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Abstract

Developing large-scale deep grammars in a constraint-based framework such
as Lexical Functional Grammar (LFG) is time-consuming and requires sig-
nificant linguistic insight. Recently, treebank-based constraint-grammar ac-
quisition approaches have been developed as an alternativeto hand-crafting
such resources. While treebank-based approaches are wide coverage and
robust and achieve competitive evaluation results for manylanguages, the
granularity of the linguistic analyses provided by treebank-based resources
tends to be less fine-grained than what is offered by state-of-the-art hand-
crafted grammars. This paper presents an approach to extendthe English
DCU LFG annotation algorithm with more detailed f-structure information
to provide probabilistic treebank-basedLFG grammars with rich feature in-
formation comparable to that implemented by the hand-crafted EnglishXLE

grammar, while maintaining the robustness and the coverageof treebank-
based stochastic grammars.

1 Introduction

Robustly parsing natural language has been the focus of research for the last de-
cades, with frameworks evolving that attempt to go beyond the analysis of con-
stituency and hierarchical order to provide a more abstractlevel of linguistic anal-
ysis. Lexical Functional Grammar (LFG) (Bresnan and Kaplan, 1982; Dalrymple,
2001), among others, is one approach that combines two levels of representation,
namely constituent structure and functional structure, which are related by a pro-
jection architecture where functional information is encoded in terms of functional
descriptions annotated on constituents in phrase-structure rules. By employing
both representations,LFG provides insight into the surface as well as the deeper,
more abstract properties of natural language syntax. In addition, LFG has proven
to be a theory that can serve as the backbone for a computational analysis of nat-
ural language. These features have led to the development ofcomputationalLFG

grammars that allow for an automatic syntactic analysis of natural language.
Over time, various methodologies of developing computational LFG grammars

have evolved. One approach that has proven highly successful is the employment
of a rule-basedXLE LFG parser (Crouch et al., 2010) where the manual encoding of
syntactic rules and functional descriptions provides a deep and highly detailed syn-
tactic analysis that forms the input to the computation of a semantic representation
at a subsequent processing step (Crouch and King, 2006).

In general, manual development of large-scale deep grammars faces a num-
ber of challenges. First, language data is complex and varied and some perfectly
legitimate constructions may be outside the coverage of thegrammar. Second,
“real” input may contain typos and disfluencies not envisaged by the hand-crafted

†This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142) as part of the
Centre for Next Generation Localisation (www.cngl.ie) at Dublin City University.
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grammar. Third, even highly efficientLFG parsing architectures operating on de-
tailed hand-crafted grammars can be significantly slower than some state-of-the-art
treebank-based stochastic parsers. Because of this, full coverage on unrestricted
language data can often only be achieved by taking short-cuts: either combining
fragment analyses in parser output or constraining the amount of computation to
only partially explore sections of the full parsing search space.

An alternativeDCU LFG approach (Cahill et al., 2004) uses robust treebank-
based stochastic parsers that automatically produce Penn-II Treebank style (Mar-
cus et al., 1993) trees. Functional information is providedby an f-structure annota-
tion algorithm (Burke, 2006) that automatically annotatestreebank-style trees with
f-structure information. In this approach, both trees and f-structure information are
provided automatically, reducing human grammar development effort. Up to now,
treebank-basedDCU LFG f-structures encoded substantially less information com-
pared to the rich and detailed f-structures produced by the hand-craftedXLE LFG

grammars, even though the treebank-based approach outperforms the hand-crafted
grammars on the restricted core (preds-only and slightly extended) feature sets in
the PARC700 evaluation gold standard (Cahill et al., 2008). Becauseof the lack
of detail, however, to date treebank-based f-structure output could not be used for
further semantic processing as implemented by Crouch and King (2006).

This paper attempts to combine the best of the two worlds: thelinguistic depth
and detail of the f-structures provided by hand-craftedXLE LFG grammars with the
coverage, robustness and parse quality provided by the automatic grammar acqui-
sition methodology of the treebank-basedDCU LFG approach. In order to achieve
this, we extend the f-structure annotation algorithm of thetreebank-basedDCU LFG

grammar for English with more detailed f-structure information, approaching the
feature granularity and linguistic sophistication of the state-of-the-art hand-crafted
XLE LFG grammar for English.

We currently achieve an f-score of 80.20 against the full feature set produced
by the XLE parser for a test suite of 720 sentences designed to evaluatethe se-
mantic representation of theXLE grammar, and 73.70 against the corresponding
semantic representations taking the treebank-based f-structure output as input to
theXFR-based semantic construction, substantially improving onearlier rewriting-
based approaches to map treebank and annotation algorithm-based f-structures to
XLE output. Furthermore, evaluating the f-structure output ofthe treebank-based
parsing pipeline with the extended f-structure annotationalgorithm against the fea-
tures of thePARC700 gold standard, we achieve an f-score of 83.59, outperforming
both earlierXLE- and treebank-basedLFG parsing results.

The paper is structured as follows: section 2 reviews the state-of-the-art in com-
putationalLFG grammars for English, followed by a particular linguistic example
and how the hand-craftedXLE LFG and treebank- and annotation algorithm-based
DCU LFG grammars attempt to provide a linguistically motivated analysis for it.
Section 3 presents how the gap between the twoLFG grammar development archi-
tectures can be closed. Section 4 presents evaluation results, followed by remarks
on future work and the conclusion in section 5.
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2 State-of-the-Art

The aim of parsing natural language has resulted in computational grammars in
various constraint-based frameworks, among them Lexical-Functional Grammar
(LFG) (Bresnan and Kaplan, 1982; Dalrymple, 2001).

LFG is able to provide cross-linguistically valid analyses by employing levels of
representation that abstract away from the surface structure of sentences. Further-
more, due to its computational and mathematical tractability, it has also proven an
excellent theory for use in computational linguistics (Maxwell and Kaplan, 1996),
supporting a combination of theoretically-founded, deep,linguistic and computa-
tionally efficient analyses.

For the purpose of this paper, we restrict ourselves to discussing two state-of-
the-artLFG grammars for English: the hand-craftedXLE grammar in section 2.1
and theDCU LFG treebank- and annotation algorithm-based approach in section
2.2, followed by an exemplary linguistic issue, namely a non-local dependency,
and how the two approaches cope with it.

2.1 The English XLE grammar

XLE is an efficient rule-based grammar development platform, developed at Palo
Alto Research Center (PARC) and consisting of cutting-edge algorithms for parsing
and generation usingLFG grammars, along with a user interface for writing and
debuggingLFG grammars and lexical resources (Crouch et al., 2010).

XLE provides the shared technology platform within the ParGrameffort (Butt
et al., 1999, 2002) that aims at developing parallelLFG grammars for various lan-
guages such as English, German, French, Norwegian, Japanese, Turkish and Urdu.
Besides providing computationally efficient analyses for natural language, a main
focus of ParGram lies on the cross-linguistically valid analysis of natural language,
making theLFG analyses as parallel and informative as possible across languages.

The EnglishXLE grammar is part of a larger system that maps text to an Ab-
stract Knowledge Representation (AKR) which can then be used for applications
such as search, question answering (Bobrow et al., 2007) andredacting text (Bier
et al., 2009). Figure 1 shows the basic system pipeline.

In order to break text into sentences and sentences into tokens, finite-state
transducers (FSTs) are applied. These are also used for the morphological com-
ponent, where each word is analyzed and morphological information is passed on
to the XLE grammar. Hand-coded syntax rules in theXLE grammar pick up the
morphological information and add constituent structure and functional informa-
tion. Like all rule-basedLFG grammars, the output of the syntax is a c-structure
(constituent structure) (Figure 2) that encodes constituency and linear order, and
an f-structure (functional structure), encoding functional information such as the
predicate-argument structure and semantically importantfeatures such, e.g. tense
and number (see Figure 3). In cases of syntactic ambiguity, such as PP-attachment,
the XLE grammar outputs a packed representation of all possible analyses, which
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raw text
↓�� ��text breaker & tokenizer (FST)
↓�� ��morphological analyzer (FST)
↓�� ��XLE grammar
↓�� ��XFR ordered rewriting
↓

AKR

Figure 1:XLE pipeline

allows optimality marks and a stochastic disambiguation component to choose be-
tween them in further processing. Optimality Theory marks in the syntax rules
indicate which analyses are (dis)preferred (Frank et al., 1998).

CS 1: ROOT

Sadj[fin]

S[fin]

NP
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VPv[fin]

V[fin]
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VPall[prog]

VPv[prog]

V[prog]

conferencing

PPcl
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P

in
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NPadj

NPzero

N

Ottawa

PERIOD

.

Figure 2: C-structure forWe enjoy conferencing in Ottawa.

In a later step, the syntactic information contained in the f-structure is passed
on toXFR ordered rewrite rules that map f-structure information to asemantic rep-
resentation by using external resources to replace words with concepts and gram-
matical functions with semantic roles (Crouch and King, 2006). Further rewriting
by XFR rules converts the semantic representation into an Abstract Knowledge
Representation.
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"We enjoy conferencing in Ottawa."

'enjoy<[21:we], [67:conferencing]>'PRED

'we'PRED

pronounNSYNNTYPE

CASE nom, HUMAN +, NUM pl, PERS 1, PRON-TYPE pers370
365

21
SUBJ

'conferencing<[21:we]>'PRED
[21:we]SUBJ

'in<[136:Ottawa]>'PRED

'Ottawa'PRED

morphology_LEX-SOURCECHECK

LOCATION-TYPE city, PROPER-TYPE locationPROPERNSEM

properNSYN
NTYPE

CASE obl, NUM sg, PERS 31017
1007

874
833
136

OBJ

locPSEM

semPTYPE1312
1199
1186

108

ADJUNCT

_LEX-SOURCE guesser, _SUBCAT-FRAME V-SUBJCHECK

PERF - _, PROG + _TNS-ASP

PASSIVE -, VTYPE main1433
1036

573
67

XCOMP

V-SUBJ-XCOMPprog_SUBCAT-FRAMECHECK

MOOD indicative, PERF - _, PROG - _, TENSE presTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main1100
2187
2182
2178
2106
2091

41
187
157

Figure 3: F-structure forWe enjoy conferencing in Ottawa.

In cases where the parser produces a large number of analyses, XLE uses a
stochastic disambiguation model (Riezler et al., 2002) trained onLFG analyses for
a sub-set of Penn-II Treebank sentences using some information from the Penn-II
Treebank trees to guide theXLE analyses. For sentences where theXLE grammar
cannot produce a spanning parse, i.e. a complete analysis for the entire input,XLE

is able to produce a sequence of largest well-formed fragment analyses. This pro-
vides a degree of robustness for language data outside the coverage of the grammar
and also allows for “ungrammatical” or fragmented language, including typos etc.

2.2 The DCU LFG annotation algorithm

Annotation algorithms and wide-coverage treebank-basedLFG systems have been
developed in the Dublin City University (DCU) GramLab project for English, Chi-
nese, French, Spanish, Arabic and German. The treebank-basedLFG annotation al-
gorithm for English (Cahill, 2004; Cahill et al., 2008), generates c- and f-structures
for sentences in a different manner than theXLE grammar: making use of reliable
treebank-parsers, the f-structure annotation algorithm annotates the nodes in the
tree with f-structure equations.

In general, the parsing pipeline comprises the following parts: first, a text
breaker splits running text into sentences. These are then parsed by a treebank-
trained stochastic parser (Charniak and Johnson, 2005; Bikel, 2002), which creates
trees in the Penn-II Treebank style (Marcus et al., 1993). The treebank function la-
bel tagger (Chrupała et al., 2007) (also trained on the Penn-II treebank) enriches the
bareCFG parser output trees with further information by assigning treebank func-
tion labels (where possible), e.g. addingSBJ to subject noun phrases (NP-SBJ),
and LOC to locative prepositional phrases (PP-LOC). This information helps the
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raw text
↓�� ��text breaker
↓�� ��shallow parser
↓�� ��treebank function label tagger
↓�� ��annotation algorithm
↓�� ��constraint solver
↓�� ��long-distance dependency resolution
↓

f-structures

Figure 4:DCU pipeline

f-structure annotation algorithm to assign f-structure equations to the tree nodes
(including the terminal nodes). A constraint solver collects and resolves the f-
structure equations and produces an f-structure. The last step, the long-distance
dependency resolution module, resolves non-local dependencies using automati-
cally acquired subcategorisation frames and finite approximations of functional-
uncertainty equations (all automatically extracted from the f-structures automati-
cally generated from the training set of the original Penn-II treebank trees). See
Figure 4 for a schematic overview of theDCU pipeline.

S

NP-SBJ VP .
(↑ SUBJ) =↓ ↑ = ↓

PRP VBP S .
(↑ XCOMP) =↓

We enjoy VP PP-LOC
↑ = ↓ ↓ ∈ (↑ ADJUNCT)

VPG IN NP
↑ = ↓

conferencing in
NNP

Ottawa

Figure 5:DCU tree with f-structure equations
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Figure 5 shows the Penn-II Treebank-style tree forWe enjoy conferencing in
Ottawa with the functional equations added by the f-structure annotation algo-
rithm.1 As theCFG-parser is trained on the Penn-II Treebank, tree nodes are named
according to Penn-II conventions and may not necessarily correspond to usualLFG

textbook orXLE-style phrase-structure labels.
The DCU LFG parsing pipeline including the f-structure annotation algorithm

has been successfully evaluated on gold standards such as the PARC700 (King
et al., 2003), outperforming the rule-based EnglishXLE grammar and parser by
more than 2% f-score absolute (Cahill et al., 2008).

This provides an excellent basis for further development oftheDCU processing
pipeline, with a particular focus on the f-structure annotation algorithm. However,
as the originalDCU system was tuned to produce only basicLFG representations
concentrating on a restricted set of core syntactic and semantic features, it lacks the
detail and linguistic sophistication of the f-structures produced by the hand-crafted
EnglishXLE grammar. In order to close this gap between the treebank-based and
the hand-crafted grammars, we need to extend the restrictedfeature space of the
DCU annotation algorithm to obtain f-structures as detailed asXLE f-structures.

2.3 An example linguistic issue for computational grammars

A recurring problem for computational grammars that goes beyond the analysis of
pure surface structure and provides a linguistically motivated analysis is the treat-
ment of non-local dependencies. Consider the example‘We enjoy conferencing in
Ottawa.’. Here we have an unexpressed argument in the subordinate clause, with
the subject of the main clause also being the subject of subordinate clause.

In the case of the hand-craftedLFG grammar, we can express this information
by writing a lexical entry for the verbenjoy, as given in Figure 6, which encodes
this dependency information:

enjoy V * (ˆ PRED) = ’enjoy 〈(ˆ SUBJ) (ˆ XCOMP) 〉’
(ˆ SUBJ) = (ˆ XCOMP SUBJ)

Figure 6: TheLFG lexical entry forenjoy

Whenever the grammar finds a construction with the wordenjoy that subcate-
gorizes for aSUBJ and anXCOMP, the subject of the main clause is automatically
made the subject of theXCOMP.

For the treebank- and annotation algorithm-basedDCU parsing pipeline, the
situation is different. Instead of manually encoding information on the non-local
dependencies between the main and the subordinate clause inthe lexical entry, all
that is available is a parser output simplified Penn-II treebank-style tree structure
as in Figure 7.

1Lexical equations are not shown.
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(S (NP (PRP We))
(VP (VBP enjoy)
(S (VP (VBG conferencing)

(PP (IN in)
(NP (NNP Ottawa))))))

(. .))

Figure 7: Parser output tree

Treebank-trainedCFG parsers such as Charniak and Johnson (2005) and Bikel
(2002) do not capture non-local dependencies. The parser output tree for the exam-
ple sentence contains no information on the missing argument in the subordinate
clause and does not record the non-local dependency betweenthe subject of the
main clause and the subordinate clause. From this tree alone, the basic f-structure
annotation algorithm cannot recover the non-local dependency.

The long-distance dependency resolution module (Cahill etal., 2004) in the
DCU LFG parsing pipeline employs statistical methods and works as follows: un-
like the simplified parser output trees, the original Penn-II Treebank contains co-
indexed paths for long-distance dependencies, that mark the missing subject in the
subordinate clause with an empty node (NP-SBJ (-NONE- *-1)) and relate it to the
subject in the main clause.

Cahill et al. (2004) apply the f-structure annotation algorithm to the full Penn-
II treebank trees producing fully non-local dependency-resolved f-structures which
record non-local dependencies as corresponding reentrancies in f-structure. From
these non-local dependency-resolved f-structures, Cahill et al. (2004) learn subcat-
egorization frames and finite approximations of functionaluncertainty equations.
These are used in an algorithm to resolve non-local dependencies in the f-structure
output and the f-structure with the highest non-local dependency resolution proba-
bility is chosen.

So instead of making use of lexical information in the verb entries as in theXLE

grammar, the long-distance dependencies are learned from the Penn-II Treebank.

3 Closing the gap

The overall aim of this paper is to show that the gap in detail and granularity of
linguistic representation between the hand-crafted English XLE grammar and the
treebank-basedDCU LFG approach for English can be closed by extending theDCU

annotation algorithm.
The proof of concept has been shown by earlier experiments reported in Hautli

and King (2009). However this paper present a different approach that substantially
outperforms previous experiments. This section presents the two approaches, with
evaluations following in the next section.
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3.1 Using XFR rewrite rules

A recent approach (Hautli and King, 2009) attempted to overcome the differences
between the hand-craftedXLE grammar and the treebank-basedDCU LFG approach
by using a set ofXFR rewrite rules that added missing f-structure information to
DCU LFG output, effectively treating theDCU system as a black box. This means
that information about theCFG tree structure is not taken into account, and theXFR

rewrite rules solely operate on theDCU f-structure output. For a schematic view of
the experimental layout see Figure 8.

XFR rewrite rules
rule-based
XLE grammar

DCU annotation
algorithm

↓ ↓

f-structures ↔ f-structures

Figure 8: Schematic view of Hautli and King (2009)

In particular, theDCU LFG pipeline as described in the previous section and its
output was used as is. After reformatting theDCU LFG output for it to be readable
by XLE, XFR rewrite rules were defined and applied, adding information on the
level of f-structure that theDCU LFG system had not yet provided. Additionally,
existing information was modified, such as feature names andvalues, to make it
XLE-compatible.

Below, we provide a very simple example of the kind of orderedXFR rewrite
rule that is employed in this approach, and although being a somewhat artificial ex-
ample, the principle remains the same for more complicated constructions. Figure
9 shows aDCU LFG f-structure for the subject pronoun ‘we’ that is rewritten via
an XFR rewrite rule. The rule works as follows: the facts on the lefthand side of
the rewrite rule (before the arrow) constitute the input f-structure facts that must be
matched for the rule to apply. If they cannot be matched, the rule does not apply.
In cases where the rule fires, the facts on the left side are rewritten to the facts on
the right hand side of the rule (after the arrow). Forms beginning with a percent
sign (%) are variables that can be instantiated by f-structures.

Consider theXFR rule in Figure 9: the variable%Xis the f-structure which
contains asubj ; thissubj is then referred to by the variable%Subj . This%Subj
f-structure must have apred attribute with valuepron , anumattribute with value
pl and apron form attribute with the valuewe in order for theXFR rule to
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input:

subj




pred pron

num pl

pron form we







XFR rule:
subj(%X,%Subj), pred(%Subj,pron), num(%Subj,pl),

pron form(%Subj,we)

==>

SUBJ(%X,%Subj), PRED(%Subj,we),

NTYPE(%Subj,%Ntype), NSYN(%Ntype,pronoun),

CASE(%Subj,nom), HUMAN(%Subj,+), NUM(%Subj,pl), PERS(% Subj,1),

PRON-TYPE(%Subj,pers).

output:

SUBJ




PRED pron

NTYPE
[

NSYN pronoun
]

CASE nom HUMAN + NUM pl PERS1 PRON-TYPE pers







Figure 9: Rewriting of the pronounwe

match. The input f-structure in Figure 9 matches the facts required by theXFR rule,
and is rewritten to the output f-structure shown at the bottom of Figure 9. In total,
the XFR system mapping fromDCU to XLE f-structures consists of 162 manually
coded rewrite rules that add and modify information from theDCU f-structures.

Evaluation shows that adding information to theDCU LFG f-structures byXFR

rules and then evaluating these against the f-structures produced by the hand-
crafted XLE grammar proves successful. However, issues remain where lexical
entries would have to be listed in theXFR rules in order to make their analysis
parallel to theXLE analysis, e.g. in the case of distinguishing first and last names.

An alternative approach based on extending theDCU LFG annotation algorithm
directly without the intermediate step ofXFR rewriting will be discussed in the
following section.

3.2 Extending the DCU annotation algorithm

Instead of applyingXFR rewrite rules as in Hautli and King (2009), the approach
explored in this paper is to directly enrich theDCU annotation algorithm with the
full feature inventory, detail and sophistication of the hand-craftedXLE grammar,
as shown in Figure 10. There is no intermediate step betweenDCU andXLE output,
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and they are compared directly. In addition, we retain a version of the original
annotation algorithm (Cahill, 2004) and its feature space.

extended rule-based
DCU annotation XLE grammar

algorithm

↓ ↓

f-structures ↔ f-structures

Figure 10: Schematic view of 2010 experiment

The overallDCU pipeline is not changed for this paper, only the f-structureannota-
tion algorithm is extended, as shown in Figure 11.

raw text
↓�� ��text breaker
↓�� ��shallow parser
↓�� ��function tagger
↓�� ��annotation algorithm�� ��original
�� ��extended

↓ ↓�� ��constraint solver
↓�� ��long-distance dependency resolver
↓

f-structures

Figure 11: ExtendedDCU Annotation Algorithm

Apart from extending the feature space, some existing features were also re-
named and their representation in the f-structure changed.To give an overview of
the feature space of theDCU LFG annotation algorithm, Table 1 lists the original
DCU features (36 in total) with the newly added f-structure features in bold (30
added). Besides adding features, we also extended the rangeof feature values to
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make theDCU f-structures more informative, for instance the values ‘first name’
and ‘lastname’ of the featureNAME-TYPE.

original features added features
adegree, adjunct, aquant, comp, conj,
coord-form, det-form, focus-int, mod,
num, number, number-type, obj, obj-
th, obl, obl-ag, obl-compar, passive,
pcase, perf, poss, prog, pron-form,
pron-int, pron-rel, proper, prt-form,
quant, stmt-type, subj, subord-form,
tense, topic-rel, xcomp

adjunct-type, adv-type, atype, case,
clause-type, coord, common, deg-
dim, degree, deixis, det, focus, gend-
sem, human, inf-type, mood, name-
type, nsem, nsyn, ntype, part, preco-
ord form, proper-type, psem, ptype,
spec, time, tns-asp, vtype, xcomp-
pred

extended features

Table 1: Original and extended feature space of theDCU annotation algorithm

Figures 12 and 13 show the f-structures forWe enjoy conferencing in Ottawa.,
exemplifying tense and aspect as it is represented in the original and the extended
DCU LFG annotation algorithm, respectively. Thetense feature, which is on the
top level of the f-structure in the originalDCU representation, is moved to theTNS-
ASP f-structure that is complemented by the aspectual featuresMOOD, PERF and
PROG.

num pl, pred pro, pron_form wesubj

num sg, pers 3, pred Ottawa, proper locationobj

inpform
1adjunct

pred conference, prog +, stmt_type declarative

xcomp

pred enjoy, stmt_type declarative, tense pres-1

Figure 12: Tense and aspect in the originalDCU f-structures

Following the general methodology of making theDCU f-structures as closely
resembling the hand-craftedXLE grammar as possible, the representation of tense
and aspect in the extendedDCU f-structures is now equivalent to the representa-
tion in theXLE grammar. This enables the output of the treebank- and annotation
algorithm-basedDCU LFG pipeline to serve as valid input to theXFR semantics. As
the correctXLE-style representation of tense and aspect is crucial for getting valid
semantic representations, it is necessary to capture this information as completely
and precisely as possible.

Another important point, in particular for the corpora we evaluated on, was the
preciseXLE-style analysis of first and last names (as inJohn Smith). In order to
add this information, the relation of theCFG parse tree nodes is taken into consid-
eration. If two (or more) proper names are sisters and the lemma of the leftmost
node can be found in a list of first names, we annotate it with the information that
it is a first name. This is recursively done until one of the sisters to the right is not
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'enjoy<[-1-XCOMP:conference]>[-1-SUBJ:we]'PRED

'we'PRED

pronounNSYNNTYPE

CASE nom, HUMAN +, NUM pl, PERS 1, PRON-TYPE pers

SUBJ

V-SUBJexpl-XCOMPinf_SUBCAT-FRAMECHECK

MOOD indicative, PERF - _, PROG - _, TENSE presTNS-ASP

'conference'PRED
[-1-SUBJ:we]SUBJ

'in<[-2-OBJ:Ottawa]>'PRED

'Ottawa'PRED

locationPROPER-TYPEPROPERNSEM

properNSYN
NTYPE

CASE obl, NUM sg, PERS 3

OBJ

semPTYPE-2

ADJUNCT

V-SUBJ_SUBCAT-FRAMECHECK

MOOD indicative, PERF - _, PROG + _TNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main

XCOMP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main-1

Figure 13: Tense and aspect in the extendedDCU f-structures

a first name, annotating this node with the feature for last names. This is a substan-
tial improvement over the approach withXFR rewrite rules, because in addition
to listing first names, last names also have to be listed. By considering node in-
formation, this can be automatically done, with middle names also being detected
(e.g. John Adam Smith). As a result, the precision for any corpora is substantially
increased, but in particular for those containing newspaper text, as is the case for
thePARC700.

4 Evaluation

The evaluation covers two aspects we are concerned with: thequality of the ex-
tendedDCU f-structures and the overall coverage of theDCU annotation algorithm.

With respect to the quality of the f-structures, the purposeof the evaluation
is to see how closely the extended treebank- and annotation algorithm-basedDCU

f-structures resemble the hand-craftedXLE grammar f-structures. For this we use
evaluation measures from information retrieval, namely precision (“How accurate
are the extendedDCU f-structures?”), recall (“How complete are the extendedDCU

f-structures?”) and f-score, a weighted average of precision and recall. These mea-
sures are calculated on a per-feature basis, i.e. every feature of either theDCU or
theXLE side is checked whether it appears on the other side. The number of found
and not found features is calculated and divided by the totalnumber of features
present. The overall matching results lie between 0 (no feature matches) and 1 (all
features match). The same methodology is employed when matching the semantic
representations that theDCU and theXLE f-structures generate.
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Concerning the evaluation of the coverage of theDCU annotation algorithm, the
aim is to detect constructions where either the stochastic parser or the annotation
algorithm fails to produce a valid representation.

4.1 Quality of representations

4.1.1 F-Structure matching

In the first set of experiments we measure the similarity of treebank- and annota-
tion algorithm-basedDCU and hand-craftedXLE grammar f-structures and compare
our results to the architecture proposed in Hautli and King (2009) withXFR rewrite
rules. Both architectures (XFR rewrite rule approach vs. extendedDCU annota-
tion algorithm) are tested on a testsuite of 720 sentences constructed byPARC and
designed to test the semantic representation of the EnglishXLE grammar.

Given the difference that theXLE grammar can produce multiple f-structures
for a sentence and theDCU grammar cannot, we match the single bestDCU analysis
against eachXLE analysis and choose the best matching result.

Hautli and King (2009) extended DCU system
precision recall f-score precision recall f-score

semtest 70.31 67.69 68.98 83.44 77.22 80.20

Table 2: Evaluation results for semantics testsuite

The results in Table 2 show that the features can be reconstructed successfully
in both architectures. However, extending theDCU algorithm is more effective
than using the set ofXFR rewrite rules, because we can allow for operations that
are unavailable to the rewrite approach, such as taking intoaccount the relation of
nodes in the tree, as shown for the annotation of first and lastnames.

In order to test the quality of the extendedDCU LFG annotation algorithm more
independently, we evaluate theDCU pipeline against thePARC700 gold standard
which contains 700 randomly extracted sentences from Section 23 of Penn-II Tree-
bank (WSJ section) with an average length of 19.8 words per sentence. The sen-
tences are split into a development set (140 sentences) and atest set (560 sen-
tences). In addition, we compare our evaluation results of the extendedDCU LFG

approach with thePARC700 evaluation results of the originalDCU LFG approach
and theXLE grammar (Cahill et al., 2008).2 Evaluation on the test set generates
the results in Table 3.

This shows that the extendedDCU annotation algorithm and parsing pipeline
outperform theXLE grammar and the originalDCU annotation algorithm. In ad-
dition to improving the evaluation results for the extendedDCU version, we also
improved the f-score for the originalDCU version from 82.73% in Cahill et al.
(2008) to 83.88%. This is due to further refinement of the annotation algorithm.

2Cahill et al. (2008) only provide the f-scores for the evaluations.
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PARC700

XLE grammar original DCU extended DCU

precision — — 85.45
recall — — 81.81
f-score 80.55 82.73 83.59

Table 3:PARC700 evaluation

In order to show in detail how the extendedDCU system is performing, Table 4
gives the breakdown by dependency relation of the evaluation againstPARC700.

Dependency Precision Recall F-score Dependency Precision Recall F-score
adegree 81 79 80 pcase 91 77 83
adjunct 73 72 73 perf 95 88 92
aquant 33 77 47 poss 88 90 89
comp 69 75 72 precoordform 0 0 0
conj 82 79 80 prog 97 75 85
coord form 74 90 81 pron form 91 84 88
det form 98 98 98 pron int 0 0 0
focus int 0 0 0 pron rel 68 56 62
mod 80 69 74 proper 87 90 88
num 91 89 90 prt form 78 78 78
number 89 89 89 quant 84 73 78
numbertype 95 92 94 stmt type 90 82 86
obj 91 87 89 subj 88 69 77
obj theta 42 45 43 subordform 84 74 79
obl 51 70 59 tense 96 93 95
obl ag 87 87 87 topic rel 39 64 49
obl compar 57 27 36 xcomp 86 78 82
passive 85 69 77

Table 4: Breakdown by dependency relation of extendedDCU annotation algorithm
againstPARC700

The results show that as far as the f-structure matching is concerned, the ex-
tendedDCU annotation algorithm performs well. Especially for features of tense
and aspect (e.g.TENSE, PROG, PERF), where recall and precision are above 95%,
we get the right analysis for most sentences, except in caseswhere the treebank-
trainedCFG tree parser produces a wrong tree. The same holds for other features
such asNUMBER-TYPE and DET-FORM with matching figures around 95%. Re-
maining issues are notorious cases such as the adjunct and oblique distinction,
where only around 60% of annotations are correct, as well as the annotation of
OBJ-TH with a matching precision of 43%.

4.1.2 Matching of semantic representations

To validate our claim that we can provide treebank- and annotation algorithm-based
DCU LFG output that can serve as input to theXFR semantic representation, we
match the semantic representations that are generated using the extendedDCU LFG
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f-structures as input with semantic representations basedon using the f-structures
generated by the hand-craftedXLE grammar as input. As a testsuite, we use the
720 sentences that were already used in Section 4.1, achieving an f-score of 73.7.

This is a promising result and although the f-score is lower compared to match-
ing f-structures, the information we capture in the extended DCU f-structure is
comprehensive enough that the semantic representations generated from them are
useful.

4.2 Coverage evaluation

In addition to evaluating the quality of the extendedDCU f-structures, we also mea-
sure the coverage of the extendedDCU annotation algorithm (i.e. the percentage
of sentences for which at least one analysis is found). By using thePARC700 gold
standard, we count the number of parsed sentences, divided by the total number of
sentences.

For both the training and the test set, we get full coverage. Preliminary ex-
periments of running theDCU annotation algorithm on all of the Penn-II Treebank
have resulted in coverage of above 98%.

5 Future work and conclusion

In this paper we have presented the extension of theDCU LFG annotation algorithm
so that its output can serve as input to theXFR semantic representation which re-
quires detailed f-structure information. The experimentsshow that the gap in the
richness of the feature space and detail of the f-structure representations between
the treebank-basedDCU LFG approach and the hand-craftedXLE grammars can be
closed, which means that there is a possibility of generating rich and deepLFG

grammars on the basis of treebanks and annotation algorithms. This technique can
be used not only for English but also for other languages, benefiting from the fact
that theCFG trees are automatically created with a treebank-trained robust parser
and have good coverage for general unrestricted text or evenfragmented text such
asJohn. sings.

One aspect that remains for future work is to test the coverage and performance
of the extended (as compared to the original)DCU annotation algorithm on larger
corpora, for instance all of the Penn-II treebank training set. This would allow for
a more comprehensive assessment of the coverage of the extendedDCU annotation
algorithm and could also provide a large-scale rich f-structure bank that can be
used for other natural language processing tools.

Another area of future work is the long-distance dependencymodule that has
to be retrained to get more exact probabilities for the resolution of the non-local
dependencies. Having more exact probabilities will most likely improve our eval-
uation results.

286



A more long-term goal is the development of an integratedDCU-XLE system,
which would use the currentXLE system for in-coverage sentences, but the ex-
tendedDCU system for out-of-coverage and fragmenting sentences. Given the pos-
itive results for the matching of the semantic representations, this would potentially
help in getting a more wide-coverage semantic representation.

The paper also shows that by extending theDCU LFG system, we can outper-
form the earlier approach where theDCU LFG system was employed as a black box
and rewrite rules were used to modify the f-structures. The approach here results
in a singleDCU LFG system, which is more efficient and also has higher accuracy
due to the extra information that is available by looking at the node relations in the
tree. By being able to take into account tree information which previously could
not be done, we allow for more linguistic insight that can be captured in the final
f-structure representation.

As more researchers wish to build meaning-sensitive applications, we can con-
tribute a robust, deep syntactic analysis that can be used for further levels of ab-
straction.
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