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Turbulence dynamics in
the wavelet representation

By C. Meneveau

The phenomenon of small-scale intermittency is shown to motivate the de-
composition of the velocity field into modes that exhibit both localization in
wavenumber and physical space. We review some basic properties of such a
decomposition, called the wavelet transform. The wavelet-transformed Navier-
Stokes equations are derived, and we define a new quantity Il(», #, 1), which is
the flux of kinetic energy to scales smaller than r at position & (at time t). Then,
the main goals of this research are summarized.

1. Introduction

One of the most important features of a turbulent flow is the transfer of kinetic
energy from large to small scales of motion. For isotropic and homogeneous
turbulence, the three-dimensional energy spectrum E(k,t) obeys

?_{ng_’i)_ = T(k,t) — 2vk> E(k, 1), (1)

where T'(k,t) is the net transfer of energy through wavenumbers of magnitude
k. The total spectral flux of energy through wavenumber & to all smaller scales
is given by

o0

T(k,4) = f T(k', 8)dk'. | (2)

k

Usually the mechanism of energy transfer is visualized by simplified models such
as the successive break-down of ‘eddies’, or as the creation of small scales by the
stretching and folding of vortical elements. One then argues that through scales
of motion of size k=1, there is a net flux of kinetic energy to smaller scales, which
is equal to the time average of II{k,t). Notice that II(k,t) does not depend on
position because of the Fourier representation used to obtain Eq. (2). If one
now wishes to reconcile this definition of a ‘flux’ of energy to smaller scales with
the phenomenological picture of breakdown of eddies, one needs to tacitly make
the assumption that its average value is indeed physically representative of the
underlying physics in any regions of space. In some loose sense, this then cor-
responds to the theory of Kolmogorov (1941), which neglects the phenomenon
of intermittency. Of course, it has been known for a long time that the rate
of dissipation e{x, t} is distributed very intermittently (Batchelor and Townsend
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1949), a behavior which increases with the Reynolds number of the flow. Also,
its moments increase with Reynolds number according to power-laws in the iner-
tial range of turbulence. Among others, this permits a self-consistent statistical
and geometrical representation of ¢ in terms of multifractals (Kolmogorov 1962,
Novikov 1971, Mandelbrot 1974, Frisch and Parisi 1985, Meneveau and Sreeni-
vasan 1987a, 1987b, 1989). The observation of power-law behavior of spatial
moments of the dissipation can be modelled again rather naturally within the
framework of breakdown of eddies, but now assuming that the flux of energy
to smaller scales exhibits spatial fluctuations. These fluctuations accumulate as
the scales of motion become smaller, and can lead to very intermittent distribu-
tions of the dissipation displaying power-law behavior. This suggests the need
for defining a flux of kinetic energy to smaller scales which, as opposed to Eq.
2, should retain some degree of spatial locality. '

In a very interesting paper, Kraichnan (1974) proposed to decompose the
velocity field into band-limited contributions according to

2m+l.
@y =0 [ aoeF e, (3)
fel=2m
where -
ﬁ;(f::‘,‘t)= ju;(i‘,t}e_i’:'sdam. (4)

The equation of motion of u!*(Z,t) can be deduced from the Navier-Stokes
equations, and multiplying the result by u]*(Z,t) gives the evolution equation
of [u*(Z,1)]* which can be interpreted as the kinetic energy occurring in a
wavenumber band around 2™, at position £. The result is

) ) o
(5~ vV i (Z, 1)) = T™(%,1), (4)
where
gm+l
my —1 myo oy ik 2 n " a7
T™(%,1) = m) (#,1) f Py (k)e™ fﬂj(é')uk(k - )d*qd’k.  (5)
k=2 g

Here P; jk(i’;:’) is the usual divergence-free projection operator. In analogy to Eq.
(2), Kraichnan (1974) then defined a flux of kinetic energy to smaller scales as

n™(z,t) = »  T"(,1), (6)
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F1oURE 1 (A). Signal u(z) displaying oscillations of a single scale in a confined
spatial region. '
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F1GURE 1 (B). High-pass filtered version of the signal u(z). The filtering here
consists of cutting off all discrete Fourier modes of scales larger than 30.

which is now a position-dependent quantity because of the band-pass filtering.
However, filtering using Fourier modes can be dangerous in the following sense,
Take for instance the signal of Fig. (la), where an oscillation of wavelength
A = 30 is confined to a certain region of space. This could be thought of as an
extreme case of intermittency, where at a given scale A all activity is confined
to a subregion of space only, If we now high-pass filter the signal up to scales
equal to ~ 30, we get the signal of Fig. (1b). It is apparent that the elimination
of modes at scales larger than 30, some of which were needed to cancel the
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oscillations outside the domain of activity, has resulted in spreading the ’activity’
everywhere. This is because of the non-local nature of the Fourier modes.

This motivates the study of bases that retain locality both in wavenumber
and position space. Their use in describing turbulence dynamics is the primary
goal of this research, with special emphasis on the spatial characteristics of the
transfer of energy to smaller scales and the implications on intermittency. The
formalism will then be applied to numerical data bases of turbulent flows.

The theory and applications of the so-called wavelet bases, which are local
in wavenumber and position space, has recently generated much interest (for a
detailed account, see Daubechies 1988). Wavelets are currently used for speech
and image processing (Mallat 1989, Kronland-Martinet et al. 1987), and can
be used to describe affine coherent states in quantum mechanics (Paul 1985).
The work of Siggia (1977) and Nakano (1988) attempt to describe turbulence
using wavepackets, which display several similitudes with wavelets. Explicitly,
the potential use of wavelets in turbulence has been pointed out in the context
of coherent structures (Farge and Rabreau 1988) as well as in studies of its
fractal nature (Argoul et al. 1989), even though their claim that it has proven
the Richardson cascade based on single hot-wire measurements appears to be
premature,

Section 2 defines the (continuous) wavelet transform of a signal, and reviews
several of its properties. Section 3 defines the flux of kinetic energy to smaller
scales using the wavelet representation, and also derives the wavelet-transformed
Navier-Stokes equations. Section 4 contains some practical considerations re-
lated to the implementation of the discrete version of the wavelet transform,
and its generalization to three dimensions. Section 5 summarizes the future
objectives of the present research.

2. The wavelet transform

Given a signal u(z), its wavelet transform is defined as

oo

Wine) = 05 hd [ oty ")

r

—0d

where g(s) is a function called wavelet, satisfying the admissibility condition

0 = [ 1ol )P de < oo. )

Here g{w) is the Fourier transform of g(s). g(s) is of zero mean, will have
some oscillations and will usually be real. A typical example is the mexican hat
g{s) = (1 — s2)e™*" /2, which can approximately be viewed {Coifman 1989) as
the difference between two exponentials of different sizes centered around s = 0,
Therefore, W(r, ) can be regarded as the relative contribution of scales » to the
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signal at position z. If g(s) obeys the above conditions, the wavelet transform
can be inverted (Grossmann and Morlet 1884). The inversion formula for the
wavelet transform reads

oo 00

u(z) = g%ffr_%g(

8 —oo

)W(r,z'){u}dm'dr. (9)

W(r,2) can also be obtained from 4(k), the Fourier transform of u(x) accord-
ing to
W(r,e){u} = € T(2r) " rk / g(rk)*a(k)e'™* dk, (10)
—o0

where §(w) is the Fourier transform of g{s). The total energy of the signal is
given by

/u(m')ﬁdm’ - ¢ f]o W(r,2){u}? drde. (11)

Oune can also compute @(k) from W(r,z){u} using

(k) = € ¥(2r)"! f f r~ 3 9(rk)e* W (r, 2){u}dadr. (12)
0 —oo
The wavelet transform commutes with differentiation in the spatial variable,
namely

S W (@) {u} = W(r,2){ pu(e)) (13)

For vector functions #{z) with components 'u,,-(:c), the transform is a vector
V_f;’(r,:n) whose components are the transforms of the components of #(z).

For functions defined in higher dimensions, it is recommendable to use decom-
posable wavelets. In three dimensions we use

9(8) = g(s1,82,83) = g1{81)g2(82)93(53). (14)

One can then prove the following useful relations:

Vi W(n@{E(@)} = W(r&){Vas - i@} (15)
and

—

VaW (r, &){@(#")} = W(r,&){Vai(@)}. (16)
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3. Wavelet representation of turbulence dynamics

Let us define W;(r, #,1) as the wavelet transform of the velocity field u; (:c t).
(From here on we simplify the notation by using W;(r, &, t) instead of W;(», &, 1){u;}).
Because of Eq. (15}, the incompressibility condition reads

Vi W(r#t) =0. (17)

Multiplying the Fourier-transformed Navier-Stokes equations by ¢y L (2)~¢
X §(rk)* et B integrating over wavenumber space and using Eq. (12) gives

(57 = ¥V Wil &,0)] =

ff/fW (" & OWe (", & ) L (r, &0 0", & & )dr dr P2 P2, (18)

where

I AR T )
Iijk(ram)"':'r ,;L‘,:B)

z'rz

20§ (2m)(r ) B f §(rR)* Pyjp (R)etF 32
)3l (pfp

P ‘/g(r'tj')‘&(r"(fc. - cj’))e"';'.'(’_”d_’7"”)d3qd3 k.

g
(19)

This illustrates that there are now interactions of the W;(r, &,1) occurring at
different positions as well as different scales. These non-local and inter-scale in-
teractions are dictated by the properties of Iy (r, @', 2", &', ). Additionally,
one can, of course, apply the wavelet transform in time.

Of more 1mmed1ate interest is to define a quantity analogous to Eq. (6) in
the wavelet representation. For this we start with Eq. (19) and multiply by
W;(r,&,t) and express the right-hand-side as a function of the velocity field. We
obtain

(m — VAWl &, 0] = T(r, 3, 1), (20)

where
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<[ a@in k- Dol (21)
g
The flux of kinetic energy to all smaller scales can then be defined as
O(r,&,t) = fT(r',:E’, t)dr'. {22)
0

Therefore, given the Fourier transform of the velocity field, the quantity
II(r,&,t) can be computed. Other quantities whose spatial distribution is of
interest is the dissipation term

v OW; OW;

2 ) = 2 iz
e(r,@,t) = 25, 3o ]“. (23)

Assuming constant mean shear, the production term is

P(?’,:E’, t) = Wi(rsf’t)wj(rai,t)sija (24)

where §;; is the mean rate of strain.

4. Wavelet bases and discretization

There are many possible choices for the wavelet g(s). The simplest is the Haar
function g(s) = 2% for 0 < s < 2 and g{s) = —27% for 2 < s < 1. Another is
the mexican hat mentioned in section 2. In terms of the discretization of the
transform, assume that one has a signal on a discrete grid consisting of N points.
One possibility is to space r logarithmically and ‘slide’ the spatial variable over
all N points of the signal. In such a case one obtains of the order of NlogN values
of the transform. This is what has generally been used in gqualitative studies,
such as by Kronland-Martinet et al. (1987) and Argoul et al, (19893). The fact
that the transform consists of more points than the original signal comes from
the non-orthogonality of the wavelet functions in such a case.

Intuitively, for larger values of 7 one could use a coarser spatial grid than for
smaller values of r. This observation has led {see Mallat 1989) to the definition
of basis functions of the form

g™i(@) = o( T ) = glag™ e — ity), (25)

where ay and by are dilation and translation steps. Notice that now the trans-
lation depends on the dilation, both being logarithmically spaced. Choices for
ap and by are not completely arbitrary (Daubechies 1988); here we will use the
simplest case ap = 2 and by = 1. Notice that the Haar basis with such a choice
of ay and by constitutes an orthonormal system, because
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FIGURE 2. Lemarie-Battle wavelet with exponential decay in physical space
For a method of constructing such a wavelet, see Mallat(1989).

fgm‘i(m)g”’j(w)dm = bmnbi;. (26)

The discrete wavelet coefficients of a continuous function u(x) are defined as

Wi = [ gmieu(e)ds, (27)

and the (discrete) reconstruction formula is the wavelet series expansion of u(z)

u(z) = C’_,,—% Z E 27 W g™ (g), (28)

In practice, u(x) itself is discrete and the integration in Eq. (27) needs to
be replaced by a sum. In the formulation to be adopted here, the discrete

samples u(x,) are viewed (Mallat 1989, Daubechies 1988) as resulting from the
convolution of u(z) with a function ¢ ,(z) according to

u(zy,) = fu(m)¢0,n(m)dm. (29)

It turns out that the conditions of orthonormality of the entire wavelet basis
(as well as several other considerations) are related to the properties of ¢o,n (@)
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Ficure 3. Wavelet transform of the signal of Fig. 1(a) using the Lemarie-
Battle wavelet and the fast algorithm of Mallat (1989). The index m denotes
the scale and runs from m = 1 to m = logy N = 9. The index ¢ runs from 0
to 27™ N — 1, The spatial resolution thus decreases as m increases. The total
number of values of the transform is N — 1, and for the decomposition to be
complete, one also needs to know, say, the mean of the signal.

(Mallat 1989, Daubechies 1988). For instance, the use of such a formulation
naturally leads to an algorithm to compute fast wavelet transforms (FWT),
Several issues other than orthonormality need to be taken into account when
deciding which wavelets to use. One very important issue is the degree of locality.
The Haar system is very well localized in space (it has compact support in {0,1]),
but has very poor spectral locality. This is a disadvantage, because we would
like the wavelet coeflicients corresponding to a certain scale » to be large only
when the signal acfually contains oscillations of that scale. In other words,
one is interested in fast decay both in wavenumber and position space. A very
convenient function complying with the conditions of discrete orthonormality
was discovered by Lemarie and Battle (see Mallat 1989). This function decays
as k=% in wavenumber space and exponentially in physical space, and was used
by Mallat (1989) for image analysis. Figure 2 shows this function. Figure
3 displays the discrete wavelet transform of the signal of Fig. la. Notice the
spacing that becomes more coarse-grained as the dilation factor » = 2™ increases.
The transform peaks near m = 5 (corresponding to a scale A = 32) only in the
vicinity of the oscillations of the signal. Inverting the transform for scales up to
32 (m = 0 to 5) gives the signal of Fig. 4. Since the wavelet coeflicients away
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FIGURE 4. High-pass filtered version of the signal of Fig. 1{a) using scales
corresponding tom = 1 to 5. Here we have applied the (discrete) inverse-wavelet
transform algorithm of Mallat (1989).
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FIGUvRE 5. Signal displaying oscillations of different frequencies at different
locations, as well as random numbers (right portion).

from the activity are very small, there is little risk in incurring the problems
that occurred with the Fourier representation (see Fig. 1b).

Figure 5 shows another function consisting of oscillations of different scales
located at different positions. Figure 6 is its discrete wavelet transform, Figures
7 and 8 correspond to high-pass and low-pass filtered versions of the signal. The
wavelet transform is seen to separate events of different scales in a fashion which
respects their location in space.

Even though g(s) of the Lemarie-Battle wavelets has fast decay in space, it
has non-local support (i.e. g™*(z} # 0 even at large | © |). If one were to
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FIGURE 6. Wavelet transform of Fig. 5 using the Lemarie-Battle wavelet and
the fast algorithm of Mallat (1989). Notice the localization in both wavenumber
and physical space of the different events.
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FIGURE 7. Reconstruction of the signal using scales between m = 1 and m = 4
(high-pass filtering).

set it to zero after some value of | = |, then the discrete orthonormality is
not exactly obeyed. In other words, finite domain truncation leads to a loss
of discrete orthonormality. Daubechies (1988) shows that one can construct
orthonormal wavelets of compact support which are different from the Lemarie-
Battle wavelets. However, such wavelets do not possess symmetry (Daubechies




128 C. Meneveau

oF r—l__n—=

u(x)*

] 2 1 2 1 M L] L 1

0 100 200 300 400 500
X

FI1GURE 8. Reconstruction of the signal using scales between m = 5and m = 9
(low-pass filtering). Since the reconstruction only uses modes down to scales of
size 32, the result is a coarse-grained version of the signal.

(1988) even proves that the Haar basis is the only system with symmetry). It
turns out that non-symmetric bases are a problem in many respects for the
applications envisaged in this work. Essentially, the coefficients corresponding
to some portion of the signal appear shifted from that position. Therefore, in the
present work we will use the Lemarie-Battle wavelets. It is necessary to point out
that the deviations from exact orthonormality due to truncation are negligible
in practice. Also, the fast transform procedure of Mallat (1989) is implemented.
A generalization of the algorithm to three dimensions will be done.

5. Future plans

The main objective of this work is to compute II(r,Z,t) of Eq. (22) from
full numerical solutions of turbulent flows that are available in data bases at
certain times {y. Then the degree of spatial intermittency of II{r,#,#,) will be
quantified for different values of ». We will compare the statistics of II(r, &, t)
with ¢, the rate of dissipation averaged over a domain of size r, which is the
quantity usually used for studies of intermittency. This is a dissipative quantity,
whose integral over domains of sizes pertaining to the ‘inertial range’ is usually
thought to represent statistical features of the inertial range. By comparing the
dynamically relevant quantity II(r,&,¢) with €., we hope to clarify this issue.
Also, the statistics of ‘breakdown’ coefficients defined as

H(Tl,iﬁ‘, )

M b
H(°"2 T, )

(30)

will be quantified. It will be tested whether a cascade model constructed in such
a way as to display the measured statistics of M is consistent with our present
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knowledge of intermittency of the dissipation. A similar study will be made in
the context of scalar dissipation and flux of scalar variance to smaller scales.
This will lead to a better physical and statistical understanding of the energy
cascade and of intermittency.

Other more long-term objectives are the study of Eq. (18) and in particular
of the quantity Fi;{r,&;7',7",&@,2"). The problem of subgrid modelling in the
present context is to find approximations to the right-hand side of Eq. (18)
whenever there are interactions between the resolved scales (say » > ry) and
the smaller ones. A guide to such considerations could be given by the work of
Nakano (1988), who applied DIA to the wave-packet representation. Another
line of inquiry could be to attempt a real-space renormalization group analysis”
of Eq. (18).

In general, the hope is that models deduced from the behavior of wavelet
coefficients may capture the physics of turbulence in a more natural way than
those based on Fourier modes. However, at this point the manipulations appear
to be much more complicated in the wavelet representation, and so its real
usefulness remains to be proven.
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