembling the hand-crafted. E grammar as possible, the representation of tense
and aspect in the extendedtu f-structures is now equivalent to the representa-
tion in thexLE grammar. This enables the output of the treebank- and aiorota
algorithm-baseacu LFG pipeline to serve as valid input to tk&R semantics. As
the correctxLE-style representation of tense and aspect is crucial faoingetalid
semantic representations, it is necessary to capturentioisriation as completely
and precisely as possible.

Another important point, in particular for the corpora walkenated on, was the
precisexLE-style analysis of first and last names (aslahn Smith). In order to
add this information, the relation of tlerG parse tree nodes is taken into consid-
eration. If two (or more) proper names are sisters and thenkewf the leftmost
node can be found in a list of first names, we annotate it wighriformation that
it is a first name. This is recursively done until one of théesisto the right is not

282



[PRED ‘enjoy<[-1-XCOMP:conference}[-1-SUBJ:we]

[PRED ‘we'
SUBJ NTYPE [NSYN pronoun ] l
|ICASE nom, HUMAN +, NUM pl, PERS 1, PRON-TYPEpers

CHECK [_SUBCAT-FRAM B/-SUBJexpl-XCOMPInf ]

TNS-ASP [MOOD indicative, PERF - _,PROG- _, TENSE pres ]
[PRED ‘conference
SUBJ  [-1-SUBJ:we]

PRED 'in<[-2-OBJ:Ottawa}"
PRED 'Ottawa!
ADIUNCT] |oBs  |NTYPE [NSEM[PROPERPROPER-TYPHocation ]]}

XCOMP NSYN proper
CASE obl, NUM sg, PERS 3
-2 |IPTYPE sem

CHECK [ SUBCAT-FRAMEV-SUBJ]

TNS-ASP [MOOD indicative, PERF - —, PROG+ ]
ICLAUSE-TYPEdecl, PASSIVE -, VTYPE main
-1 |CLAUSE-TYPEdecl, PASSIVE -, VTYPE main

Figure 13: Tense and aspect in the extenoed f-structures

a first name, annotating this node with the feature for lasgte® This is a substan-
tial improvement over the approach wikrr rewrite rules, because in addition
to listing first names, last names also have to be listed. Bwidering node in-
formation, this can be automatically done, with middle naralso being detected
(e.g. John Adam Smith). As a result, the precision for any corpora is substasgtiall
increased, but in particular for those containing newsp#pd, as is the case for
the PARC700.

4 Evaluation

The evaluation covers two aspects we are concerned withquhkty of the ex-
tendedbcu f-structures and the overall coverage of tieu annotation algorithm.

With respect to the quality of the f-structures, the purpokéhe evaluation
is to see how closely the extended treebank- and annotdtiorithm-basedcu
f-structures resemble the hand-craftad= grammar f-structures. For this we use
evaluation measures from information retrieval, namebcjzion (“How accurate
are the extendedcu f-structures?”), recall (“How complete are the extendea
f-structures?”) and f-score, a weighted average of piratiand recall. These mea-
sures are calculated on a per-feature basis, i.e. evemyréeat either theocu or
thexLE side is checked whether it appears on the other side. Theanwhfound
and not found features is calculated and divided by the toialber of features
present. The overall matching results lie between 0 (nafeahatches) and 1 (all
features match). The same methodology is employed wherhingtthe semantic
representations that tlecu and thexLE f-structures generate.
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Concerning the evaluation of the coverage ofttkae) annotation algorithm, the
aim is to detect constructions where either the stochastisep or the annotation
algorithm fails to produce a valid representation.

4.1 Quality of representations
4.1.1 F-Structure matching

In the first set of experiments we measure the similarity @élank- and annota-
tion algorithm-basedcu and hand-craftedLE grammar f-structures and compare
our results to the architecture proposed in Hautli and KBGPP) withxFR rewrite
rules. Both architecturexgr rewrite rule approach vs. extendedu annota-
tion algorithm) are tested on a testsuite of 720 sentencestrewted byrARC and
designed to test the semantic representation of the Englistgrammar.

Given the difference that theLE grammar can produce multiple f-structures
for a sentence and tlmcu grammar cannot, we match the single st analysis
against eaclxLE analysis and choose the best matching result.

Hautli and King (2009) extended DcuU system
precision| recall | f-score | precision| recall | f-score

[semtest] 70.31 | 67.69] 68.98 | 8344 [ 77.22 ] 80.20 |

Table 2: Evaluation results for semantics testsuite

The results in Table 2 show that the features can be recatetrguccessfully
in both architectures. However, extending theu algorithm is more effective
than using the set ofFRr rewrite rules, because we can allow for operations that
are unavailable to the rewrite approach, such as takingaictount the relation of
nodes in the tree, as shown for the annotation of first andhkses.

In order to test the quality of the extendedu LFG annotation algorithm more
independently, we evaluate tlecu pipeline against theArRc700 gold standard
which contains 700 randomly extracted sentences from@e28 of Penn-Il Tree-
bank (WSJ section) with an average length of 19.8 words pdesee. The sen-
tences are split into a development set (140 sentences) #st aet (560 sen-
tences). In addition, we compare our evaluation resultb@fkeiktendedcu LFG
approach with theeARC700 evaluation results of the originalcu LFG approach
and thexLE grammar (Cahill et al., 2008).Evaluation on the test set generates
the results in Table 3.

This shows that the extendextu annotation algorithm and parsing pipeline
outperform thexLE grammar and the originalcu annotation algorithm. In ad-
dition to improving the evaluation results for the extendezl version, we also
improved the f-score for the originalcu version from 82.73% in Cabhill et al.
(2008) to 83.88%. This is due to further refinement of the gatimn algorithm.

2Canill et al. (2008) only provide the f-scores for the eviibizs.
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PARC700

XLE grammar | original DcuU | extended bcu
precision — — 85.45
recall — — 81.81
f-score 80.55 82.73 83.59

Table 3:PARC700 evaluation

In order to show in detail how the extendedu system is performing, Table 4
gives the breakdown by dependency relation of the evaluaii@instrArRC700.

Dependency Precision Recall F-score || Dependency Precision Recall F-score
adegree 81 79 80 pcase 91 77 83
adjunct 73 72 73 perf 95 88 92
aquant 33 77 47 poss 88 90 89
comp 69 75 72 precoordform 0 0 0
conj 82 79 80 prog 97 75 85
coordform 74 90 81 pron.form 91 84 88
detform 98 98 98 pronint 0 0 0
focusint 0 0 0 pronrel 68 56 62
mod 80 69 74 proper 87 90 88
num 91 89 90 prt_form 78 78 78
number 89 89 89 quant 84 73 78
numbertype 95 92 94 stmttype 90 82 86
obj 91 87 89 subj 88 69 77
obj_theta 42 45 43 subordform 84 74 79
obl 51 70 59 tense 96 93 95
obl_.ag 87 87 87 topic_rel 39 64 49
obl_compar 57 27 36 xcomp 86 78 82
passive 85 69 77

Table 4: Breakdown by dependency relation of extermed annotation algorithm
againstrARC700

The results show that as far as the f-structure matchingrisezoed, the ex-
tendedbcu annotation algorithm performs well. Especially for feasiof tense
and aspect (e.grENSE, PROG PERHF, where recall and precision are above 95%,
we get the right analysis for most sentences, except in eglsese the treebank-
trainedCFG tree parser produces a wrong tree. The same holds for othieirds
such asNUMBER-TYPE and DET-FORM with matching figures around 95%. Re-
maining issues are notorious cases such as the adjunct digdeodistinction,
where only around 60% of annotations are correct, as welh@shnotation of
O0BJTH with a matching precision of 43%.

4.1.2 Matching of semantic representations

To validate our claim that we can provide treebank- and aiowt algorithm-based
DCU LFG output that can serve as input to tkerR semantic representation, we
match the semantic representations that are generatagthsiextendedcu LFG
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f-structures as input with semantic representations basaging the f-structures
generated by the hand-craftede grammar as input. As a testsuite, we use the
720 sentences that were already used in Section 4.1, actpienmif-score of 73.7.

This is a promising result and although the f-score is loveengared to match-
ing f-structures, the information we capture in the extehdeu f-structure is
comprehensive enough that the semantic representatioesaged from them are
useful.

4.2 Coverage evaluation

In addition to evaluating the quality of the extendsciu f-structures, we also mea-
sure the coverage of the extendedu annotation algorithm (i.e. the percentage
of sentences for which at least one analysis is found). BygugiePARC700 gold
standard, we count the number of parsed sentences, divydix botal number of
sentences.

For both the training and the test set, we get full coveragelirRinary ex-
periments of running thecu annotation algorithm on all of the Penn-1l Treebank
have resulted in coverage of above 98%.

5 Futurework and conclusion

In this paper we have presented the extension obthe LFG annotation algorithm
so that its output can serve as input to #fR semantic representation which re-
quires detailed f-structure information. The experimesitew that the gap in the
richness of the feature space and detail of the f-struckpeesentations between
the treebank-basenicu LFG approach and the hand-craftede grammars can be
closed, which means that there is a possibility of geneggatich and deep.FG
grammars on the basis of treebanks and annotation algarithims technique can
be used not only for English but also for other languagesetfitémy from the fact
that theCcFG trees are automatically created with a treebank-trainbdstoparser
and have good coverage for general unrestricted text orfeagmented text such
asJohn. sings.

One aspect that remains for future work is to test the coeesag performance
of the extended (as compared to the origimatly annotation algorithm on larger
corpora, for instance all of the Penn-Il treebank trainieg 3his would allow for
a more comprehensive assessment of the coverage of thelestsnu annotation
algorithm and could also provide a large-scale rich f-stmec bank that can be
used for other natural language processing tools.

Another area of future work is the long-distance dependenacgiule that has
to be retrained to get more exact probabilities for the g of the non-local
dependencies. Having more exact probabilities will mastlyi improve our eval-
uation results.
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A more long-term goal is the development of an integraied-XLE system,
which would use the currentLE system for in-coverage sentences, but the ex-
tendeddbcu system for out-of-coverage and fragmenting sentence®n@he pos-
itive results for the matching of the semantic represemtatithis would potentially
help in getting a more wide-coverage semantic representati

The paper also shows that by extending ity LFG system, we can outper-
form the earlier approach where theu LFG system was employed as a black box
and rewrite rules were used to modify the f-structures. Tgm@ach here results
in a singlebcu LFG system, which is more efficient and also has higher accuracy
due to the extra information that is available by lookinghet hode relations in the
tree. By being able to take into account tree informationchipreviously could
not be done, we allow for more linguistic insight that can bptared in the final
f-structure representation.

As more researchers wish to build meaning-sensitive agijiics, we can con-
tribute a robust, deep syntactic analysis that can be usedrtber levels of ab-
straction.
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