MOVING RIGHT ALONG:
MOTION VERB SEQUENCES IN URDU

Annette Hautli-Janisz
University of Konstanz

Proceedings of the LFG13 Conference

Miriam Butt and Tracy Holloway King (Editors)

2013

CSLI Publications

http://csli-publications.stanford.edu/
Abstract

In this paper I survey the phenomenon of motion verb sequences (MVSs) in Urdu/Hindi, a combination of two motion verbs denoting a complex motion event. First noted by Hook (1974), the construction exhibits interesting syntactic and semantic properties and behaves unlike other complex verbal expressions found in the language. The paper shows that MVSs should be treated as a special type of complex predicates, complex predicates of motion, complementing the various types of complex predicates already established in Urdu/Hindi (e.g., Mohanan (1994), Butt (1995)). This paper provides a first formal analysis of the construction and accounts for the types of combinations, word orders and argument structures that are possible in the language.

1 Introduction

Urdu/Hindi is known to exhibit various types of complex verbal constructions, including N+V, ADJ+V and V+V complex predicates (CPs) (e.g., Mohanan (1994); Butt (1995)). A lesser known construction, but one that occurs fairly frequently is that of motion verb sequences (MVSs), where two motion verbs combine in a verbal phrase to express motion and direction in one complex event. (1) exemplifies the construction with the two motion verbs kud-na ‘to jump’ and nkal-na ‘to emerge’ which results in the interpretation of ‘jumping out’.

(1) cor mukan=se bahur kud nki-a
thief.M.Sg.Nom house.M.Sg=Source outside jump emerge-Perf.M.Sg
‘The thief jumped out of the house.’ (Hook 1974, p. 69)

Hook (1974) discusses the construction in the context of complex predication, but is puzzled by several of its properties: In contrast to other complex predicates in Urdu/Hindi, the lexical semantic load seems to be equally distributed on both verbs and syntactic properties which are common among simple verbs but not complex predicates in the language are possible in these constructions, for instance causativization and the ability to swap the verbs. Moreover, the wealth of combinatorial possibilities between different motion verbs is surprising.

This paper investigates the phenomenon of motion verb sequences in Urdu/Hindi and shows that they should be treated as a new type of complex predicate, the complex predicate of motion. I propose an analysis that accounts for the types of combinations, word orders and argument structures that are possible in Urdu and I sketch a formal analysis of the construction. The paper proceeds as follows: section 2 provides a brief overview of complex predicates in Urdu, followed by a presentation of the motion verb data and their syntactic properties. The section is complemented by a quantitative investigation of the phenomenon, which provides

1I am greatly indebted to Asad Mustafa from KICS Lahore, Pakistan, for his support in data collection and Rajesh Bhatt, Miriam Butt, Gillian Ramchand and Melanie Seiss for helpful discussions.
hints as to its pervasiveness in the language. In section 3, the paper continues with a discussion of the syntactic status of MVSS, situating the construction with respect to similar constructions and their analyses in other languages. Based on these insights, section 4 provides an analysis of MVSS in Lexical Functional Grammar, followed by a general discussion and conclusion of the paper in section 5.

2 The phenomenon

2.1 In general: Verb sequences in Urdu

Complex predicates (CPs) are a special type of V+V sequence in Urdu, where a verb in the root form denoting the main action is modified by a so-called light verb, which merges with the argument structure of the main verb (Butt, 1995). CPs are a very common and in fact preferred way of expressing events in Urdu and they complement the rather small set of around 700 simple verbs. The light verbs, which also serve as main verbs in the language, contribute a bleached version of their full verb meaning. Table 2.1 presents an overview of light verbs, mainly those which also serve as full motion verbs.

<table>
<thead>
<tr>
<th>Light verbs</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp. CPs</td>
<td></td>
</tr>
<tr>
<td>par-na ‘to fall’</td>
<td>Inception (no conscious control)</td>
</tr>
<tr>
<td>ufb-na ‘to rise’</td>
<td>Inception</td>
</tr>
<tr>
<td>ja-na ‘to go’</td>
<td>Telicity</td>
</tr>
<tr>
<td>Permiss. CP</td>
<td>de-na ‘to give’</td>
</tr>
</tbody>
</table>

Table 1: Common light verbs in Urdu/Hindi

The light verbs in (2) and (3) support the event denoted by the verb in the root form: in (2), the main verb _gIr-na_ ‘to fall’ is aspectually modified by _par-na_ ‘to fall’, which contributes a sense of sudden inception without conscious control. In (3), the light verb _de-na_ ‘to give’ adds an external argument to the event of _ja-na_ ‘to go’ and constitutes the so-called permissive construction.

(2) am _gIr par-a_ mango.M.Sg_Nom fall fall-Perf.M.Sg ‘The mango fell (suddenly).’

(3) anjum=ne saddaf=ko _ja-ne_ di-ya Anjum.F.Sg=Erg Saddaf.F.Sg=Acc go-Inf.Obl give-Perf.M.Sg ‘Anjum let Saddaf go.’

Butt (1995) shows that both CPs are monoclausal, but aspectual and permissive CPs differ so far as in (2), the argument structure of the light verb _par-na_ ‘to fall’ merges with the argument structure of the main verb _gIr-na_ ‘to fall’, whereas in (3), the light verb _de-na_ ‘to give’ merges its argument structure with _ja-na_ ‘to go’, but moreover adds the permission-giving entity _anjum_ ‘Anjum’.
2.2 Motion verb sequences

Superficially, motion verb sequences in Urdu/Hindi are parallel to aspectual CPs in that at most two (motion) verbs are put in sequence, where the first motion verb is in the root form, complemented by a second, finite motion verb. The constructions in (4) to (7) exemplify the phenomenon.

(4) sand. gayō=ki ṭeva r barh dor-a
 ‘The ox charged into a herd of cows.’

(5) sand hmare makan=mē ghus cal-a
 ‘An ox got into our house.’

(6) us=ki ankō=mē ansu a bhar-e
 ‘Tears welled up in her eyes.’

(7) ghora dor bhag-a
 horse.M.Sg.Nom run run-Perf.M.Sg
 ‘The horse ran away.’

In all examples, the combination of two motion verbs yields a complex motion event, for instance combining barh-na ‘to advance’ and dor-na ‘to run’ as in (4) yields the bounded-path interpretation ‘running to’. The combinatorial possibilities are not restricted to directional motion verbs combining with manner of motion verbs as in (4) and (5), but constructions with both verbs denoting direction (a-na ‘to come’ and bhur-na ‘to advance’ in (6)) or manner (dor-na ‘to run’ and bhag-na ‘to run’ in (7)) are also possible. Moreover, different valencies do not prevent motion verbs from combining, as shown in (5) with the transitive verb ghus-na ‘to enter’ and the intransitive cal-na ‘to walk’ which combine to mean ‘walking/getting into’.

Oddity #1 An interesting property of MVSs is that some combinations facilitate the swapping of motion verbs. This means that the root verb becomes the finite verb and vice versa, while retaining the overall interpretation of the sentence. In (8), the verbs cal-na ‘to walk’ and ur-na ‘to fly’ render the interpretation of ‘flying up’, regardless of the particular order they occur in. The same behavior is found for nikal-na ‘to emerge’ and bhag-na ‘to run’ in (9).

(8) hava=ke ek jhonke=ke sat
 wind.M.Sg=Gen.Obl one gust.M.Obl=Gen with
 putung ur cal-i / cal ur-i
 kite.F.Sg.Nom fly move-Perf.F.Sg / move fly-Perf.F.Sg
 ‘The kite flew up with a gust of wind.’

(Hook 1974, p. 57)
A black snake shot out of the snake pit.

In both examples, the order of the motion verbs in the sequence is flexible and the MVSSs denote the same event, despite the different syntactic configuration that the motion verbs are found in. This property is not found for aspectual and permissive CPs in Urdu/Hindi, probably due to the fact that the light verb is so light that it cannot provide the main propositional content of the clause. The contribution of the finite verb in MVSSs is therefore “heavier” than in Urdu/Hindi CPs, an observation further confirmed by the following examples.

Oddity #2 Some constructions allow for the causativization of (at least one of) their motion verbs. The examples from (10) to (12) show the causativized versions of the constructions in (7), (8) and (9), respectively. While in (10), the finite verb dor-a-na ‘to run-Caus’ is in the causative¹, (11) shows that in other cases, the verb in the root form, ur-a-na ‘to fly-Caus’, causativizes. In (12), both verbs, bHag-a-na ‘to run-Caus’ and nikal-na ‘to emerge.Caus’ are in the causative.

V1.base + V2-Caus

(10) malk=ne g^bore=ko bHag dor-a-ya
 owner.M.Sg=Erg horse.M.Sg.Obl=Acc run run-Caus-Perf.M.Sg
 ‘The owner made the horse run away.’

V1-Caus + V2.base

(11) hava patang=ko ur-a cal-i
 gust.F.Sg.Nom kite.M.Sg=Acc fly-Caus move-Perf.M.Sg
 ‘The gust made the kite fly up.’

V1-Caus + V2-Caus

(12) malk=ne sap=ko bdl=se
 owner.M.Sg=Erg snake.M.Sg=Acc snake-pit.M.Sg.Obl=Instr
 bHag-a nikal-a
 run-Caus emerge.Caus-Perf.M.Sg
 ‘The owner made the snake shoot out of the snake pit.’

¹In fact, bHag dor-a-na (and its inverse dor bHag-a-na) ‘to run away’ are the sole instances of Urdu/Hindi MVSSs where causativization only applies to the finite verb. This might be due to the existence of the nominal compound bHag dor ‘a lot of running around’, which might be used as a “simple” verbal predicate in this construction, taking the causative suffix -a-.
In all cases, an external argument, the causer, is added to the overall event structure. If, as in (12), both verbs are in the causative form, the external argument is shared between the two verbs. Verbs that do not causativize as simple verbs also do not allow for causativization in MVSs. In turn, verbs that can causativize as simple verbs do not necessarily allow for causativization in MVSs, where certain constraints seem to hold between the two verbs. Again, the nature of the finite verb is different from aspectual and permissive light verbs in Urdu/Hindi, as those cannot causativize.

Challenge Despite the seeming flexibility in MVSs, some combinations are clearly ungrammatical, as shown in (13) with ring-na ‘to crawl’ and g₈us-na ‘to enter’. Native speaker intuition says that in those cases, the lexical semantic entailment of ring-na ‘to crawl’ as a slow movement is not compatible with the determination and force contributed by g₈us-na ‘to enter’.

(13) * buccanakamre=mēring g₈us-a
 child.M.Sg.Nom room.M.Sg.Obl=Loc crawl enter-Perf.M.Sg
 ‘The child crawled into the room.’

What complicates the matter is that some MVSs exhibit a varying degree of speaker acceptance, as is the case for example (14), which is grammatical for the Urdu informants, but unacceptable for Hindi speakers.

(14) √/* buccanahkamre=semēring nkl-a
 child.M.Sg.Nom room.M.Sg.Obl=Instr crawl emerge-Perf.M.Sg
 ‘The child crawled out of the room.’

Based on the data in Hook (1974) and my own fieldwork data for Urdu/Hindi, motion verb sequences in the language exhibit a number of interesting properties that have so far not been attested for other verbal complexes in the language. In order to obtain a better grasp of the phenomenon, the following quantitative investigation based on different corpora sheds some light on the construction in present-day usage.

2.3 A quantitative investigation of MVSs

The preceding section shows that there are considerable idiosyncrasies in MVSs and the aim of the quantitative investigation is to provide insights into the pervasiveness of the phenomenon as well as the combinatorial patterns. Moreover, investigating large amounts of data might show tendencies for some motion verbs to appear in specific slots in the sequence.

The investigation makes use of three different Urdu corpora, namely a corpus crawled from the BBC Urdu website (BBC), the CLE corpus (Urooj et al., 2012) (CLE) and the Urdu section of the Hindi-Urdu Treebank (Bhatt et al., 2009).
In total, the corpora have around 16.1 million tokens. Due to the adjacency of the motion verbs and the fact that only two verbs can combine, an automatic bigram analysis suffices to extract all MVS instances. These were then aggregated over the whole corpus and the number of times the motion verbs appear as simple verbs was recorded. This serves as an approximation as to how common the verb is overall and how preferred it is in combination with other motion verbs.

Table 2 gives an overview of the results, with the number of simple motion verbs found in the corpus, the number of MVSs and the number of unique MVSs.

<table>
<thead>
<tr>
<th></th>
<th>BBC</th>
<th>CLE</th>
<th>HUTB</th>
</tr>
</thead>
<tbody>
<tr>
<td># of tokens</td>
<td>8,018,600</td>
<td>7,984,827</td>
<td>96,388</td>
</tr>
<tr>
<td># of simple motion verbs</td>
<td>13,035</td>
<td>11,709</td>
<td>181</td>
</tr>
<tr>
<td># of MVSs</td>
<td>146</td>
<td>677</td>
<td>6</td>
</tr>
<tr>
<td># of unique MVSs</td>
<td>33</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>% of MVSs</td>
<td>1.1%</td>
<td>5.8%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

Table 2: Statistics on motion verbs in the three corpora

The investigation shows that the percentage of MVSs compared to the overall usage of motion verbs is comparatively low and ranges from 1.1% in the BBC corpus to 5.8% in the CLE corpus. This might be due to the fact that MVSs preferably occur in literary text and the only corpus which accounts for this text genre is the CLE corpus, which in turn has the highest percentage of MVSs.

Moreover, the number of unique MVSs in comparison to the overall number of MVSs shows that some combinations are clearly preferred and in fact used across corpora, for instance $b^h ag$ nikal-na ‘to run out of (lit. to run emerge)’, $b $arh car$h$-na ‘to climb up (lit. to advance climb)’ and $utar$ carh-na ‘to climb down (lit. to descend climb)’. In addition, the verbs $b^h ag$-na ‘to flee/run’, dor-na ‘to run’ and cal-na ‘to move/walk’ are often used as the finite verb in MVSs, with a range of different root verbs. The most flexible motion verb is $nikal$-na ‘to emerge’ which can be used both as a root and a finite verb in a range of combinations. The investigation also shows that direct causative MVSs are less frequent than their base counterparts, whereas MVSs with indirect causatives do not exist.

2.4 Intermediate summary

What the empirical basis shows is that MVSs in Urdu/Hindi are complicated insofar as they exhibit a variety of patterns on different levels: the combinatorial possibilities regarding their lexical semantics as well as their valency, the ability to swap and the way causativization can apply. The properties imply that the construction is unlike other verbal complexes in the language, most notably those of aspectual and permissive complex predicates, which seem similar from their surface structure.

2 MVSs with ja-na ‘to go’ as V_2 are not counted, as those combinations can be aspectual CPSs denoting completion, following Butt (1995).
3 The status of the finite verb in MVSSs

3.1 Mono- versus biclausality

An important question is whether the finite verb in MVSSs functions as a light verb similar to aspectual and permissive light verbs or whether MVSSs are modifying constructions, where the root verb modifies the finite verb. A prerequisite for complex predicatehood is monoclausality. Concerning monoclausality in Urdu/Hindi CPSs, Butt (1995) proposes a number of tests, for instance the behavior of the CPSs in anaphora and control constructions. However, the MVSSs considered here are mostly intransitive and therefore Butt’s tests for monoclausality cannot be applied reliably across constructions. Instead, I test the grammaticality of MVSSs in passive constructions and their behavior with respect to negative polarity items.

Passivization Passivization in Urdu/Hindi is done via the passive auxiliary ja-na ‘to go’ which attaches to the verbal phrase. As shown in chapter 3 on passive alternations in Urdu/Hindi, if the passive auxiliary ja-na ‘to go’ combines with intransitive verbs, the interpretation of the passive construction is one of ability: the subject is able to perform an action (Butt and King, 2001). As an example, see (15): (15a) shows the active construction with the verb g^h us-na ‘to enter’ where the subject of the clause is nominative. In the ability passive alternate in (15), the subject receives the instrumental marker =se and is interpreted as having the ability to enter.

\[(15) \quad \text{a. } \text{girl.F.Sg.Nom room.M.Sg.Obl=Loc enter-Perf.F.Sg} \quad \text{‘The girl entered the room.’} \]
\[\quad \text{b. } \text{girl.F.Sg.Obl=Instr room.M.Sg.Obl=Loc enter-Perf.F.Sg go-Perf.F.Sg} \quad \text{‘The girl was able to enter the room.’} \]

The example in (16a) shows a construction with the MVSS g^h us cal-na ‘to enter walking’, where the finite verb cal-na ‘to walk’ licenses the subject sand ‘ox’ of the event. The verb in the root form, g^h us-na ‘to enter’ contributes the locational oblique makan ‘house’, which is not licensed by cal-na ‘to walk’. If the root verb g^h us-na ‘to enter’ was embedded under the finite verb cal-na ‘to walk’, passivization should not be possible. However, the grammaticality of the passive alternate in (16b) shows that both motion verbs are in fact in the same clause: the nominative subject in (16a) becomes the instrumental-marked subject sand=se ‘by the ox’ in (16b), when the passive auxiliary ja-na ‘to go’ is attached to the verbal phrase. MVSSs thus behave parallel to simple verbs.

\[(16) \quad \text{a. } \text{ox.M.Sg.Nom house.M.Sg=Loc enter move-Perf.M.Sg} \quad \text{‘An ox got into the house.’} \]

b. sand=se mokan=mē gʰus cul-a go-ya
ox.M.Sg=Instr house.M.Sg=Loc enter move-Perf.M.Sg go-Perf.M.Sg
‘The ox was able to get into the house.’

This pattern holds for all Urdu/Hindi MVSS and it provides initial evidence with respect to the monoclausality of MVSS, a fact that will be further confirmed by the behavior of MVSS with negative polarity items.

Negative polarity items Using evidence from negative polarity items (NPIs) put forth by Bhatt (2005), Butt (to appear) shows that permissive complex predicates in Urdu/Hindi behave like other monoclausal constructions in the language, in that the NPI reading is obtained because the negation particle and the polarity item are in the same clause. Using the NPI test reliably distinguishes monoclausal constructions like permissive CPSs from biclausal constructions like the instructive.

The construction in (17) shows that according to Bhatt (2005), motion verb sequences in Urdu/Hindi are indeed monoclausal: The polarity item ek bʰi ‘only one’ is attached to bal=se ‘from the snake pit’, an argument which is licensed by the finite verb in the clause, nkal-na ‘to emerge’, which is transitive. If the verb in the root form, bʰag ‘run’ were in an embedded clause, the negation particle nahi ‘not’ could not be placed in front of it and yield the NPI reading of the whole clause.

(17) [sap] ek bʰi [bal=se]
snake.M.Sg.Nom one Emph snake-pit.M.Sg=Instr
nahi bʰag nkla-a
not run emerge-Perf.M.Sg
‘The snake did not shoot out of even one snake pit.’

Similarly, this holds for intransitive motion verb sequences, as shown in (18).

(18) ek bʰi pataŋ nahi ur cul-i
one Emph kite.F.Sg not fly move-Perf.F.Sg
‘Not even one kite flew up with a gust of wind.’

The evidence from both passivization and NPIs shows that MVSS in Urdu/Hindi are clearly monoclausal constructions and therefore parallel the behavior of aspectual and permissive complex predicates found in the language. This leads to the question as to how these constructions should be treated syntactically, in particular whether they belong to the class of serial verbs or complex predicates. This is elucidated in the following.

3.2 MVSS: serial verbs or complex predicates?

Using the concept of sequential motion verbs in order to express complex motion is a common phenomenon across languages, in particular in many West African,
Papua New Guinean and Australian languages. A cross-linguistic overview of the pattern is shown in the following examples, with (19) for Korean (Zubizarreta and Oh, 2007), (20) for Edo (Baker and Stewart, 1999; Ogie, 2003), (21) for Thai (Wechsler, 2003) and (22) for Dagaare, a West-African language spoken in North-Western Ghana.

The exact concept that is conveyed by the construction can only be approximated by the English translation.

(19) John-i kongwen-ey kel-e ka-ss-ta
 John-Nom park-Loc walk-L go-Past-Decl
 ‘John walked to the park.’
Korean (Zubizarreta and Oh, 2007, (7))

(20) Ozo rhulé-rè láá òwá
 Ozo run-Past enter house
 ‘Ozo ran into the house.’
Edo (Ogie, 2003, (19))

(21) Piti den khaw rooñrian
 Piti walk enter school
 ‘Piti entered the school walking.’
Thai (Wechsler, 2003, (2))

(22) ó varef kpéf waf lef la a die poó
 Pron.3.Sg jump.Perf enter.Perf come.Perf fall.Perf Part Def room inside
 ‘S/he jumped (and) fell into the room.’
Dagaare

With respect to their syntactic treatment, the constructions in (19) to (22) are mostly analyzed as serial verbs, a syntactic class which has not yet been attested for Urdu. Instead, two kinds of complex predicates (aspectual and permissive CPs) have been established for Urdu/Hindi (Butt, 1995). Serial verbs and complex predicates share three crucial properties: First, the construction is characterized by a succession of verbs in a single clause with one subject. Secondly, the verbs behave as a single unit with respect to tense. Lastly, the verbs in the sequence share arguments. All three criteria match the properties of Urdu/Hindi MVSSs.

Despite the fact that Urdu MVSSs share a number of properties with serial verbs, they also exhibit major differences: In particular the verbs in the sequence do not contribute delimited subevents of the overall event, but the subevent of the root verb in Urdu MVSSs merges with the subevent denoted by the finite verb. Moreover, Urdu MVSSs do not meet the criterium of causativization in serial verbs set forth by Aikhenvald (2006), in that not only the first verb causativizes, but in fact either of the two verbs in the sequence can appear in the causative or even both. In addition, it has not been attested that Urdu MVSSs share their objects, the only exception being the case of causativization, where the addition of the external argument renders the former subject the new object, which is shared by both verbs. I am fully aware that this discussion of MVSSs in the light of serial verbhood only approximates of

3The example was provided by an anonymous reviewer.
what the literature provides as criteria for different languages. Nevertheless, all properties taken together, I claim that MVSSs are not prototypical serial verbs.

In contrast to the serial verb, the concept of the complex predicate in Urdu has a set of well-defined criteria and therefore facilitates a comparison with phenomena like MVSSs. Table 3 shows the comparison of MVSS properties with the set of criteria proposed by Butt (1995), Butt and Geuder (2001) and Butt (2010), which set complex predicates apart from serial verbs.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>MVSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light verbs do not have a systematic semantic contribution.</td>
<td>√</td>
</tr>
<tr>
<td>CPs have a complex argument structure.</td>
<td>√</td>
</tr>
<tr>
<td>Light verbs contribute a bleached version of their lexical semantics.</td>
<td>√</td>
</tr>
<tr>
<td>Only a reduced set of verbs function as light verbs.</td>
<td>√</td>
</tr>
</tbody>
</table>

Table 3: Comparison of CP properties with MVSS

The properties of Urdu MVSSs mostly correspond to those exhibited by aspectual and permissive complex predicates in Urdu. Using the example in (23), I briefly exemplify the criteria that are characteristic for complex predicates and are also found for Urdu/Hindi MVSS.

(23) sap
 bal-se
 nkal bʰag-a
 snake.M.Sg.Nom snake-pit.M.Sg=Instr emerge run-Perf.M.Sg
 ‘The snake shot out of the snake pit.’

Most importantly, the way arguments are merged and contributed by the motion verbs in the MVSS is complex. In (23), the main verb nkal-na ‘to emerge’ licenses a OBJ and an OBL, whereas the finite verb bʰag-na ‘to run’ is intransitive and only licenses a SUBJ. Overall, the MVSS is transitive. The complexity is increased in cases where one verb in the MVSS causativizes and adds an external argument which is not licensed by the other verb. A detailed discussion on the way arguments are merged follows in section 4.

Moreover, example (23) shows that the lexical semantic contribution of the finite motion verb is a bleached version of its full-verb counterpart. The snake in (23) cannot actually perform a running motion in the way that the verb is used for a human agent, but what is conveyed by using bʰag-na ‘to run’ as the light verb is the notion of speed. The same holds for other light verbs of motion, e.g. the near-synonym of bʰag-na ‘to run’, dorr-na ‘to run’, which contributes the same notion of speed in its light verb usage. In total, the data in Hook (1974) and the three corpora show that around ten light verbs of motion participate in the construction. A classification based on their lexical semantic and syntactic entailments follows in Section 4.

Despite the similarities, in order to anchor motion verb sequences in the set of complex predicates, the notion of the light verb in Urdu/Hindi has to be extended in a number of aspects: First, aspectual and permissive light verbs do not
allow for causativization, an alternation that is generally possible for Urdu/Hindi MVSSs. Moreover, it is not possible to swap the verbs of aspectual and permissive CPs, a property that holds for a restricted number of MVSSs. Lastly, the number of “light” verbs in MVSS is larger than the set of verbs found in the complex predicates established for Urdu (one permissive light verb, de-na ‘to give’, and around 15 aspectual light verbs (Hook, 1974)). However, the quantitative investigation in section 2.3 shows that there are clear tendencies for some verbs to appear more frequently and in combination with a range of different main verbs.

In sum, the above investigation has shown that Urdu MVSSs are closer to complex predicates than they are to serial verbs. Nevertheless, MVSSs are not prototypical Urdu CPs as established by Butt (1995), and the characterization of complex predicates in the language has to be slightly extended in order to accommodate these motion constructions, in particular with respect to the characteristics of the light verbs available in the language. However, in principle, MVSSs work according to the criteria for complex predicatehood set forth by Butt (1995) and I suggest that MVSSs should be analyzed as complex predicates of motion. The following section provides a formal account of the construction and sheds more light on the lexical semantic concepts underlying the light verbs of motion.

4 An LFG account

The following analysis of complex predicates of motion in Lexical Functional Grammar (LFG) (Bresnan and Kaplan, 1982; Dalrymple, 2001) accommodates the different kinds of MVSSs. The motion verb in the root form as well as the light verb of motion contribute syntactic and lexical-semantic properties of the event.

4.1 Argument sharing

The data show that indeed two groups of light motion verbs exist in Urdu/Hindi: those that contribute arguments that are unified with the arguments of the main verb and those that merge arguments as well as add extra arguments to the event, while both light verbs additionally contribute lexical semantic content. In terms of Butt (1998), the first type of light verb triggers event fusion in that “the highest arguments of each a-structure are unified with one another” (p. 145). This mechanism accounts for aspectual complex in Urdu/Hindi predicates and is transferrable to CPs of motion, illustrated with the example in (24). The main motion verb ur-na ‘to fly’ licenses a theme argument, while the light verb cal-na ‘to walk’ unifies its theme argument with it and moreover contributes information on the continuity of the motion event. Using lexical mapping theory as in Bresnan and Kanerva (1989), the theme patang ‘kite’ then maps onto the subject of the construction.
Constructs with the second type of light verb are instances of *argument fusion*, by which the highest embedded argument is identified with the lowest matrix argument. This approach accounts for the allow-to-do permissive CP in Urdu/Hindi (Butt, to appear), where the permissive light verb *de-na* ‘to give’ licenses a permission-giving entity and embeds the event denoted by the main verb under it. In motion CPs, however, the light verb adds a locational oblique and is embedded under the main verb, as exemplified in (25). Here, the light motion verb *nkal-na* ‘to emerge’ contributes the theme subject *sap* ‘snake’ which merges with the theme of the main motion verb *bhag-na* ‘to run’, but also contributes the oblique location *nale=se* ‘from the pipe’ which is not licensed by the main verb.

(25) [ek sap] [bhal=se]
 one snake.M.Sg.Nom snake-pit.M.Sg=Instr run emerge-Perf.M.Sg

‘A snake shot out of the snake pit.’

In order to differentiate between the two kinds of light verbs of motion, I use the term *event-fusional light verbs of motion* for those light verbs which unify arguments and *argument-fusional light verbs of motion* for those light verbs which add locational arguments to the clause. This implies that the two kinds of light verbs trigger different representations at f-structure, same as Butt (1995) assumes for aspectual and permissive complex predicates.

4.2 Lexical semantics

In addition to the argument structure sharing properties presented in the previous section, the LFG analysis also has to account for the lexical semantic entailments of the motion verb combinations. The assumption I make is that light motion verbs, independent of their argument sharing properties, contribute lexical semantic information to the event. In particular, I claim that the lexical semantic contribution of a light verb falls into one of two categories: *PATH* or *CONFIGURATION*. This division is inspired by the conceptualization of motion events based on TALMY (1985), where *motion, path, figure, ground, manner* and *cause* are key notions of expressing motion events. In particular, the ways of combining manner and path of motion differ across languages (see Narasimhan (2003) for Urdu/Hindi, although she does not take into account complex predicates of motion), which is confirmed by psycholinguistic experiments on the conceptualization of motion events (Slobin (2004) and references therein). Therefore, I argue for an explicit encoding of these two notions on the level of f-structure.
For PATH, I build on Jackendoff’s (1990) assumption that the notion of path is one of the “semantic parts of speech” and is specified by a set of attributes. For complex predicates of motion, I claim that the specific shape of the PATH is in fact instantiated by the light motion verbs in Urdu/Hindi, complementing the range of spatial postpositions. Table 4 shows the PATH attributes proposed by Jackendoff (1990) and the corresponding light verbs in Urdu.

<table>
<thead>
<tr>
<th>Jackendoff’s PATH attributes</th>
<th>Light verbs of motion in Urdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>gkos-na ‘to enter’</td>
</tr>
<tr>
<td>toward</td>
<td>barb-na ‘to advance’</td>
</tr>
<tr>
<td>away-from/from</td>
<td>nkal-na ‘to emerge’</td>
</tr>
</tbody>
</table>

Table 4: Light verbs of path in Urdu

Following the key notions of Talmy (1985) and Slobin (2004), motion events are also characterized by the configuration (or manner) with which they are carried out. As for PATH, I assume that this concept is conveyed by a number of light motion verbs which, based on the entailments of their full verb meaning, modify the manner with which the motion is carried out. So far, the literature does not provide a set of semantic attributes which are abstract enough to describe the contribution of the Urdu/Hindi motion light verbs, therefore I base the attributes on the results of the quantitative investigation in section 2.3 and the lexical semantic contribution of the respective light verbs. From this, a set of configurational attributes can be derived. Table 5 summarizes a number of light verbs which encode the configuration or manner in Urdu/Hindi motion CPs.

<table>
<thead>
<tr>
<th>CONFIG attributes</th>
<th>Light verbs of motion in Urdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuity</td>
<td>cal-na ‘to walk’</td>
</tr>
<tr>
<td>speed</td>
<td>bbag-na ‘to run’</td>
</tr>
<tr>
<td></td>
<td>dor-na ‘to run’</td>
</tr>
<tr>
<td></td>
<td>ur-na ‘to fly’</td>
</tr>
</tbody>
</table>

Table 5: Light verbs of motion configuration in Urdu

Nevertheless, the data show that these light verbs cannot be added arbitrarily to motion events, in particular the two near synonyms bbag-na ‘to run’ and dor-na ‘to run’ cannot be used interchangeably. The lexical constraints that need to be fulfilled in order for the light verbs to be compatible still need to be worked out.

4.3 Constituent structure

The verbal phrase of complex predicates of motion is grouped under one constituent (VCmotion), where the main motion verb (Vmain) precedes the light motion verb (Vlight-motion). The c-structure for (25) is shown in Figure 1.
This analysis parallels the treatment of other complex predicates in Urdu, in particular their computational analysis in the Urdu ParGram grammar (Butt et al., 1999; Butt and King, 2007; Bögel et al., 2009).

4.4 Functional structure

The contribution of motion verbs in complex predicates of motion with respect to argument sharing and lexical semantic contribution is stored in the lexicon. For this, I adopt the basic idea in Butt (2010), who argues for one underlying underspecified entry which can play out as a light or full verb. The lexical-semantic features of \texttt{PATH} and \texttt{CONFIG} are kept under a \texttt{LEX-SEM MOTION} feature, as the \texttt{LEX-SEM} f-structure is already used for other lexical semantic information such as agentivity, which is syntactically represented by the ergative case marker in Urdu/Hindi. In the following, I present the analyses for the two kinds of light verbs.

Case #1: The finite motion verb is an event-fusional light verb of motion. The event-fusional light verbs of motion such as \texttt{kal-na} ‘to move/walk’ and the near-synonyms \texttt{dor-na} and \texttt{b^hag-na} ‘to run’ contribute lexical semantic information and unify their arguments with those of the main verb. The construction in (26) exemplifies the f-structure treatment of a CP with \texttt{b^hag-na} ‘to run’: Its lexical semantics is bleached or “light” in the sense that it looses its actual running interpretation, but it contributes a sense of speed to the main motion event.

(26) sap \texttt{bal=se _nnkal _b^hag-a}
\texttt{snake.M.Sg.Nom snake-pit.M.Sg.Obl=Instr emerge flee-Perf.M.Sg}

‘The snake shot out of the snake pit.’

The functional structure in Figure 2 shows that similar to aspctual CPs in Urdu/Hindi, the verb in the root form, \texttt{nkal} ‘emerge’ is the main verb of the sentence and licenses a \texttt{SUBJ} and an \texttt{OBL}. The light verb \texttt{b^hag-na} ‘to run’ does not have its own predicate value, but contributes its lexical semantic information under \texttt{LEX-SEM MOTION CONFIG}.

![Figure 1: C-structure analysis of motion CPs](image-url)
This analysis of the light verb makes the correct predictions for the behavior of the construction in the causative in that in CPs with event-fusional light verbs, only the main verb in the root form can be causativized. This is exemplified in (27) for the causative alternant of the construction in (26): The external causer *malik* ‘owner’ is added to the event, licensed by the causative form of the main verb *nikal* ‘emerge.Caus’.

(27) a.

```
malik=ne sap bal=se

b^hag-a
emerge.Caus flee-Perf.M.Sg
```

‘The owner made the snake shot out of the snake pit.’

Figure 3 shows that the analysis of the causative CP construction is parallel to the construction with simple verbs proposed by Butt (1998) and Butt and King (2006), in that the main verb *nikal* ‘emerge’ is embedded under a causative predicate *A-CAUSE*, which licenses the subject of the sentence, *malik* ‘owner’. The subject in the inchoative variant in (26), *sap* ‘snake’, turns into the object in the causative variant. The event-fusional light verb *b^hag-na* ‘to run’ again contributes LEX-SEM information.

```
[PRED  ‘A-CAUSE < SUBJ, nikal < OBJ, OBL >’
[SUBJ  [PRED  ‘malik’]
[OBJ  [PRED  ‘sap’]
[OBL  [PRED  ‘nala’]
[LEX-SEM  MOTION  [CONFIG speed]]]
```

Figure 3: F-structure for (26)

In the following, I present the analysis for argument-fusional light verbs of motion, which in addition to their lexical semantics contribute extra arguments to the motion event.
Case #2: The finite motion verb is an event-fusional light verb A more complex case arises when the light verb in a motion CP adds arguments which are not licensed by the main verb. As an example, consider the construction in (28). The verb *nkal-na* ‘to emerge’ is a very common light verb in motion CPs and contributes lexical semantic information close to its full verb meaning in that it emphasizes the path out of a source location, but it also licenses a source oblique, here *makan* ‘house’, which is not licensed by the main verb of the sentence, *kud-na* ‘to jump’.

(28) cor makan=se bahur kud nkl-a
 thief.M.Sg.Nom house.M.Sg=Instr outside jump emerge-Perf.M.Sg
 ‘The thief jumped out of the house.’

One solution would be to use the finite light verb as the main predicate of the sentence and treat the verb in the root form as a modifier of that verb, however this goes against the syntactic evidence for monoclausality presented in section 3. The solution I propose makes use of the restriction operator introduced by Butt et al. (2003) for complex predicate formation, in that the subject of the light verb is restricted out in order to allow the subject of the main verb take its place. This means that the root verb, here *kud-na* ‘to jump’, is treated as the main predicate of the construction, which also licenses an event filled by *nkal-na* ‘to emerge’, which in turn licenses an oblique source location. As a whole, the two predicates license two grammatical functions, SUBJ and OBL. The lexical semantic information on PATH additionally contributed by *nkal-na* ‘to emerge’ is encoded under [LEX-SEM MOTION]. Figure 4 illustrates the analysis.

![Figure 4: F-structure for (28)](image)

An interesting case arises with the causative alternant of argument-fusional CP constructions: In these CPs, both predicates are required to be marked with the causative, otherwise the construction is ungrammatical. This is illustrated by example (29), the causative variant of (28), where the verbs *kud-a-na* ‘to jump-Caus’ as well as *nkal-na* ‘to emerge.Caus’ are in the causative. The requirement that the finite verb has to be in the causative confirms the “less light” status of
these finite verbs in that they actively contribute to the subcategorization frame of
the construction.

(29) malk=ne cor makan=se bahar
owner.M.Sg=Erg thief.M.Sg.Nom house.M.Sg=Instr outside
kud-a nikal-a
jump-Caus emerge.Caus-Perf.M.Sg
‘The owner made the thief jump out of the house.’

The analysis I propose here is shown in Figure 5: The causative subevent intro-
duced by both motion verbs is recorded as the single outermost predicate A-CAUSE,
which embeds the two motion verbs and their subcategorization frames. This anal-
ysis abstracts away from the fact that both verbs have a causative subcategorization
frame on their own, but accounts for the fact that the motion verbs contribute the
same causer to the event.

```
Figure 5: F-structure for (29)
```

In sum, the f-structure analyses show that light motion verbs are not uniform
in the way they merge with main motion verbs in complex predicates of motion,
in particular with respect to predicate-argument structure. As a consequence of
the analysis, swapped motion verb constructions do not have the same f-structure,
although their interpretation is the same.

5 Discussion and conclusion

The survey of motion verb sequences in Urdu/Hindi has shown that they should be
treated as a new type of complex predicate in the language, the complex predicates
of motion. This implies a new set of light verbs, namely light verbs of motion,
which are shown to behave differently than aspectual and permissive light verbs
established by Butt (1995). On the one hand, their influence on the overall event
structure is more prominent than what is known from other complex predicates
in the language, in particular due to causativization and the ability to swap light verb and main verb. On the other hand, the constraints that are contributed by each motion verb and the exact mechanisms that prevent or license motion verb combinations are less transparent, not least because of dialectal differences.

However, light verbs of motion share important conceptual properties with other light verbs in the language, in particular, they merge their arguments and contribute lexical semantic information, a “bleached” version of their full verb meaning. However, the group of light verbs of motion is not uniform due to the fact that they share their arguments in different ways: The event-fusional light verbs of motion share their arguments and contribute lexical semantic features, whereas the argument-fusional light verbs of motion contribute additional arguments, which are not licensed by the main verb. This variation yields two different analyses on the level of f-structure: For the event-fusional CPs, the main verb is the sole predicate of the sentence, whereas in the argument-fusional case, the main verb merges its arguments with those of the embedded light verb. The causative alternants of motion CPs are parallel to simple verb causatives in that the causer is licensed by an A-CAUSE predicate, which embeds the argument structure of the motion CP.

The LFG analysis also records the lexical semantic contribution of the light motion verbs and groups it according to the two notions PATH and CONFIGURATION, two key notions of expressing motion events. The attributes of PATH are cross-linguistically well-established and have been formalized in Jackendoff (1990). The contribution of the CONFIG attributes, on the other hand, is harder to grasp and highly language-dependent, as the description of manner of motion is more difficult to formalize. In the case of Urdu/Hindi complex predicates of motion, the contribution of the light verbs regarding CONFIG is inferred based on the evidence coming from the quantitative investigation of the phenomenon and the way different motion verbs consistently modify motion events language-internally.

An interesting area for further research is to investigate the exact workings that determine the grammaticality and ungrammaticality of certain combinations. The restrictions do not seem to hold on a syntactic, but rather on a lexical semantic level that goes beyond the encoding of PATH and CONFIG. This relates to the question as to what aspects of meaning apart from path and configuration are exactly contributed by the verbs in the sequence. Resolving these issues will also pave the way for a more formal account of the argument structure which deals both with argument sharing as well as lexical semantic composition.

References

Butt, Miriam and King, Tracy Holloway. 2001. Non-Nominative Subjects in Urdu – A Computational Analysis, Paper to be presented at the International Symposium on ‘Non-nominative Subjects’ organized by ILCAA.

