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Short-time Lyapunov exponent analysis
By J." A, Vastano

A new technique for analyzing complicated fluid flows in numerical simulations
has been successfully tested. The analysis uses short-time Lyapunov exponent
contributions and the associated Lyapunov perturbation fields. A direct simula-
tion of Taylor-Couette flow just past the onset of chaos demonstrated that this
new technique marks important times during the system evolution and identi-
fies the important flow features at those times. This new technique will now be
applied to a “minimal” turbulent channel.

1. Introduction

Numerical simulations of turbulence are increasing in number and quality each
year. These simulations provide a wealth of information about the structure of
turbulent flows. The analysis of these flows must start, therefore, by discovering
when and where to look at the system in order to see the important events in the
flow evolution. Short-time Lyapunov exponent analysis is a new technique that
shows promise for finding these events, Research at the Center for Turbulence
Research over the past year has shown that this technique can successfully locate
the times during a flow evolution when important chaos-producing mechanisms
are operating. At these times, the structure of the perturbation fields associated
with the Lyapunov exponent computation give a picture of those flow features
in which the exponential growth of perturbations is occurring. This report will
define the Lyapunov exponent spectrum, describe the short-time contributions
and fields used in the analysis, and discuss the numerical tests that have been
performed.

2. Lyapunov exponent analysis

The asymptotic motion of a bounded, dissipative systemn is on some attracting
set in its phase space (Eckmann and Ruelle 1985). Attractors range from simple
fixed points to chaotic strange attractors, The Lyapunov exponent spectrum
provides a fundamental description of the geometric and dynamical properties of
an attractor. Lyapunov exponents measure the long-term average exponential
growth rate of perturbations to the system trajectory in phase space. More
precisely, if the time evolution of the system = is given by

i = F(a),
then a perturbation éz evolves according to

Sz = J(z)bx;
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where J(z) is the linearized form of F(z), J(z) = dF/dz. For a given initial
condition #(0) on the attractor and an initial perturbation 6z(0),

6x(1) = M(t,2(0))d2(0),

where .
Mm‘/o J(z(s))ds

The long-time evolution of perturbations will be governed by the eigenvalues
of M*M. The eigenmodes specify perturbation fields §z;(0) that will grow at
the rates given by the eigenvalues. We define the Lyapunov exponents X; by

1
M= Jim < log(|6e:(1)|/162:(0)).

The exponents are ordered so that A; is largest. There are an infinite number
of Lyapunov exponents for a spatially-extended system. FEach exponent cor-
responds, roughly, to a separate direction in phase space. The Kaplan-Yorke
conjecture (Frederickson et al. 1983) gives a simple formula that relates the
Lyapunov exponents of an attractor to its dimension. Initial perturbations in
almost any direction will grow at the rate Ay, but there exist subspaces of the
initial tangent space for which perturbations grow at the rates given by the
other Lyapunov exponents as well. In computing the exponents, one follows N
perturbations to estimate N Lyapunov exponents. A standard technique ex-
ists for evolving the perturbations for long times and obtaining estimates of all
N exponents (Benettin et al. 1980) The basic procedure is the Gram-Schmidt
reorthogonalization, which removes from the i-th perturbation field those com-
ponents corresponding to growth at rates A; through X;_;.

The greatest difficulty in cotnputing Lyapunov exponent spectra for model
systems is that the convergence of the running estimates to the long-time average
exponents is slow (like 1/ ) and cannot be accelerated. On the other hand, it has
been argued (Goldhirsch et al. 1987, Greene and Kim 1987) that the evolving
perturbation fields éz;(t) decay exponentially fast to the eigenmodes of M(%,0)
and, furthermore, that these functions are themselves a smooth field over the
attractor. In other words, the Lyapunov perturbation fields are local properties
on the attractor. If this is the case, then the short-time contributions to the
long-time average exponent,

AXi(t) = o lo([8ai(t + AOI/15z: (1))

are also local properties on the attractor.
The growth of perturbations to the system at any time can be measured by
projecting the perturbation onto the local Lyapunov perturbation fields and
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checking the short-time expansion rates. Clearly, when these short-time rates
are much smaller or larger than average, perturbation will either be damped or
expand at large rates. In addition, if the perturbation fields themselves have
structure, they indicate where in physical space the mechanisis driving the
instability are located, and the form of the instability.

3. A test case

To test the utility of the short-time exponent analysis, numerical simulations
were performed on Taylor-Couefte flow just past the onset of chaos in that
system. This system was chosen because there is experimental evidence that
the flow is low-dimensionally chaotic at computationally accessible Reynolds
numbers, A code for computing the base flow already existed (Moser et al, 1985)
and could be easily extended to the computation of N Lyapunov exponents.
Although there had been a great deal of previous experimental, theoretical, and
numerical work on this system, the transifion to chaos was not understood. In
particular, no physical mechanism or instability underlying the transition from
quasiperiodic to chaotic flow had been determined.

The particular Taylor-Couette flow studied was chosen to match the most com-
plete experiment to date on the transition to chaos in this system (Brandstater
et al, 1985, Brandstater and Swinney 1987). For this case, the outer cylinder
is fixed and the inner rotates at a constant frequency. At Reynolds numbers R
near zero, the flow state is Couette flow, axially and azimuthally homogeneous.
At a critical Reynolds number R,, a bifurcation to another steady flow occurs.
This is Taylor vortex flow, consisting of an axial stack of ring vortices, still az-
imuthally homogeneous. Neighboring vortices rotate in the opposite sense, so
that vortices are separated by alternating inflow and outflow boundaries. The
axial wavelength is defined by a pair of Taylor vortices. In the experiment of
Brandstater and Swinney, the average axial wavelength was 2.5 times the gap
between cylinders. The numerical simulation assumes axial periodicity; the axial
period is set to 2.5 gaps.

At higher Reynolds numbers, first one and then a second azimuthal travelling
wave appear on the vortices. Each travelling wave introduces an independent
frequency of motion to the flow. The waves have integer azimuthal wavenum-
ber: in the experiment of Brandstater and Swinney, both travelling waves had
wavenumber four. This is convenient for the simulations, since the state is four-
fold symmetric in the azimuthal direction and it is only necessary to simulate a
quarter of the azimuthal extent. In the experiment, the onset of quasiperiodic
(two-frequency) flow occurred at R/R. = 10.0, and a chaotic flow was observed
at R/R, = 11.7. The dimension of chaotic attractors can be determined from
time series data. Experimental time series yielded dimension estimates between
two and three for Reynolds numbers as high as R/R. = 15.
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FIcure 1. Contours of azimuthal velocity at a midplane in r for R/R, ==
12.0. The horizontal axis is the azimuthal direction and the vertical axis is the
axial direction. One-quarter of the cylinder is shown azimuthally, and two axial
wavelengths (twice the computational grid) are shown axially.

4. Results

To convert the code of Moser et al. to estimate N, Lyapunov exponents
required following N + 1 times as many fields. The linear part of the time
evolution operator is identical for the base flow and the perturbations. The
nonlinear term of the evolution operator for the base flow is u X w. For the
perturbations, this term becomes §u X w+u X §w. The only other addition to the
code was the Gram-Schmidt reorthogonalization procedure, which is done every
few time steps, primarily fo give smooth short-time contribution curves. Since
computing N Lyapunov exponents requires (N +1) times as many grid points as
does the base simulation, it was essential to use the lowest resolution possible.
The resolution used in the simulations was 16 Chebyshev modes radially by
32 Fourier modes in the axial and azimuthal directions. This resolution was
sufficient to capture the flow in the quasiperiodic regime immediately prior to
the onset of chaos with good accuracy. The travelling wave frequencies were
predicted to within 2% of the values seen in experiment at R/R. = 11. Increasing
the number of radial modes to 32 dropped the discrepancy to less than a percent,
but did not otherwise alter the flow.

A sample flow visualization, at /R, = 12, is shown in Figure 1. This is a
picture at an instant of time of a chaotic flow. The quantity shown is the az-
imuthal velocity component of the flow at a radial midplane. The more focused,
higher velocity jet is the radial ouiflow boundary jet, while the more diffuse
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FI1GURE 2. Convergence of the Lyapunov exponents at R/R, = 11.32 for (a)
the first five exponents, (b) exponents six through fourteen.

jet is the radial inflow boundary jet. The jets are labelled by their radial com-
ponents, but the dominant velocity component in both jets is azimuthal, not
radial. Chaos appeared in the simulations at about R/R. = 11.1, earlier than
had been observed in experiments. A power spectral analysis of a numerically
computed time series showed that the travelling wave peaks in the spectrum
corresponding to the travelling wave frequencies were about 8 decades above
the broadband noise component at R/R, = 11.3. The experiments had only
six decades of signal-to-noise separation; thus, it is probable that the chaos was
already present in the experiment at this Reynolds number, but was masked by
the instrumental noise,
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F1GurRE 3. Short-time contributions to the first nonzero Lyapunov exponent
for (a) R/R. = 9.71 (quasiperiodic), and (b) R/R. = 11.32 (chaotic).

The convergence of the Lyapunov exponents in the simulation is shown in
Figure 2. The first five exponents were computed for almost 600 cylinder rev-
olutions, but clearly from the figure they are just converging. The next nine
exponents were followed for a much shorter time, and there is still a large un-
certainty in their estimates. The trend in the exponents is clear, however, and
the Kaplan-Yorke formula gives an attractor dimension of about nine. This is
higher than the values between 2 and 3 determined from experimental data. It
would appear that low amplitude structure unresolved in the experiments adds
significantly to the dimension of the chaos.

Computation of well-converged Lyapunov exponent spectra is expensive: the
runs described above used more than 500 hours of CPU time on a Cray-YMP
computer. This is in contrast to the short-time Lyapunov exponent contribu-
tions, shown in Figure 3 for a quasiperiodic and a chaotic case. The perturba-
tion fields, started from random initial conditions, evolved very rapidly towards
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F1GURE 4. The chaotic flow at #/R. = 11.32. Shown are the azimuthal velocity
contours at a midplane in » for (a) a minimum in the short-time contributions
to A1, and {b) a maximum.

asymptotic forms that are displayed at selected times for the chaotic case in Fig-
ure 5. The short-time contributions settled down somewhat more slowly than
the gross form of the perturbation fields, but were qualitatively similar to the
time traces shown in Figure 3 within 40 cylinder revolutions.

The first thing to notice about the short-time contributions is the enormous
variation of the contributions compared to the long-time average exponents, For
the quasiperiodic case, the contributions are to the first negative exponent, which
has a value of -0.4 bits/Ty, where T} is the period of the primary travelling wave.
For the chaotic case, the contributions shown are for the first exponent, which
has a value of 0.35 bits/Ty. The short-time contributions can be forty times or
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Ficure 5. The perturbation field corresponding to A; for the flow of Fig. 4.
Shown are the azimuthal velocity contours at a midplane in » for (2) a minimum
in the short-time contributions to Ay, and {b) a maximum.

more the size of the long-time average, and of either sign. There are fairly rapid,
small oscillations in the contributions that are not yet understood; they may be
related to the evolution of structures in the perturbation fields. The large scale
oscillations on a time scale of two cylinder periods are the important features for
understanding the flow. At minima, perturbations to the flow are crushed, while
at maxima they can expand at an enormous rate (for a short time). Figure 4
shows the chaotic flow at times corresponding to a minimum and the succeeding
maximum of the short-time contributions to A;. The large-scale change in the
wave-forms is the quasiperiodic part of the flow. The separation of the outflow
and inflow jets at closest approach is much smaller at the maximum time than at
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the minimum time. This seems to be what triggers the instability of the flow that
causes the chaos. The jet profiles have been followed as they evolve, and there
does not appear to be any change in the jets other than their separation. The
nature of the instability that is triggered can be seen in Figure 5, which displays
the perturbation field at the same times. All of the energy in the perturbation
is concentrated on the outflow boundary jet at both times, and it has the same
general form: the outflow jet is rolling up. Examination of the perturbation
field at other radial locations shows no important radial effects, so while the
jet is not two-dimensional, the instability is very much a Kelvin-Helmholtz type
phenomenon.

The instability scenario gleaned from the short-time analysis is this: as the
quasiperiodic evolution of the flow proceeds, the outflow jet is destabilized by
the close approach of the inflow boundary jet. For some part of the overall
evolution, a perturbation of the outflow jet in the form of a roll-up of the jet
can grow. This produces the chaos in the system. Examination of Figure 1
shows that at higher Reynolds numbers, the roll-up becomes more apparent in
the base flow itself. The same type of perturbation field is also observed for the
quasiperiodic case, indicating that prior to the instability, the same mechanism
is present as a damped mode.

5. Future plans

The test case has shown that short-time Lyapunov exponent analysis can be
a useful tool for examining chaotic flows. The next step will be to apply this
tool to a fully turbulent flow. The plane channel case studied by Keefe (1987)
has an extremely high dimension, requiring the evolution of many hundreds of
perturbation fields. This will not be possible in an economical way. A better
alternative is the “minimal” channel studied by Jiménez (1989): not only will
the dimension and thus the number of requisite perturbations be lower, but
the number of structures in the flow will be reduced, simplifying the fask of
identifying which of them are important to the turbulence evolution
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