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A numerical method for direct simulation
of turbulence in complex geometries

By P. Orlandi

1. Introduction

Direct simulation has often been applied to describe flow fields within regions
described by simple coordinate systems. Spectral methods have been used be-
cause of their higher accuracy compared to finite differences (Moser et al. 1983).
For complex geometries, implementation of spectral methods is not generally
efficient; modifications of these methods, such as spectral element methods (Ko-
rezac and Patera), can be applied but the accuracy is greatly reduced, In this
paper we describe a finite difference method for incompressible flows with ge-
ometrical complexities in two dimensions and periodic conditions in the third
direction,

In contrast to Cartesian coordinates, the choice of the best system of velocity
components when curvilinear coordinates are used is not unique. We have shown
that an accurate and simple formulation can be obtained when the Navier-Stokes
equations are written in terms of fluxes, As with Cartesian coordinates (Harlow
and Welch), the fluxes are staggered and pressure is located at the cell center.
This scheme is compact and the solencidal field is easily obtained.

We have derived the equations for the fluxes directly from the equations for
the Cartesian components in the“new” coordinate system. This is done in the
discrete space by multiplying the equations by the metric quantities at the same
cell positions where the fluxes are defined. This procedure requires definitions
of the metric quantities at the center of the cell faces, at the center of the cell,
and at the corners.

A fractional step method has been used for the time advancement. When
generalized coordinate are used, the method requires modifications of the method
used in Cartesian coordinates (Kim and Moin, 1985). The major difference
resides in the “pressure” calculation; while in Cartesian coordinates “pressure”
is obtained by Fourier methods, in general curvilinear coordinates and for a
large number of grid points the pressure solution requires iterative schemes.
The usual iterative schemes have convergence rates dependent on the number of
mesh points. A modified multigrid method appropriate for general curvilinear
coordinates (Orlandi and Esposito, 1989) has been developed. At present it has
been demonstrated that the method has very good convergence properties for
2-D but requires improved relaxation scheme for 3-D.

The ultimate goal of this work is to study the flow inside a channel with
riblets on one of the two walls. The method has been tested for 2-D flows in
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the presence of bodies with a geometrical singularity and for 3-D flows inside
domains described by Cartesian coordinates. The results have been compared
with previous numerical simulations and with experimental results.

The cases considered are:

a) the growth of Orr-Sommerfield waves in plane Poiseuille flow,

b) the flow over a backward-facing step,

c) the flow past a wedge,

d) the flow inside a narrow channel.

Finally the case of a channel with two large riblets on a wall has been simu-
lated. In this case a limited number of grid points is sufficient, and in spite of
the slow convergence for the pressure solver, one is able to obtain solutions with
a reasonable CPU time. At present solutions with very fine grids in all three
directions can not been obtained, due to the lack of a fast “pressure” solver for
general curvilinear coordinates. Data analysis aimed at finding reasons for drag
reduction will be the subject of a future study.

2. Physical model

Different formulations can be obtained of the Navier-Stokes equations in a
system of generalized curvilinear coordinates z* (defined by y' = y/(2?), with
y? the Cartesian coordinates) depending whether Cartesian covariant and con-
travariant velocity components are employed. In this word flux variables are
used. The relation among the Cartesian components v’ and the fluxes ¢* is

v =¢'c/g : (1
where the metric quantities c;f are

e
o =L @

The other metric quantities necessary for writing the Navier-Stokes equations in
generalized coordinates are the a’* (the inverse of aj; = c;cﬁ) and the Jacobian
of the coordinate transformation g = /a with (a =|| e;; ).

The continuity equation in terms of fluxes is

£
div(3) = %g:‘ — 0 3)

a form very similar to the expression in Cartesian coordinates. With Cartesian
coordinates, numerical methods based on velocity staggering have a very com-
pact form for the discrete div and grad operators, and well-structured matrices
readily yield solenoidal velocity fields within round-off errors. The extension of
velocity staggering to curvilinear coordinates is highly desirable.
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The momentum equations in the 27 coordinate system are

Ov i i j 8;0 1 i
5 ) = g e (4)

First- and second-covariant denvatlves expressed in conservative form are

. 1 8vigd
i —
)5 = 0 (5)
. 18 . 8
? P t3
(v )/;‘j = ga'_:ci“ B (6)

where o'/ = @' g. The pressure gradient is

dp ;-1 0p
5&7—(%‘) £ (7)

Flowfields periodic in one direction and with geometrical complexities in the
other directions can be solved by introducing the coordinate transformation
¥ = yi(z*),5,4 = 1,2, and y* = 2®. This transformation reduces the number
of terms in Eqs.(4-6) because a;3 = 0 for 7 # 3. It is worthwhile to introduce
the fluxes ¢, ¢* in the plane of geometrical complexity and to use the Cartesian

component ¢° = v® in the third direction. The fluxes ¢’ are related to the
Cartesian components by ¢' = v'el — vl and ¢* = vZel — v'c?. The equation

for ¢/ is derived in the discrete space which requires the definition of the metric
quantities at several points of the cell. The equations for the fluxes have a large
number of terms which can be gathered in five groups: nonlinear term, H',
pressure term, P*, and three diffusive terms, D!, D" (r # 1), and D", Let

Qn=d'cnls » W=(a)g (8)
Each term in the ¢! equation can be expressed as

. 3q3 mn Bqlqs

H = < g =
g(’Tn Jai B 7 Jamyn=12 (9)
, 3p
13 . o
P=a B iy 1=1,2 (10)
1 a 3@ 3¢
! l .
D= 7 7“3:1:3 )+ o i Jyn=1,2 (11)
1 a an
DY = - i Zer_ . im= !
g(’Y BmJ I ) i hn=1,2,r (12)
1 8 o0
D[:"'lJt' — "__,_.____1:___ . . - . -
g('rn Bm:“ ami ) ] j # 2 1)2, ?‘,'n 1,2 (13)
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The terms in the equation for ¢ are

S — %(3;:53 ) + 3;;33 ; j=1,2 (1)
P = _é‘?a_% (15)
D¥3hi = ;7 %afigg;) P J#I=1,2 (17)
The general form for the momentum equations is
‘"jjjt SoDf = P Bt (| ain | DY ey | DYRS) 5 kg :(i’s 2)

where ¢,;; denotes the usual permutation tensor. The boundary conditions for
q* are obtained from the Cartesian velocities.

The second order accurate central differencing is used for nonlinear and viscous
terms. The discretized equations for the component ¢* can be written as

aq 1

8t Re
where the nonlinear term and the diffusive terms of Eqgs, (12, 13, 17) have been
included in R®.

The systems of equations were solved by the fractional step method with the
pressure at the previous time step introduced in evaluating the non-solenoidal
velocity field ¢*. Accuracy of time a.dva.ncement was second-order and the {ime
step, Al, was chosen such that At | L -9—- + 25 lmaa< 1.

The fractional step method reqmres a second step to evaluate the solencidal
field (¢*)**+! by

Di=-pP' - R (19)

(qi)n‘i-l _ qﬁi 1 .
2 = (P 20
- S(#) (20)
®* is given by Eq.(10) and Eq.(15) where the scalar & is substituted for p.
The “pressure” is calculated from an elliptic equation obtained by substituting

the fluxes (¢°)"*! of Eq.(20) in the continuity equation, yielding

1, 6 i 2o .

PR 6$“)+6m3 © 5 mn=12 (21)

Equation (21) is evaluated at the center of the cell.
For incompressible flows, it is desirable that Eq.(21) be solved to be within
round-off errors. Usually with iterative schemes like line SOR and point SOR



DNS of turbulence in compler geometries 219

it
et

E/E®

Pioe
-
-
-

.r
e

0.0 20 4.0 8.0 8.0 10.0

FIGURE 1. Energy growth rate: linear theory; ------- centered Jacobian;

—-— averaged Jacobian.

the convergence error is not reduced to round-off levels. However, these schemes
together with a multigrid algorithm are able to provide a fast convergence. In or-
der to vectorize the code a four-color checker-board scheme with over-relaxation
was used. The method and the treatment near the boundaries is described in
the paper of Orlandi and Esposito (1989). From the & the pressure, necessary
in Eq.(19), can be calculated by (see Kim and Moin, 1985)

1 At 1§ .80 62
n+l _ _n - _ — ~ y —
P =t 2( 2Re ‘g 51 533 xzl 5T ) i=12 (22)

The numerical algorithm requires the coordinate transformation y/ = y7 (z).
This transformation is usually given by an analytical relation; however, for some
complex geometries the transformation has been obtained numerically by using
the code GRIDGEN2D of J. P. Steinbrenner (1986).

3. Results and discussion

Evolution of small disturbances

A useful test for the accuracy of numerical methods is accurate prediction of
the evolution of small disturbances.

The time evolution of small perturbations in the plane Poiseuille flow at
Re = 7500, with the initial perturbation obtained from solutions to the Orr-
Sommerfield eigenvalue problem, has been used by Canuto et al. (1987) and
Rai and Moin {1988} to measure the accuracy of different numerical methods
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Figure 2. Computational grid for a backward-facing step.

with different resolutions. We have computed this case using a 98 x 48 grid.
Computed energy growth is shown in Fig. 1 and shows an agreement with lin-
ear theory. To emphasize how the calculation is influenced by the calculation
of metric quantities, the energy growth evaluating the Jacobian g in the diffu-
sive terms by averaging two neighbor values is also shown (dashed line). The
averaging significantly reduces the accuracy of the numerical scheme.

Flow over a backward-facing step

This flow has been considered for the geometrical singularity and because
solutions are available in literature. First, the numerical method was tested
using a Cartesian grid. For this case convective boundary conditions at the
outflow and a parabolic profile at the inflow were prescribed., With a grid of
96 x 48 at Re = U.h/v = 600 the present simulation predicts the reattachment
location of the main separation region at X, = 10.4, which compares well with
the values Xy, = 10.5 obtained by Kim and Moin (1985) using a finer grid in the
vertical direction. In the case of cartesian coordinates the characteristic points
of the separation regions reach their final values in a short time of integration.

To obtain the solution in a domain which considers also the upstream section,
the domain is mapped into a Cartesian computational domain by an analytical
expression based on a conformal transformation. Stretching functions resulting
in a finer resolution near the walls and corners are used, In the case of a mesh
128 x 48, the grid distribution in the region of the step is given in Fig.2. The
simulation in general curvilinear coordinates was performed with several meshes
and different grid distributions without finding appreciable differences. Fig.3
shows the convergence of the characteristic points of the separation regions to
their steady values. Convergence is achieved in a longer time than the time
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FIGURE 3. Time evolution of characteristic points of separation regions at

Re = 450. Computations were performed using generalized coordinates. (a)
Reattachment length of the primary separation bubble; (b) separation and reat-
tachment locations of the secondary separation bubble,

necessary in Cartesian coordinates. Moreover, the final values are slightly lower.

The values obtained by general curvilinear coordinates are Xy, = 10.1, X,, =
8.2, X3, = 15.9, while those by Cartesian coordinates are X, = 10.4, X;, =
8.6, X3, = 16.1. Here X3, and X,, denote the location of separation and
reattachment, respectively, of the secondary separation bubble at the upper
wall.

Flow past a 2-D wedge

This case has been studied experimentally by Pullin and Perry (1980) using
detailed flow visualization to describe the motion of the vortex generated at the
vertex of the wedge. The flow was driven by a piston to the left of the wedge (see
Fig. 4). They considered several cases varying the Re number, the velocity of
the piston, and the shape of the wedge. In the present case we did the simulation
only for the 60deg wedge and at two Re. This case has been considered especially
because the geometry of the body is very similar to the geometry of the riblets.
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FIGURE 4. Computation grid for the wedge.

The grid has been obtained by using the GRIDGEN2D code.

In the case of a 60deg wedge with a 128 x 64 mesh, the grid distribution in
the wedge region is given in Fig.4. Different shapes of the velocity profile at the
inlet have been used, No appreciable differences on the trajectory of the vortex
were observed when prescribing a slug velocity profile or profiles with different
boundary layer thickness at the inlet. At the outflow a convective boundary
condition was employed.

Fig.5 shows the time evolution of the horizontal position of the center of the
vortex at Re = 1560 and Re = 3687 compared with the measurements of Pullin
and Perry (1980). In the present case, the center of the vortex has been obtained
by evaluating the position of minimum pressure, while in the experiment the
position was obtained by dye flow visualizations. At the beginning the agreement
is very good, while at later times there are differences.

In the numerical simulation, the ramp-like trajectory is due to the fact that
the position of the vortex center has been calculated without introducing an
accurate interpolation scheme, The difference with the experimental results is
in part due to the fact that dye concentrations do not perfectly coincide with
vorticity concentrations. A further reason for the difference may be due to three-

dimensional effects which have not been considered in the present numerical
simulation,

Turbulent channel flow

Rai and Moin (1990) have shown that the finite difference schemes are capable
of generating results very accurate and comparable with those obtained by pseu-
dospectral methods, They simulated the full channel capturing several spanwise
structures. Following Jimenez and Moin, in this work we have simulated the
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Fi1GURE 5. Horizontal position of the vortex center relative to the wedge-apex.
a) Re = 1560 ; b)Re = 3687 (o numerical, e experiments).

case of a narrow channel with a spanwise dimension sufficient to capture one
or two streaks. The solution obtained by this calculation is then used as initial
condition for the case with riblets. In this case, a large number of grid points is
necessary to represent accurately the geometrical complexity of the riblets,
The calculations weré initialized with random perturbations with amplitude
of up to 25% of the centerline velocity superimposed on the parabolic velocity
profile, This large perturbation was chosen because the Reynolds number (Re =
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U.6/v = 4200) is suberitical. The small spanwise dimension is used with L, =
,28978. This dimension has been chosen because at this Re, R, = u,6/r = 1801is
obtained. Fight riblets can be located in the channel with s/h = 1 and T = 20.

In these calculations, the “pressure” field was obtained by a direct method
which uses Fourier expansions in the streamwise and spanwise directions. For
a 16 x 64 x 16 grid, calculations require half second for each time step on the
CRAY-YMP. The calculation done with finer grids in the spanwise direction
resulted in no appreciable difference in the mean velocity and Reynolds stress
distributions.

Figs.6-9 show the profiles of mean velocity and turbulent intensities obtained
by averaging the instantaneous quantities for a period of time u, /§ == 15. In the
near-wall region, the agreement with the resulis obtained by spectral calculation
for the large channel is very good. The pseudospectral numerical simulation was
shown by Kim et al. (1987) to be in very good agreement with experimental
results. In the central region, the present results show a larger normal stress with
respect to the spanwise stress; this behavior does not depend on the numerical

method but depends on the narrow channel assumption (Jimenez and Moin,
1990).

Turbulent channel flow in the presence of riblets

As mentioned before, the iterative pressure solver is not efficient in three
dimensions. In some cases, we were not even able to obtain convergence, This
constraint limited the present study to the geometry in Fig. 10, which has a
limited number of grid points in the streamwise and spanwise directions.
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The initial velocity field was obtained from a turbulent plain channel simula-
tion. The riblets were introduced gradually using a continuous transformation
in time.

Figs.11-12 show mean velocity and rms profiles in the valley and tip regions
respectively, The usual averaging in the z— direction and over a time of ¢ =
106 /1, was performed.

These preliminary results show that riblets cause modifications of velocity and
the rms profiles. In the valley (Fig. 11) of the riblets, there is a weak reduction of
the streamwise intensities, while the other stresses are not affected. At the tip of
the riblets (Fig. 12) the profile are similar to those of the flat wall. At the center
of the channel, the flow is not strongly affected by the riblets. The computation
of channel with riblets reported here is of highly preliminary nature. However,
it has been demonstrated that such a computation is feasible. In the coming
year we will refine these computations and use the resulting data to examine the
phenomenon of drag reduction.
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