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Incompressible spatially-
developing free-shear flows

By J. C. Buell

1. Introduction

The understanding of the role of large-scale structures and the process of mix-
ing in free shear layers has advanced rapidly since the ground-breaking work of
Brown & Roshko (1974). Until recently, most of the advances came from ex-
perimental projects such as those of Konrad (1976), Bernal (1981), and Mungal
& Dimotakis (1984) in gascous layers, and Koochesfahani & Dimotakis (1986)
and Lasheras et al. (1986) in liquid layers. For a review, the reader is referred
to the article by Ho & Huerre (1984), From the visualizations given in these
papers one can see the spanwise rollers, their pairings, and the geometry of the
streamwise vortices (called “ribs” here). As valuable as these experiments are
for investigating certain aspects of mixing layers, it is very difficult to obtain
quantitative information from them about the dynamics of three-dimensional
(3-D) vortical structures, Numerical simulations, on the other hand, are ideal
for obtaining detailed information under well-controlled conditions. Of course,
there are disadvantages, usually related to limits on the Reynolds number or
on the size of the domain, Several researchers (e.g., Comte et al. 1987, Davis
& Moore 1985, and Lowery 1986) have recently simulated spatially-developing
mixing layers with the goal of extracting more information than is possible in
experiments. These efforts were successful to some degree, but they all suf-
fered from either too much diffusion (either physical or numerical) or lack of
resolution.

The first goal of this research is to understand the dynamics of three-dimen-
sional vortical structures, especially the interaction of the ribs and 2-D rollers.
Because of vortex stretching effects, this requires accurate and well-resolved
simulations. Another goal is to distinguish temporally- and spatially-growing
shear layers in terms of the dynamics and observed vortical structures, This is
important since the former is much easier to compute, but the error incurred in
using temporal results for certain applications is unknown. The third goal is to
investigate the effects of asymmetry on passive scalar mixing and fast-chemistry
product formation, In this report, a brief summary of a new numerical method
is presented, followed by results for mixing layer and wake flows.

2. Numerical method

In this section we briefly describe a new algorithm for approximately solving
incompressible spatially-developing free-shear problems on a domain that is infi-
nite in the vertical (y) direction and finite in the streamwise (z) and spanwise (z)
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directions. The numerical method is analyzed in more detail elsewhere (Buell
1989).
The total velocity field U = (U, V, W) is decomposed using

U(z,9,2,t) = Us(y) + 2 Uely) + u(z,9,2,1),
V(w}y$z!t) = Ve(y) + ”(ws%z:t)a
W(my y,zst) = w(may:z?t)’

so that all components of the perturbation variable u satisfy homogeneous
boundary conditions at infinity. Here, V, is some smooth function that tends to
the entrainment values at oo but is otherwise arbitrary, U, = —8V./8y, and
Us(y) is the mean velocity profile at the inflow (e.¢., a tanh profile for mixing
layers, Gaussian for wakes). The Navier-Stokes equations are cast in fourth-
order form by operating on the momentum equations with Vx and V x VX,
and taking the streamwise components of both. The pressure is thus eliminated
and dynamical equations for the perturbation streamwise velocity and vorticity
result:

_a_vz =V*H __iz__H _ﬁ.z._uH —I——I—V"U (1)
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where H = U x @ and the “perpendicular” Laplacian is VI = 8% /8y* + 8% /82*.
For mixing layers, lengths have been scaled with the inflow vorticity thickness §,
(the half-width for wakes) and velocities with the freestream velocity difference
Uy — U, (freestream velocity for wakes). The Reynolds number based on these
scales is thus (U; — U3)8, /v. The other two nondimensional parameters of the
problem are the velocity ratio r = Uz/U; (velocity deficit for wakes) and the
Schmidt number S¢ = v/D where D is the diffusion coefficient of the passive
scalar.

After (1) and (2) are advanced in time, the vertical and spanwise velocities v
and w are recovered directly from the continuity equation and the definition of
w;. There are two main advantages in casting the governing equations in this
form. First, only two dynamical equations need to be advanced in time instead
of three. Second, unlike primitive variable methods, we may allow a difference
to exist (consistent with the overall accuracy of the method) between the nu-
merical divergence of the gradient and the Laplacian operator in the Poisson
equation (1). This is because we invert the continuity equation directly instead
of relying on the gradient of the pressure to ensure exact conservation of mass.
The second point is very important since it introduces great flexibility in the
choice of numerical approximations to various operators.

Equations (1) and (2) are advanced in time explicitly using a compact third-
order Runge-Kutta scheme (Wray 1988). Since the Laplacian is contained in the
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FiGURE 1. Contours of —w; for a 2-D mixing layer, Re = 200, » = 0.2. Contour
interval is 0.1.

time-derivative term, a Poisson equation must be solved during each substep.
The dependent variables are expanded in cosine (u, w) or sine (v, wy) series
in a mapped vertical coordinate { (where y = —f cot(m({) maps [—o0, 0] to
[0,1]), and periodic Fourier series in z. The first z-derivatives in the continuity
equation and in the advection terms are approximated with modified Padé finite
differencing (Lele 1989). The particular approximation used here yields sixth-
order accuracy for the low to moderate wavenumber components of the solution,
and significantly lower dispersion errors for high wavenumbers. The second z-
derivative is approximated also with a new Padé formula due to Lele (1989).

Dirichlet boundary conditions are specified for u = (u, v, w) at the inflow.
Typically, 2-D Rayleigh equation eigenfunction profiles for a frequency near the
most unstable one are used for v and v, and 3-D steady profiles for v and w
are added to produce streamwise vortices. At the exit, each velocity component
is required to satisfy a “convective” outflow boundary condition of the form
Gy /8t = —c O /B8=z, where c is the nominal speed of the large structures. At
infinity, u = 0. For the mixing layer simulations, we used V,(y = —o0) = .004
and V,(y = o0) = —.01. These values were chosen to minimize the streamwise
pressure gradient outside of the shear layer (this is analogous to experiments
where the walls of the wind tunnel are adjusted inward).

2. Mixing layers

2.1. Dynamics of vortical structures

Our base-line case is a two-dimensional flow at Re = 200 and » = 0.2. This
simulation was performed on a 192x 128 mesh (grid points in #, modes in y,
respectively) with 144 collocation points in y for partial dealiasing. The domain
length in the streamwise direction is 70, and the vertical mapping parameter is
B = 8. The layer was forced at a fundamental frequency of 0.5, although the
most amplified frequency at the inflow is 0.65. This was done to compensate for
the viscous thickening of the layer a short distance downstream.
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Ficurg 2, Contours of —w; for a 3-D mixing layer, Re = 200, » = 0.2. (a)
z =10, (b) z = 2.75. Contour interval is 0.15.

Shown in Fig. 1 are contours of vorticity {(w;) where the fundamental was
forced at an amplitude of 0.01 and the subharmonic at (0.005. The former leads
to rollup and the latter to pairing of the vortices. The resulting flowfield is
periodic in time with a weak nonperiodic component due to the feedback from
the outflow boundary condition (Buell & Huerre 1988). The organized nature of
the inflow forcing creates a “stairstep” growth of the layer downstream, where we
find a high growth rate during the rollup and pairing, and small or nonexistent
growth in the saturated region between.

To examine the effects of three-dimensionality, a pair of counter-rotating
streamwise vortices are added at the inflow with maximum vorticity set to 5%
of the maximum slope of Uy(y). Between each vortex and its neighbor to either
side is a symmetry plane where w; = 0. The Reynolds number and velocity ra-
tio is the same as before. We set the spanwise wavelength to 5.5, or 58% of the
streamwise wavelength of the rollers. This is consistent with both experiment
(Huang & Ho 1989) and theory {Pierrehumbert & Widnall 1982). Due to the
larger gradients that arise in the 3-D case, a finer grid was used, 256 x 144 x 24
with a yx z collocation grid of 192x 32 to reduce aliasing errors,

Shown in Fig. 2 are contours of spanwise vorticity {(w;) in the two z-y sym-
metry planes. These plots show the initial laminar layer, development of 2-D
rollers, and 3-D cup-like structures. The amplitude of the vorticity in the “cups”
reaches about twice that of the maximum vorticity in the inflow profile Uy.

A 3-D visualization of the streamwise vortices (called “ribs”) is shown in Fig. 3.
Shown also are opposite-signed streamwise ‘vortices inside the rollers. Note that
the first pair of ribs is almost straight and nearly parallel, but the second pair
is distorted and not parallel. The latter pair is very similar to the structures
observed by Lasheras et al. (1986) in their low Reynolds number experiments in
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FIGURE 3. Perspective view of wy, contour levels £0.6.

water. This distortion is apparently due to self-induction effects between the ribs
and the opposite-signed streamwise-vorticity structures inside the downstream
roller. The ribs are intensified by the 2-D strain field of the main rollers, but
this mechanism cannot increase the circulation around a rib. However, since the
radius of the ribs remains about constant (or grows), the circulation increases
significantly. The mechanism for this is the “conversion” of w3 into wy by one of
the “vortex stretching” terms in (2). This mechanism and quantitative measures
of the circulation are discussed by Rogers & Moser (1989).

Returning to the cup-like structures shown in Fig. 2, we would like to deter-
mine their origins and the reasons for their unusual shape. First, we see that the
cups that reside on the upper side of the rollers are slightly farther downstream
than the lower ones. This is not a spatially-developing effect since it is also
observed in the temporal case. However, the upper cups are about 25% stronger
than the lower ones. This difference is not allowed by symmetry in the temporal
case. The cups are clearly related to the ribs; the former lie symmetrically be-
tween the latter and slightly towards the middle of the layer. Furthermore, the
sense of rotation of the ribs causes a positive spanwise strain in the regions occu-
pied by the cups and thus creates a mechanism for the enhancement of spanwise
vorticity.

However, this mechanism does not explain why the cups are concave on their
inner sides, why they are strongest on the opposite side (in the streamwise sense)
of the roller from the associated ribs, and why they are not convected away by
the downwash (in the case of the upper cups) between the ribs. These questions
are answered by examining Fig. 4, Shown there are y-z cuts of wy and w; at
the z-location corresponding to the maximum of w; in the upper cup. The wy
plot shows three pairs of counter-rotating structures: from top to bottom these
are ribs connected to the upstream roller, opposite-signed vortices in the core
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FIGURE 4. Spanwise cuts of vorticity through the roller at z = 44, The contour
interval is 0.15, and negative values are represented by dashed lines. {a) —ws,

(b) wy.

of the roller (which we call “legs”, a term which will become self-explanatory
later), and another pair of ribs connected to the downstream roller. Each of the
cups resides in the middle of a quadrapole formed by the legs and one or the
other pair of ribs. The maximum amplitude of the legs is located very near the
upper cup, contributing most to the positive strain there. The role of the ribs
thus appears to be secondary; they contribute less to the strain, but are needed
to produce a stagnation point in the vertical velocity so that the cups are not
convected away and can continue to get strained. The convective effect of the
strong vertical velocity created by the legs also explains the concave structure
of the cups.

One would expect the upper and lower cups to be connected by vortex lines,
and that these lines would show a streamwise tilt corresponding to the stream-
wise offset of the two cups. This is not quite true. Shown in Fig. 5 are two views
of two sets of vortex lines, each set initiated in the region of maximum spanwise
vorticity in each cup. A “hairpin” structure is formed by the lines, where the
cups form the ends of the hairpin, and the regions between {consisting mostly
of w; and w;) are the “legs”. We see that the two sets are definitely disjoint,
although there is one vortex bundie (not shown) that goes from the vicinity of
the downstream edge of the upper cup to the upstream edge of the lower cup.
Consistent with this, all the lines are inclined by about 45—50°, whereas a line
connecting the middle of one cup to the middle of the other would be inclined



Incompressible spatially-developing free-shear flows 201

FIGURE 5. Vortex lines in the roller near x = 42. Dashed lines start from
lower cup, solid lines from upper cup. (a) Perspective view, (5) top view.

only about 30° from the vertical. The lines emanating from the lower cup (for
example) go up and forward of the upper cup so that the legs produce counter-
rotating vortices just below the upper cup. Thus, vortex lines from each cup
produces a strain field to enhance the other.

3.2 Passive scalar mizing

For the results discussed in this section, a passive scalar profile is specified
at the inflow that is zero on the low-speed side, one on the high-speed side and
has the same tanh profile as Uy in the shear layer. It is often observed that
a 2-D spatially-developing mixing layer will entrain more high-speed fluid than
low-speed. The process by which this happens is shown by the passive scalar
contours in Fig. 6, where Re = 500 and §c = 0.8. When two vortices pair, they
initially form an oblong structure,

As this structure turns end over end, it efficiently “engulfs” a large amount
of pure fluid from both streams in the form of “tongues”. We note that the
low-speed tongue is narrower than the high-speed one because the proximity of
an unpaired roller just upstream creates a blockage effect not present on the
downstream side of the paired structure,

Furthermore, the existence of a stagnation point (in the frame moving with
the vortices) between the vortices implies that the velocities associated with the
tongues should be similar. Dimotakis (1986) used these arguments along with
experimental data to estimate the ratio of the amount of high-speed to low-speed
fluid entrained in the layer as E = 1 + 3.9d6,/dz. While it is very difficult to
measure this quantity directly, the simulations show no inconsistency with it {for
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FIcURE 6. Contours of passive scalar ¢ for a 2-D mixing layer, Re = 500,
r = 0.2, Sc == 0.8. Contour interval is 0.1.

the results reported here, d6,, /dz ~ 0.087). Passive scalar contours at Re = 200
show similar features, although the tongues are not as distinct because of the
increased diffusion.

For the 3-D case, we plot contours of the passive scalar in three y—z cuts
through three different braid regions in Fig. 7. This sequence shows the effect
of the development of the ribs on the scalar field. In the terminology of Lin
& Corcos (1984), the ribs start off in a “noncollapsed” state and only produce
a mild bending of the scalar contours. After they have strengthened farther
downstream, the ribs “collapse” and produce mushroom-shaped structures.

FIcURE 7. Contours of passive scalar in y-z cuts at (a) z = 28, (b) & = 48,
and (¢)z = 63. Contour interval is 0.1. Solid lines, 0.6 < ¢ < 0.9; dots, ¢ = 0.5;
dashes, 0.1 < ¢ < 0.4,

Analogous features are seen in the experiments of Bernal (1981). We see that
there are two different kinds of mushroom structures: one falling and the other
rising (which requires a periodic extension of the plots to see fully). Due to the
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F1GURE 8. Contours of the probability density function for the passive scalar
at = 57. Contour difference is 0.02. (a) 2-D case, (3) 3-D case,

asymmetry of the layer, the pair of ribs associated with the latter tend to be
closer together than the other pair. -

This, together with the low Reynolds number of the flow, tends to “cut-off”
high-speed fluid from penetrating into the core of the descending mushroom. At
higher Reynolds numbers, the ribs do not interact diffusively. From the last two
plots, it is clear that the ribs cause the layer to have more surface area on the
low-speed side than the high-speed side. The last plot shows more low-speed
fluid being entrained into the ribs and that the average value of the scalar in the
core of the ribs is well below 0.5.

Statistics of the passive scalar (also called the “conserved” scalar) can be used
to calculate fast-chemistry reactions. Following the analysis of Mungal & Dimo-
takis (1984), we assume a simple reaction 4 + B — 2P where the diffusivities
of both reactants and the product are all equal and the reaction is very fast
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compared to hydrodynamic or diffusive time scales. The equivalence ratio is
defined as 17 = cg2/co1, where ¢g; and ¢g; are the reactant concentrations in the
low-speed and high-speed streams, respectively. The concentrations of the two
reactants and the product are all related to the conserved scalar, ¢. For the
above inflow conditions, stoichiometry occurs when the conserved scalar has the
value @, = 1/(14+n). This value is called the stoichiometric mixture fraction and
is also the point where the product concentration reaches a maximum. Given a
probability distribution function (pdf) p(z,y, ) of the conserved scalar, Mungal
& Dimotakis (1984) showed how several quantities of interest (such as the prod-
uct, product thickness, and mixture fraction derived from a “flip” experiment)
can be calculated. (The pdf gives the probability that the value of the conserved
scalar at (z,y) is ¢, averaged over z and time.)

Shown in Fig. 8 are contours of pdf’s for the 2-D and 3-D cases at = = 57.
Several features are evident, Pure fluid with probability one is seen at the top-
right and bottom-left of both plots. Homogeneously-mixed fluid is shown in the
middle where the pdf’s reach maxima between 0.5 and 0.6. In the temporal case
the maxima must accur at 0.5 by symmetry. The asymmetry here is due to the
2-D “engulfment” discussed above. These maxima are nearly independent of y,
as in the model of Broadwell & Breidenthal (1982). Between the homogeneous
fluid in the middle and the pure fluid are “wings” in the pdfs. These are due to
the strained flame sheets between the two pure fluids or between one pure fluid
and the homogeneous fluid. The main difference between the 2-D and 3-D pdf’s
is a second maximum in the latter near ¢ = 0.4 and for y < 0. This is related to
the entrainment of low-speed fluid by the ribs, and (as discussed in connection
with Fig. 7) is undoubtably a low Reynolds number effect.

In Fig. 9 product thickness (§p) normalized by the 1% visual thickness (&) is
plotted for the two cases. The downturn for large z for the 2-D case is due to the
faster growth of the visual thickness there, while in the 3-D case the structures
continue to mix the two fluids as fast as the layer grows, creating a plateau. The
average mixture fraction is plotted in Fig. 10. In the laminar region (small 2) the
layer diffuses into the low-speed side faster than the high-speed side, lowering
& below 0.5. At higher Reynolds numbers this quantity would be much closer
to 0.5 (the difference between the two cases in this region is probably due to
the thinness of the layer there and thus poor statistics). Farther downstream,
the 2-D case achieves a value in the vicinity of that predicted by the Broadwell-
Breidenthal model (about 0.535), while in the 3-D case ¢ falls below 0.5. The
latter effect is directly associated with the ribs and the second maximum in the
pdf. At higher Reynolds numbers we expect that the ribs would mix fluid more
symmetrically and that the second maximum would be close to 0.5. This was
confirmed by a recent simulation at Re = 400. In this case ¢ is between 0.5 and
the 2-D case.

The product thickness as a function of the stoichiometric mixture fraction at
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FIGURE 9. Product thickness normalized by visual thickness. Solid line, 2-D;
dashed line, 3-D.
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Ficure 10. Mixture fraction. Solid line, 2-D; dashed line, 3-D.

© = 57 is compared to the experimental results (at » = 0.38) of Mungal & Dimo-
takis (1984) in Fig, 11. The 2-D results are just slightly below the experimental
measurements for all values of ¢,, while the 3-D results are above. For small ¢,
(low-speed reactant lean), excessive product is created in the latter case due to
the effect of the ribs. It is not clear to what extent the close comparison in the
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Figure 11. Product thickness/visual thickness vs. stoichiometric mixture

fraction. Solid line, 2-D; dashed line, 3-D; symbols, experimental data from
Mungal & Dimotakis (1984).

2-D case is fortuituous; the extra diffusion from the low Reynolds number here
appears to balance the small-scale motion and mixing in the turbulent experi-
ments. The Re == 400 product thickness {(not shown) is closer to the experiments
than the lower Re results, especially for small ¢,.

4, Wakes

In this section some results from simulations of spatially-developing wakes will
be discussed. We will concentrate on the effects of 3-D perturbations on a plane
Gaussian wake at a moderate Reynolds number. Very few 3-D simulations of
wakes have been performed in the past. Riley & Metcalfe (1980) performed a
direct numerical simulation of the temporally-developing turbulent wake of an
axisymmetric body using experimental data for the initial conditions. Alihough
the mesh was coarse, low-order statistics compared well with the experiments.
Meiburg & Lasheras (1988) reported results from wake experiments with dif-
. ferent types of spanwise forcing and computed the flow using inviscid vortex
dynamics calculations. It is difficult to use the latter to study small-scale de-
tails of free-shear flows, but they were able to reproduce the large-scale features
of the experiments. More recently, Chen et al. (1989) performed well-resolved
simulations of a compressible plane wake. Their main goal was to determine the
effect of Mach number on the development of the wake, but they also described
the development of 3-D structures which should be similar to the incompressible
case.

In this work we present results for a relatively simple case where two different
kinds of perturbations are added to a Gaussian mean inflow profile. The first is
a two-dimensional {2-D) time-periodic forcing where the profiles for » and v are
the eigenfunctions of the corresponding Rayleigh equations. Any frequency near
the most amplified one produces the classical Kdrmén vortex street. The second
kind of perturbation is a spanwise-periodic array of counter-rotating streamwise
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vortices. These are assumed to be steady as they might be in a wind tunnel
with small nonuniformities in the last screen. As in the mixing layer and other
shear flows, the streamwise vortices (ribs) are amplified by the strain field of
the 2-D spanwise vortices (rollers). When the ribs become sufficiently strong,
they distort the rollers through advection and strain effects. These effects will
be contrasted with a 2-D simulation sans ribs. In addition, a passive scalar
with a Gaussian profile is introduced at the inflow. It is often assumed in the
experimental literature that smoke or heat introduced in the wake will follow
the vorticity. The degree to which this is true will be tested in both the 2-D and
3-D simulations.

The Reynolds number is Re = Uyé/v = 400, where § is the half-width of the
layer at the inflow, The inflow profile is defined by U(y) = 1— X exp(—.69315y%),
where A == 0.692 is the velocity defect (corresponding to the experiments of Sato
& Kuriki 1961). The Schmidt number is S¢ = 1. The 2-D forcing is applied
at a frequency of 0.5 and an amplitude of 0.06. The maximum growth rate
occurs at a frequency of 0.614, but the lower value was used to compensate for
the viscous thickening of the wake downstream. For the 3-D simulation steady
profiles for v and the spanwise velocity w are added at the inflow to produce
streamwise vorticity with an amplitude of 0.1 and a spanwise wavelength of 6.
As with the mixing layer calculations, each velocity component is required to
satisfy a convective outflow boundary condition, except here we use ¢ = 0.9,
At infinity, all perturbations are set to zero. The length of the computational
domain is L, = 70 and the vertical mapping parameter is 4 == 6. The mesh is
384 x 128 x 24 (grid points in @, Fourier modes in y and z). Most of the aliasing
errors were eliminated by using a collocation grid in the spectral directions of
160 x 32.

Shown in Fig. 12 are contours of spanwise vorticity (w3 ) for the base-line 2-D
case. The formation of a vortex street consisting of alternating-sign vortices
(rollers) is clearly seen. A consequence of conservation of angular momentum is
the formation of “spiral arms” around each vortex; not all the vorticity can roll
up into the vortex cores. Farther downstream these arms diffuse away, leaving
nearly circular vortex cores. Note also the near-symmetry between the upper
and lower vortices.

Contours of wy for the 3-D case are plotied in Fig. 13 in the two -y symmetry
planes (where w; = 0). These planes are each between a pair of counter-rotating
streamwise vortices. Qualitatively the same structures appear as in the 2-D .
case, but there are important quantitative differences. Considering the row of
vortices along the top (negative wy), we see that the flow starts off very much
like the 2-D flow, but by @ = 20 significant distortion in z appears. At z = 0
the peak vorticity is on the inside edge of the rollers, while at z = 3 the peak
vorticily is on the outside edge. This cannot be an advection effect since by
x = 40 the peak value of wy reaches -0.8 (at the inflow it is about -0.5). Thus
the variation in z must be due to vortex stretching effects. This enhancement
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F1gure 12. Contours of spanwise vorticity for the 2-D case. Contour interval
is 0.1. Dashed lines denote negative levels, solid lines denote positive levels.

FiGurE 13. Contours of spanwise vorticity for the 3-D case at {a) z = 0 and
{b) z = 3. Contour interval is 0.1.

of vorticity occurs at all z locations but is most pronounced at z = 0, Beyond
z ~ 35, a different process from the one responsible for the above enhancement
becomes dominant. At z = 3, the maximum vorticity amplitude drops suddenly
by # = 40, then rises to nearly its previous level by z = 60. At z = 0, a small,
intense and nearly symmetric elliptic roller forms by =z = 40. This is followed
by a suppression of vorticity on one side of the center of the roller so that a
nearly irrotational region is imbedded inside the roller by z = 60. Because of
the symmetry in the inflow conditions, all of the above comments for the upper
row of vortices at z = 0 and 2z = 3 apply to the mirror image in y of the lower
row at 2 = 3 and z = 0, respectively.

Some of the mechanisms for the enhancement and suppression of wy in certain
regions are evident from an examination of the streamwise {w;) and vertical (w;)
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FIGURE 14. Contours of (a)streamwise vorticity and (b) vertical (cross-stream)
vorticity corresponding to Fig. 2 at z = 1.5 Contour interval is 0.1.

components of vorticity, shown in Fig. 14 at z = 1.5. Both components develop
very quickly up to about @ = 25, then decay slowly thereafter. At z = 1.5,
wy is positive at the inflow and leads directly to the formation of ribs with the
same sign. These ribs can be divided into two sets; those with positive w; and
those with negative. For 2 < 20 the former are clearly associated with the upper
rollers and the latter with the lower rollers. During the growth phase of the ribs,
they connect spanwise vortices of like sign (see Chen et al. 1989).

As in mixing layers, the ribs are intensified by the 2-D strain field of the
main rollers, but again this mechanism cannot increase the circulation around a
rib. We find that the same mechanism as in the mixing layer is responsible for
converting w; into w;. However, the process is less efficient as the layer develops
since the 2-D strain field between rollers is weakened by the presence of both
signs of wy in alternate rollers. In Fig. 13 note that the main effect of the 3-D
distortion of wy for < 35 is the enhancement of vorticity along one side of a
roller and suppression along the opposite side (both due to the vortex stretching
terms produced by the ribs), thus shifting the peak vorticity towards one side. In
the z-plane on the other side of a particular streamwise vortex, the peak vorticity
is shifted to the other side of the same spanwise roller. Due to this distortion,
the vortex lines in the rollers will have an @ (as well as a y) component. Farther
downstream, one end of each 1ib becomes increasingly associated with a roller
on the opposite side of the wake. Also, they tend to stand nearly vertical, in
contrast to a typical rib angle of 45° for # < 25 and for mixing layers. This
transition coincides with the end of the growth of the ribs and the beginning of
their decay.
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FIGURE 15. Contours of streamwise vorticity in z-y planes at {a) z = 0, (b)
=29, (c)z =405, (d) z = 52, and (e} z = 63.5. Contour interval is 0.05.

Shown in Fig. 15 are spanwise (z-y) cuts of w; at five x locations. The first
plot shows the inflow forcing, and the others show cuts through the upper rollers.
Note that in either half of the domain (e.g., 0 < 2 < 3), the magnitudes of the
positive and negative streamwise vorticity are about the same even though there
is only one sign at the inflow. For z < 40 the ribs (the lowest and highest pairs
of vortices in Figs. 15(b-¢)) have the characteristic shape of “non-collapsed”
vortices — elliptical and tilted from the horizontal (see Lin & Corcos 1984). This
is a relatively stable state. Farther downstream they begin to show signs of
collapse to small, round and more intense vortices (however, a higher Reynolds
number is needed to see this clearly). Comparing Figs. 14(a) and 14(}) at = = 29
to Fig. 15(b) we note that the regions of enhanced w; are located in the middle
of positive strain regions created by wj-quadrapoles. Similarly, regions of ws
suppression are also located in the middle of quadrapoles, but where the strain
is negative. Further, half of the wy vorticity involved is associated with ribs while
the other half is due to the distortion of the rollers. By = = 40 (Fig. 15(¢)),
several changes in the structure of the flow have occurred. The ribs and rollers
have moved away from one another so that the former are not a part of one of
the above-mentioned quadrapoles and do not appear to significantly contribute
to the strain in the vicinity of the rollers. Instead, new w; is created within
the rollers, which are then strained in a different manner than before. One can
follow the evolution of w; and see that the quadrapoles it forms are responsible
for the changing distribution and intensity of w;.

A perspective view (Fig. 16) of the rollers located between © = 40 and & = 60
shows part of the evolution of w;. In Fig. 17 two perspective views of vortex
lines initiated in the ribs located at # = 28 and = = 34 show the formation of
vortex loops. Since both signs of w;y are needed to close the loops, the ribs must
connect opposite-signed vortices. Farther upstream, vortex lines continue all
the way across the span and are not closed, suggesting the ribs connect vortices
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F1GURE 16. Perspective view of Jw3| corresponding to figure 14 in the range
40 < z < 60. Contour level is 0.35.

y R A
Wz

FIGURE 17. Top view of vortex lines initiated in the ribs at = 28 and z == 34.
z axis extent is 28 < z < 40.

of like sign. We note also that the vortex loops originally associated with the
bottom half of the wake (one of which is shown at the left in the plots of Fig. 17)
are all lined up and centered at z = 3 while the upper ones are centered at z = 0
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FIGURE 18. Passive scalar contours for the {a) 2-D case, and (b) 3-D case at
z = 0. Contour interval is 0.1,

(or, equivalently, z = 6). Introducing time-periodicity into w; at the inflow will
create other patterns of loops.

Experimentally, one often introduces smoke or heat as a passive scalar into
the wake in order to trace the vorticity. Of course, this is only an approximation
unless the flow is 2-D, the Schmidt number is unity, and the inflow passive scalar
profile is identical to the vorticity profile. We tested this approximation here for
both the 2-D and 3-D cases, using a Gaussian profile (with half-width 0.833) to
model the injection of a passive scalar, Shown in Fig. 18 are the results for the
2-D case and for the 3-D case at z = 0. Comparing Figs. 12 and 18(a) we see
significant differences. However, for & > 45, the maxima of the passive scalar lie
very close to the extrema in vorticity, but with no consistent relative offset, For
the 3-D case, a comparison of Figs. 14(a) and 18(b) shows larger differences. In
particular, the upper and lower sides are less similar in the passive scalar than
in the vorticity. Also, while there is a local maxima in the passive scalar near
each roller, there are also concentrations of scalar in nearly irrotational areas
as well. This may be an indication of history effects; the passive scalar may
concentrate in regions of high vorticity, and then be left behind as the vorticity
moves elsewhere through vortex-stretching effects,
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