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Development of renormalization
group analysis of turbulence

By L. M. Smith

1. Introduction

The renormalization group (RG) procedure for nonlinear, dissipative systems
is by now quite standard (Ma, 1978). The successes of its application to the
problem of hydrodynamic turbulence are also becoming well-known (Forster,
Nelson and Stephen, 1977, Fournier and Frisch, 1983, Yakhot and Orszag, 1986).
Much progress has been made towards an understanding of what is, and what
is not, accessible via RG analysis. In summary, the RG method isolates seli-
similar behavior and provides a systematic procedure to describe scale-invariant
dynamics in terms of large scale variables only. The parameterization of the
small scales in a self-consistent manner has important implications for sub-grid
modeling. The limiting forms of such parameterizations are often universal, i.e.
independent of the numerical coefficients in the original model.

Recognizing its limitations, the renormalization group technique is a powerful
tool. RG methods will predict characteristics of the dynamics of 2 model that
are approximately scale-invariant. Applied to the Navier Stokes equations, RG
provides an expression for the eddy-damping of the large scales by the small
scales. Other scale-dependent dynamics, such as sweeping, are not addressed
(Chen and Kraichnan, 1989).

Skepticism has surrounded the RG predictions for turbulence because the de-
tailed mathematics involved is not yet well understood. The method is justified
mostly by its success: universal scaling laws derived using RG methods are quite
accurate. Observed scaling laws are reproduced for a diverse set of problems,
from population dynamics {Feigenbaum, 1979), to turbulence, to nonlinear spin
dynamics near a ferromagnetic critical point (Wilson, 1974).

The deduction of experimentally known scaling laws gives credibility to the
RG method. The merit of any theory, however, must be based on its predictive
power. To date, the most important predictions from RG analysis of turbu-
lence have been low Reynolds number corrections to traditional high Reynolds
number models. For examples, RG formulas provide smooth transition between
the Smagorinsky eddy viscosity and the molecular viscosity, and deduced mod-
ifications to the traditional x — ¢ mode] (Yakhot and Orszag, 1986, hereafter
referred to as I). In the latter case, however, ambiguities remain with respect to
procedure and interpretation. This is not surprising given the pioneering nature
of the mathematics.
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The RG model for homogeneous, isotropic turbulence is developed in Section
2. The steps of the RG procedure for nonlinear equations are reviewed. The
meaning and consequences of the e-expansion are addressed in Section 3 using the
work of Fournier and Frisch (1978, 1983). Their results are given in terms of the
expansion parameter ¢. Inertial range statistics and scaling laws are recovered for
the case of € = 4 (I). Section 4 gives some results of the theory for homogeneous,
weakly anisotropic turbulence {¢ = 4 and no mean flow). Extension of the theory
to include a weak mean flow is discussed in Section 5. In Section 6, errors in the
Yakhot-Orszag RG k — ¢ equations are corrected. Consistency between direct
numerical simulation data for channel flow, the standard x—¢ model and the RG-
based model requires a reinterpretation of the contributions to the e-equation.
Finally, Section 7 proposes application of the RG method to a sequence of model
equations that converges to the Navier Stokes equations. The solutions of these
particular model equations are known to have self-similar solutions.

2. The RG procedure

The renormalization group symmetry transformation consists of two steps
(Ma, 1976). First, course graining is achieved by averaging over small scales.
Second, space is rescaled. New independent variables are defined in the original
domain by the rescaling. In most cases, the dependent variables are also rescaled.

It is not clear how to course-grain a nonlinear system in which the large
scales are coupled to the small scales. This is, of course, the closure problem
of turbulence, The RG technique was developed for the equations of nonlinear
spin dynamics, the time-dependent Ginzburg-Landau equations. It is based
on expansion about an equilibrium basic state whose Gaussian statistics are
known from the theory of statistical mechanics. Although this procedure is
sensible for near-equilibrium dynamics, it is not obviously relevant to turbulence.
Nevertheless, the basic state in the RG analysis of turbulence is also assumed
Gaussian, The meaning of the expansion will be explored using the work of
Fournier and Frisch (1978, 1983} in Section 3.

The RG transformation of a nonlinear system is illustrated with homogeneous,
isotropic turbulence driven by a Gaussian random force. The model equations
in Fourier space are

0o Ao
k) = GIA) ~ G Ponelid [~ 52 [ tmlaltalic -} (1)

Flk]
2mk?

(Fk)fli]) = (2r)4+12D, =2 Py (KoK + K) (2)

where 9; and f, are the i**_.components of the Fourier a.mphtudes of the velocity
and force vectors, k = [k,w] is a four-vector, and G°[k] = (—iw + v,k?)™?
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with k = |k| and v, the kinematic viscosity. The tensor Piy,,lk] results from
elimination of the pressure using the continuity condition k;9;[k] = 0: Pp.[k] =
R Pin[K] + ky Pim [k] with projection operator Pi;[k] = &;; — k;k;/k?, where §;;
is the Kronecker delta function. The cutoff A, is the wavenumber above which
viscosity wipes out all motion, A, = 1 is an ordering parameter and d is the
number of dimensions., The brackets <> denote an ensemble average. The
force, and thus the zeroth-order velocity (in A, ), is homogeneous and isotropic,
defined by the scalar correlation function Fk].
Course graining is achieved with the following steps:

1. Define 47 = ;[0 < k < ko] and 97 = %[k, < k < A,] (with analogous
definitions for ff and f?) where k, is the low wavenumber cutoff of the band
to be eliminated.

A

2. In the nonlinear term let 9, [Q]ﬁn[k — §] = 35[q)8s [k — §) + 205k —
ali (4] + o [a]9; [k — 4]

3. Iteratively substitute for 4 in the equation for #;. Iterate a number of
times equal to the order of the nonlinearity, i.e. keep terms to order AZ.

4. Ensemble average over fz? and evaluate all four-dimensional ~-integrals.
These are integrals whose integrand has wavenumber defined in the interval
[key Ao]. All Z-integrals are caleulated fo lowest order in the distant interaction
limit. This is the limit in which <-wavenumbers are small compared to ”-
wavenumbers.

Steps 1-4 eliminate the wavenumber band k, < k < A,.
In addition to terms obtained by replacing 9; by 9 in the original equations,
correction terms are generated. They are

a. force renormalization terms. These terms are zeroth-order in 4 and rede-
fine the force correlation.

b. viscosity renormalization terms. These are linear in 97 and define an eddy
viscosity, vt = v, 4 bv.

c. vertex renormalization terms. These are second-order in 3 and redefine
the vertex, Ar = A, + §A. These terms must vanish in the infrared limit k — 0
by Galilean invariance (Forster et. al., 1977).
<

d. higher order terms in 9;°.
To focus on scale-invariant behavior inherent in the original equations, one jus-
tifies neglect of new terms. Then one proceeds to the second half of the RG
transformation, the rescaling. In this case the scale-invariant behavior is the

balance between forcing and eddy damping and the new terms are higher order
<
i

One iterates the two-part RG symmetry transformation until the equations
converge to a ‘fixed point’. At a fixed point, the parameters in the model no

longer change; the equations are invariant under the RG transformation and

)
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describe self-similar physics. The scaling laws at a fixed point are often inde-
pendent of the initial parameter values and capture *universal’ physics contained
the original model.

3. The ¢-expansion

Fournier et. al., (1983) examined the general class of force-correlation func-
tions F[k] = 2wk*~¢ for ¢ > 0. (The parameter ¢ here simply defines F[k] and is
not the dissipation rate, traditionally denoted by the same symbol. In this paper
we denote the dissipation rate of the turbulent field by ¢ to avoid confusion.)
They found for the eddy viscosity, after elimination of the wavenumber band
ke <k < A,

28] [:lDo (

]

kc—e — A€

valhe) = vo(1 +3 =y, (3)

€

where oy [} = (d® — d — €)/{4d(d + 2)n?).
At the fixed point, which is found in the limit A, >> k., k. — & — 0, the
following asymptotic relations hold:

3os[e]

vrlk] ~ (<2 DI/ (4)
301 (€] 1/3 n2/33,1-2¢/3

Blk] ~ (X1 D2/ (5)

. _

Aﬁa§§g5~wﬁw)”%m (6)

where X is the non-dimensionalized expansion parameter (Reynolds number).
Relations (4)-(6) are universal in the sense that they do not depend on v,

If € < 0, the fixed point energy spectrum (5) results from force-correlation
function F[k] = 27k3~2¢/2, The case e = —2/3 was considered by Forster et. al.,
(1977), and reproduces E[k] oc k? for low wavenumbers. This is the power law
predicted by Saffman (1967) for homogeneous, isotropic turbulence. For € < 0,
the dynamics are not universal at the fixed point.

The point € = 0 is called a crossover point: for ¢ < 0, higher-order terms in 1')i<
decay exponentially as k. is decreased and statistics are essentially Gaussian; for
€ > 0, higher-order terms in 37 become important and statistics are no longer
Gaussian {Fournier et. al.,, 1978, Kraichnan, 1987, 1989). Neglect of the higher-
order terms is rigorously justified only for ¢ < 0. For all ¢ > 0, the higher-
order terms in 9 are marginal (neither grow nor decay exponentially) as k. is
decreased.
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For ¢ positive and near zero, the expansion in powers of X is likely, but not
guaranteed, to be asymptotic by relation (6). Unfortunately, ¢ near zero cor-
responds to an energy spectrum near E[k] ~ k, which is not often observed in
nature.

Despite the mathematical uncertainties associated with positive values of ¢
away from zero, Yakhot et. al., (I), applied the RG procedure to the forced
Navier Stokes equations (1) and (2) with e = 4. This case models the physically
relevant spectrum E[k] ~ k~5/%, Their results are exactly equations (3)-(6) with
€ = 4 everywhere except in the coeflicient ¢y. The value € = 0 is used to evaluate
o1. By relating the parameter D, to the flow-averaged dissipation rate &, they
found the universal scaling law E[k] = 1.6172%/3k~5/% (Leslie, 1973, I, Dannevik,
Yakhot, and Orszag, 1987).

The prediction for Kolmogorov’s constant 1.617 is very close to the observed
values, which are in the range 1.4-1.6. It is found using o[0] = 1/(10%2%). If
o1[4] = 1/(30n?) is used, the RG value of Kolmogorov’s constant is 1.11. It is
not apparent why the coeflicient at the fixed point should be evaluated at € = 0
instead of € == 4. Indeed, the general procedure advacated in [ is to evaluate all
coefficients at the fixed point using € = 0. This procedure is supported by most
of the RG results for turbulence. As another example, the Obukhov-Corrsin
constant derived using € = 0 is 1,16, while the value derived using ¢ = 4 is 0.41.
However, we show in Section 6 that evaluating coefficients in the RG equation
for the dissipation rate at ¢ = 0 leads to results that are inconsistent with direct
numerical simulations and the traditional model. Paper I does not explain why
amplitudes of a k!-spectrum are used for the theory of a k~5/2-spectrum.

If we are only interested in scale-invariant physics, the RG-expansion is likely
to reflect its essential features, regardless of the value of . The difference between
¢ from its crossover value gives a rough idea of the importance of the dynamics
that are being neglected and the departure from Gaussian statistics. For high
Reynolds number turbulence, with a well-developed k~3/3-spectrum, the eddy
viscosity (3) with € = 4 may capture the eddy-damping effect of small scales
even though all other effects are ignored in the RG analysis. Numerical tests
will be decisive (Karniadakis, Yakhot, Rakib, Orszag and Yakhot, 1989).

To summarize, the RG-expansion probably provides an accurate description
of self-similar physics. The difference between the expansion parameter and its
crossover value is a measure of the importance of other dynamics and of non-
Gaussianity. It is not clear if and/or why amplitudes should always be evaluated
at the crossover value of the renormalized expansion parameter.

4. Weakly anisotropic turbulence

A model for weakly anisotropic turbulence can be developed by extending the
force correlation to depend linearly on the anisotropy tensor b; 3
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< HIKIFR] >= (2r)*ofk + K1D, 1)

ooz 12Pi; K]+
(binknkj + bjnknki) + bnmknkmkikj

+p{bi; — 2 X

brmlen b 6:4 bnmkk kik;
tap(ominbndii ) (7)

where o, and 2 are constants, The a,nisotropy tensor is defined as b;; = (<
vlx, tlv;[x,t] > —(1/3)k8;;)/x where & = (1/2) < »;(x, t|v;[x,¢] >. Relation (7)
is the most general weakly anisotropic correlation (i.e. linear in b;;) that satisfies
continuity and the required symmetry conditions (Reynolds, 1987). Note that
b;; is a matrix of constants because the flow is assumed homogeneous.

In anticipation of an anisotropic eddy viscosity, let

G°[k] = (—iw + vok? + Bokmbnbmn) ™} (8)

in the forced Navier Stokes equations (1), where 8, = 0. The model given by
(1), (7) and (8) has no mean flow,

The RG steps 1-4 result in renormalized equations with correction terms a-
d (Section 2) where the eddy damping is now defined by vr = v, + év and
Br = Bo + 63. In addition, a fifth type of term is generated which couples the
equation for 9; [k] to the equation for v_,[k]

e. linear coupling terms. In the equation for #;[k], these are linear in B; [k]
and have the form (k*b;; — kik bm,)'v< [k] = ,J'u<[k}
The linear coupling terms show that the small scales can force ¥; through inter-
action with 9;.

One can suppress this forcing by choosing e« such that it vanishes at each
iteration of the RG scale elimination. The choice

(n} — £

makes the coefficient of the linear coupling terms zero. The superscript n is the
iteration number,

With constraint (9), Flk] = 27k*~¢ and e = 4 (E[k] ~ k75/%), one finds

(r41) _ fn) D, 1 (ef" 1)
“r tole ] Sy (Alnr)* T 4 (10)
T
(n-i—l) (n) .D (“') 1 (edr — 1)
T + o2 ¢]

ey o R )
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where oy[0] = 1/{(107%) as above, o3[0] = 1/(40x%) and Alnr] = A,e™ = k..
The cutoff k, is now the last eliminated wavenumber.

The differential equations appropriate for repeated elimination of infinitesimal
bands (r — 0) are

ii_%!‘_[_l] = gy VT['I?](/_\["?])z (12)
1
i%%ﬂ = o3(Br 7] + Yrr[H])(A])° (13)

where 7 = nr and X is the renormalized expansion parameter given by (6) The
solution of (12) subject to vp[0] = v, is equation (3) with k. = A,e™"; the
solution of (13} subject to condition Br{0] =0 is

(o2 /o1 )¢ (1—03 Jor), @2/
Brlke] = =brlln (plk, | — v} T2y [kc]). (14)
[ ] (1—0‘2/0‘1)([ ] T )
As in the isotropic theory given in Sections 2 and 3, the fixed point is at
n — 0o, which corresponds to k. — k -+ 0. According to the theory of Yakhot
et. al., one evaluates the coefficients oy and o, at the crossover ¢ = 0. Then

vr(k], E[k] and X are given by (4)-(6), Ar[k] ~ (1/3)¢rp[k] and

13
~ — 1
o 5 (15)

The parameter o defines the turbulent states that are energetically possible in
the model. As « increases, the function space of realizable states decreases (Shih
et. al., to be submitted to J. Fluid Mech.). The value of & for the Reynolds-
stress model of Launder, Reece and Rodi, (1975), is aprp = .527; the value
for the Reynolds stress model that matches Rapid Distortion Theory (RDT)
is agpr = 3/2. Both models have small regions of realizability around the
isotropic turbulence point.

If we suppress the linear coupling terms in the RG analysis, @ increases from
1 to 13/6 as more and more scales are eliminated from the problem. In view
of the large values of & necessary to prevent linear coupling, turbulence models
based on RG theory which includes this coupling seem more promising. The
extension is relatively simple: the model equations become

f’iu;] = Go[fc]fi{l;]-l'@oMij[k} [ ] zmn[k]f (2 )d-i—l ”m[ﬁ]én[ﬁ—“Q] (16)

where M;; is defined above and O, = 0. Two special cases were treated by
Rubinstein and Barton (1987). This is a possible area of further research, The
equations of a passive scalar are amenable to similar analysis.
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5. Homogeneous turbulence with a weak mean flow

A formulation of the RG theory of turbulence without an artificial external
force would be appealing. One might think that providing an internal produc-
tion mechanism by including a mean flow would alleviate the necessity of an
external force. However, if the zeroth-order turbulent velocity field is sustained
by interaction with the mean, then wavenumbers are changing in time as quickly
as Fourier amplitudes. For the RG analysis to be meaningful, one requires that
wavenumbers stay constant at least in the turnover time of a large eddy.

Thus we continue to assume that the turbulence is sustained by an external
force. The homogeneous mean must be considered weak and corrects the zeroth-
order solution given by the balance of external forcing and viscous diffusion. QOur
model equations for the fluctuations 9} are

i) = G + Nkl 8] = 52 Ponnll] [ iz salalinli— a) (1)
N,-j[k] = ke aﬁ §ij - Ty + 2725 1, (18)

where %; = U; + 9}, U; =< 9; >= II;;2; and II;; is constant (Leslie, 1973).

For sxmphclty, one may first consider isotropic, homogeneous forcing given by
the correlation (2). The RG procedure is carried out as in Section 2, by repeated
substitution of (#{)” in the equation for (#!)<. For consistent asymptotics, terms
of order I\, and TI;;A% must be retained, while terms of order A} may be
dropped. One anticipates interesting changes in the RG eddy viscosity.

The RG analysis for homogeneous shear should reproduce the universal scalar
spectrum of the Reynolds stress in the inertial range. For shear in the z; direc-
tion, U; = U2z, RG should predict 47k? < ][k]'ﬁz[k] >oc kT3,

One immediately notices the similarity between the model equations with a
mean flow (17) and the renormalized model equations due to anisotropic external
forcing (16). This similarity can be exploited to reduce the amount of work in
the problem with a weak mean flow. It is a straightforward extension to flow
with a homogeneous mean driven by a weakly anisotropic external forcing.

6. The RG k — ¢ model

The most important RG contribution to turbulence modeling has thus far
been low Reynolds number corrections to previously established high Reynolds
number equations. The RG corrections are derived, unlike their ad-hoc prede-
cessors.

Unfortunately, there remain unresolved issues in the high Reynolds number
RG & — ¢ model. These should be reconciled before study of the low Reynolds
number corrections. For better understanding of the RG x -~ ¢ equations, the
traditional model is reviewed. The Yakhot-Orszag RG model is then discussed.
We give a corrections to, and a reinterpretation of, the results cited in L
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6.1. The traditionel k — ¢ model

The dissipation rate of fluctuations in homogeneous turbulence is ¢ = v, <
(V;vi)* > where v}[x,t] are the zero-averaged fluctuations from the mean. As
in Section 5, v; = U; + v}, U; =< v; >= II;jz; where II;; is constant. The time
rate of change of ¢ is

1 2

8 - . ~ - ~ ~
Bf{ m =22 < (V;Vvl): > — 200 < (V) (Vi) > ViU —

3 4

— 20, < (V0))(V0h) > VUi — 205 < (V20) (V0L )(Vinol) >, (19)

In the standard, high Reynolds number model of equation (19), the total
dissipation of ¢ is represented by the combination of the dissipation term 1 and
the turbulent transport term 4,

2
~203 < (V5V} > ~20y < (V;0l)(V500) (Vo) >~ =C2 5 (20)

where C? is an adjustable constant. A typical value of C? is 1.8. The total
production is traditionally modeled by the sum of the two remaining terms, 2
and 3,

—2vo < (V) (Vinv}) > ViU ~ 200 < (V30)(Vjop,) > ViU

~ —C: -Z—VjU,' < viv; > . (21)

The constant C} is also adjustable. A typical value for C} is 1.4.
The simplest model of ¢ for inhomogeneous turbulence simply restores diffu-
sion and advection by the mean,

O L E 26

5-{+UJ'VJ'E =0, ;;P,c “”"Gch“f‘vaijE (22)
where xr is an eddy diffusivity and P, = -V;U; < v;-vz >. The Reynolds stress
< vv}; > is usually modeled by — < vjv} >= vy V;U; + 266 /3.

Though the parameterizations in (22) are for high Reynolds number turbu-
lence, their signs and general trends are supported by direct numerical simula-
tions of turbulent channel flow (Mansour, Kim, and Moin, 1988). The simula-
tions are necessarily at low Reynolds numbers. In section 6.3, consistency with
the simulation data is used to reinterpret the RG-based ec-equation.
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6.2, The Yakhot-Orszag RG e-equation

The goal is to calculate the effect of the small scale velocity field on the large
scale variations of £. The strategy is to assume that the high wavenumber
velocity field obeys forced Navier Stokes equations, for examples (1) or (18).
The model worked out in I assumes that the high wavenumbers are governed by
(1) with homogeneous, isotropic forcing given by (2).

The steps used in I to derive the RG z-equation are given in CTR Manuscript
106 (Smith, 1989). Many assumptions of the procedure are not explicitly ad-
dressed by the authors of I. A large amount of second guessing is required to
understand their interpretation of the results. Due to the complexity and vague-
ness of their method, the steps will not be presented here.

Here we simply state the results reported in I and give corrections. The
corrections are to purely mechanical errors and do not address assumptions or
interpretation. These more important issues are discussed in section 6.3.

The Yakhot-Orszag high Reynolds number, RG z-equation is

Oe € e?
5t +U;Vje = —-1.063;13_.‘ - 1.7215: + VixrV;e (23)
where P, = —V;U; < vjv} > as above. The Reynolds stress is again modeled by
— < v:;v_'f >= vpV,;U; + 2r6;;/3. The RG theory gives vy and x7 as functions
of ¢ and &.

The corrected model, based on the same method, assumptions and interpre-
tation, is

O¢e e?

*‘6‘“{ + UJ‘VJ'E = 1.5946(&.00 + Sboo) + 0.9-;— + VxTVie (24)
where the coefficient of the production term is identically zero (CTR Manuscript
102, 1989). The constants @, and b., are defined by integrals,

Qoo = —2/000 dn vr[n]A[n]

® 1

where vp[n)] is given by (3) with k. = Aln] = A,e™™. The term 1.594e(aq + boc )
has the same scaling as the term 10.5¢% /k, but is of the opposite sign and larger
in magnitude. All coefficients in models (23) and (24) are evaluated at the
crossover value of the renormalized expansion parameter, e = 0. Models (23)
and (24) should be compared with the standard model (22).
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6.8. Corvected results reinferpreted
In paper I, the starting point to derive the RG e-equation is the equation for
¢ = vo(V;vi[x,1])*. The average of ¢ is the dissipation rate in homogeneous
turbulence. The exact equation for ¢ is

8
-5? = —0; Vi + 1o V; V6 — 205(Vn Vv;)° —
—2%(Vjv;)(VjV,-P) — 2o(V 0 )(V 0 NV m ;) (26)

The origin in (26) of the terms in model (24) suggests a reinterpretation con-
sistent with the standard model (22} and direct numerical simulation data for
turbulent channel flow., The RG analysis is actually performed on the transform
of equation (26) with &; = 35 + 47, ¢ = ¢< + ¢~ and P = P< 4 P>, The fol-
lowing list gives the origin, Fourier integral and final contribution in real space
in the format

*). origin in equation (27)

Fourier integral

—  final contribution to RG model

a.) a renormalized diffusion term, generated by the -~v;V ;¢ term:

—ik; /(2#)‘“‘1 ; ]¢>[ q]

— VixrV;é<. (27)

b.) a contribution from —2v,(V,, V;v;)%:
dq N
2v, WQmQj(k = @m{k ~ )97 [4]9; [k — 4]

— Bae(acs + 3urAl). (28)

c.) contributions from —2v,(V ;v )(V;0m )(Vim ;)
Cf dadidp . .
2o / Wﬂk — § - — plg;57 [&]pm 87 [Blr 0[] +

dadrdp = . L L Sl e s
+ 2zvof Gamyars 01K = &= # = Pla; 07 [&]rj 87 [Flpm 0 [P)
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3(d*+d+e—6) 1

— Baevr(V;v7)" (boo 2 2d(d + 2) V%Ai)'

(29)

In b.) and c.), Ay is the integral scale. The relationships between Ay, v, € and
£ are

3 €
VTA?f = EOK’)’[G] "m"

vp = c,,[e}—;E (30)

where Ay = (&2 — d — €)/(2d(d + 2)), By = 1.54,/.1904, +[¢] = (344B,/8)'/*,
cu (€] = (47[€]))/(9CE [€]) and Cile] is the RG prediction for Kolmogorov's con-
stant.

In the corrected Yakhot-Orszag model described by (24) and (25), the con-
stants were evaluated at the crossover value of the renormalized expansion pa-
rameter ¢, Here the e-dependence is shown explicitly. The definition of b, as a
function of € is

bcoz_(d2+d+€w6)/ (31)

2d(d + 2) " [??]f'k2 ]’

The expression (3) for vp[n] and A[n] = A,e™" may still be used to evaluate e
and bo,. The coeflicient defining @, is not a function of . The renormalized
diffusivity xr is a function of .

The division into ” and < functions identifies the sub-equation in (26) that
generates the renormalized e- equatlon The derivation i m I associates v with
v}, v with U; and € = v, < (V;07)? >= vp < (V;27)? >, The contmbutmg
sub- equatlon is then

g
aj = U;Vje + VixrVie — 202 < (V; Vo) > —
—~21, < (ijv;)(vmv:) > V:Um - 2u, < (Vjv:)(vjv;n) > VU (32)

Equation (32) is the exact equation (19) for ¢ without the turbulent transport
term and with advection and diffusion restored.

The simulation data for channel flow indicates that the contribution ¢.) should
be a production term. If the Reynolds stress is modeled by — < 'v'v' >= vpV;U;,
then P, = vp(V;U;)2 = vr < (Vjv7)? >= ¢. Thus, in the context of RG and
traditional modeling, we may label vy < (V7)) > either P, or ¢, depending
on the sign of its coeflicient.
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The sign of contribution c.) is positive, in accord with the numerical simula-
tion data. Thus we should identify c.) as

1.5946 P, (bey [0] — f;?-), (33)

where by, is larger in magnitude than the 1/« term and has the opposite sign,
The interpretation (33) is consistent with standard model (22) and the simu-
lation data for channel flow, and gives

_g_i; o} UjVjﬁ' = 1.5945(:1.,0 [0] + b [0])+

2
457 — 482D, + V;xr Ve, (34)
.4 K

In equations (33) and (34) all coefficients have been evaluated at e = 0.

7. RG analysis of optimal equations

The Euler-Lagrange (EL) equations governing the optimization of a mean field
moment, subject to constraints derived from the Navier Stokes equations, have
- smooth, ordered solutions. The EL solutions betier approximate the ordered
features of turbulent flow with each additional constraint. A particular class of
EL equations that approximates the equations of shear turbulence has solutions
of self-similar, downstream rolls (Busse, 1970). This scale-invariant structure
suggests that RG analysis of EL equations may be fruitful.

Well chosen EL equations may adequately capture ‘order within disorder’ and
predict the organized motions observed in real turbulent flows. For example,
the size of the smallest downstream roll in the above mentioned solutions is a
prediction for the spacing of the streaks near the wall in shear flows, The fact
that these EL equations capture self-similar physics indicates that optimal theory
and RG theory are different approaches that may sometimes isolate the same
phenomena. Perhaps they are complimentary when applied to the turbulence
problem.

Optimal theory has until now been restricted to semi-analytically tractable EL
equations. Thus, the constraints have been limited to the boundary conditions,
continuity and the integral statement of energy balance. A joint project with
F. Waleffe is an upper bound formulation based on additional constraints which
impose the balance of vorticity. Such a formulation requires numerical solution,
but will unquestionably provide better and more accurate information about the
ordered structures in turbulent shear flows. (See the CTR 1989 Annual Report
by F. Waleffe.)

The optimal equations constrained by the boundary conditions, continuity
and the integral statement of energy have the same linear terms as the Navier
Stokes equations and different nonlinear terms. Only the nonlinear terms are




04 L. M. Smith

affected by the addition of more constraints. The existence of nonlinear terms
which represent only the ordered, self-similar physics inherent in the Navier
Stokes nonlinear terms would be intriguing. The RG method is not limited by
nonlinearity, however complicated. Features such as the streak spacing and the
slope of the logarithmic layer should be products of RG analysis.

8. Conclusions

There remain unanswered questions about the Yakhot-Orszag theory of tur-
bulence based on renormalization group techniques. Among them are ‘What
is the meaning of evaluating coeficients at the crossover value of the nondi-
mensionalized expansion parameter?’ and ‘What is the correct procedure for
deriving a model equation for the dissipation rate?’. Extension of the theory to
weakly anisotropic flow, and to flow with a mean, may help answer these ques-
tions as well as improve eddy viscosity/diffusivity models. Finally, RG analysis
of optimal equations may help isolate the ordered features of turbulent flows.
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