Center for Turbulence Research 3
Annual Research Briefs - 1990

Turbulence closure modeling near rigid boundaries
By P. A. Durbin

1. Motivation and objectives

The near-wall region plays an essential role in turbulent boundary layers: it is a
region of high shear; the peak rate of production and peak intensity of turbulence
occurs there; and the peak rate of dissipation occurs right at the wall. Neverthe-
less, this region has received less attention from modelers than have more nearly
homogeneous flows. One reason for this is that when the boundary layer is near
equilibrium, experimental data can be used to prescribe the flow in the wall layer.
Another reason is that most turbulence models are developed under assumptions
of near homogeneity. This is a poor approximation in the wall region. My ob-
jective has been to develop a single-point moment closure model for the strongly
non-homogeneous A turbulent flow near a rigid boundary.

All the previous work in this area has used an eddy viscosity ‘damping function’
(this is true of second order closures as well as of k—¢ models). The need for a
damping function in k—e models is explained by figure 1. The solid curve is the
exact eddy viscosity

ve = —uw/0,U (1)

evaluated from DNS data. The dotted curves are the k—e viscosity

where T = k/e¢ (see §2.3 below). The standard value of C, = 0.09 is used in
the upper curve while C,, = 0.075 in the lower. One sees that in the wall region
(y+ < 100) the ke viscosity has the wrong profile. A damping function is commonly
used to correct this fundamentally wrong behavior; the damping function is simply
defined as the ratio of the solid to the dotted curve.

Tensoral considerations (Lumley 1978) suggest that
v = C#.’U_ZT (3)

might be a more basically correct form. The dashed line shows that this, with C,, =
0.2, is a good approximation when y4 < 100. Of course, figure 1 was constructed
using DNS data for k, € and v?; what is required is a model which can predict these
quantities.
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FIGURE 1. Exact eddy viscosity (solid) compared to k—e (dotted, C,, = 0.09 upper,
C,. = 0.075 lower) and k—e—v (dashed) formulas. These curves were computed from
DNS data.

2. Accomplishments

2.1. Near wall model

Such a model has been developed and is described in Durbin (1990). In this
section, the model will be described very briefly.

Boundary conditions are important in near wall modeling. The no-slip and no-
normal flux conditions lead to

k=08,k=0

7 ~0(") ¥

at the boundary, ¥ = 0. In order to satisfy these conditions at the two boundaries
to a channel, the model equations must be fourth order. The standard k—e system
has this property. In the thin-layer approximation with an eddy viscosity model for
turbulent transport, the standard k—e system is

Oy(v+wvifor)dyk =€ — vt(t'f),,,U)2

(5)

8y(v + v/ ae)dye = [Ceye — Ceyn(8,U)?]/T .
C.,,C.,,0r and o, are constants. The left sides of (5) represent turbulent diffusion
of energy and dissipation, and the right sides represent the imbalance between
destruction and production of energy and dissipation. T is a time-scale, which we
take to be

T = max(k/¢, Cr(v/e)'/*) (6)
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with Cr = 6, from DNS data. Away from the wall (y4+ > 5 or so), this becomes
the Lagrangian decorrelation scale k/e. Because this Lagrangian time-scale tends
to zero at the wall, the Kolmogorov scale has been used as a lower bound on T'.

A v? model based on usual modeling procedures would be

o2
By(v + 1/ ok)B0% = ¢ — pa, (7)

where (33 represents the velocity-pressure gradient correlation combined with part
of the dissipation. The first term on the right side is an anisotropic contribution to
dissipation of v? (see Durbin 1990 for more discussion).

The suppression of v? by the no-normal flux condition (4) is quite important. It is
responsible for the behavior shown in figure 1. In order to introduce this boundary
condition and the associated homogeneous solutions, we propose an elliptic model

fOI‘ f22: _
L?82 fay — faa = —Mlgp — (Fj — -2-)/T
k3 (8)
P22 = kfaz .

The second term on the right side of the first equation is associated with dissipation
rate. In the homogeneous limit, it will make the dissipation rate isotropic in (7). I,
is a homogeneous pressure strain model. Thus (8) provides for elliptic relaxation to
the homogeneous limit. We use the Launder, Reece,& Rodi (1975) form for II;,

Cy,2 2 v
Iz, = '511 3= T C?-f(ayU)z- (9)
L is the length scale
L = Crmax(k®? /e, Cy(v2/)*/4). (10)

The elliptic relaxation model is largely justified by the fact that the wall causes
irrotational fluctuations in the interior of the flow when the no-normal flux condition
is imposed (Hunt and Graham 1978). This is a kinematic effect which cannot be
associated with any terms in the Reynolds stress budget. The present representation
of these irrotational fluctuations is quite indirect.

Predictions by this model are compared to DNS channel flow data in figures 2
(R- = 395) and 3 (R, = 180). The predictions are certainly as good or better than
those obtained using a damping function to correct the k—¢ formula (2) (Shih 1990).
My hope is that the present approach is more sound.

2.2. Local anisotropy in strained turbulence

In order to obtain the predictions in figure 2, it was necessary to use a higher
than usual value of C.,; in other words, the production of dissipation was higher
than in quasi-homogeneous models. A possible source of this extra production of
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FIGURE 2. R, = 395. Comparison of present model (line) to DNS data (symbols):
(a) mean flow; (b) k (upper curve) and v? (lower curve).

dissipation is anisotropy of the vorticity tensor. The exact equation for dissipation
contains the term

(e + di;)Si; (11)
with the convention of summation on repeated indices, and where S;; is the mean
rate of strain tensor and

€ij = 200 uOhuj, dij = 2v0;u0juy. (12)
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FIGURE 3. R, = 180. Comparison of present model to DNS data.

In homogeneous flow

2
€ +dij = —2v(w,-w_,- - g‘sijwkwk)- (13)

A corollary to the hypothesis of local (or small-scale) isotropy is that € + di; =
4€;;/3, so that (11) vanishes in incompressible flow (S;; = 0).

Although the hypothesis of local isotropy is usually understood to depend on a
condition of high Reynolds number, it would also seem restricted to low mean rates
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of strain. To see this, one notes that in homogeneous turbulence, the equation for
€ij is

dieij = Nij + 2(dirji + djra)0iUx — €i0kU; — €2 0kUs — 2d11i;01. U (14)

where

N;; = 2v(0;uj + 05u;)OruiOruy — €, 0kuj — e;-kak‘u.,‘ - 4v23,';’mu,-6§mu,-
contains the non-linear and dissipative terms and
dijm = 21)3;1&;,63'1“.

Equation (14) contains only statistics of the velocity gradient tensor, so the hypoth-
esis of local isotropy should apply term by term. Therefore,
2 2

€5 = Eeﬁij; N;j = §N5,'J'

4 1 (15)
dijr = Efsijskl—ﬁﬁ(6ik6jl + 85xb41)

in which €;; = 2¢ is twice the rate of kinetic energy dissipation, N;; = 2N, and
dkki; = €ij has been used. On substituting (15) into (14), one finds

2 2 4

é“sijdte = 'é‘sijN = EGS,‘J'. (16)
Because S;; = 0, (16) can only be satisfied if S;; = 0; conversely, local isotropy
is inconsistent with the Navier-Stokes equations if S;; # 0. With the conventional
estimate N = O(¢/T'), the condition for local isotropy to be a valid approximation is
that ST < 1. In the wall region, ST reaches values of about 16. DNS computations
show significant local anisotropy in that region.

The € model (5) is not justified by reference to the exact terms which the model
replaces; instead, it is based on a loose notion that the difference between production
and dissipation of € can be modeled as a function of the production and dissipation
of energy. Thus one writes

N = =F(P/e) (17)

(N is as in (16) and P means rate of turbulent kinetic energy production). The
standard model (5) amounts to assuming a linear form for F'; thus

N = f[CﬁP/E' CGn]' (18)

The additional production of dissipation by local anisotropy might be incorporated
by letting C¢, depend on P/e. Assuming that dependence to be linear amounts to
including a quadratic term in F:

(1 -+ a,1P/e) _

N=E[C€1P/E (1+a]) ez].

(19)
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FIGURE 4. Mean velocity profiles with anisotropy term. R, = 395 and 180. The
upper curve, for which R, = 180, has been displaced up by 5 units.

This reduces to (18) when P = e. A computation using (19) in the present near wall
model is included in figure 4. Here ¢y = 0.1. While one might find this inclusion
of an extra constant dissatisfying, the fact is that local anisotropy does contribute
significantly to dissipation in the part of the near wall region in which P/e > 1.
Thus (19) was chosen because it enhances production of dissipation in the right
region and reduces to the standard model in the outer region, where P = .

2.3. k/e is a Lagrangian time-scale

It is useful to have some understanding of the time-scale which enters turbulence
models. While T' = k/e might be justified solely on dimensional grounds, I wish to
point out that it is also a Lagrangian decorrelation time-scale. Comparison of (3)
to the Markovian limit of Lagrangian dispersion theory suggests that it may indeed
be appropriate to regard T as a Lagrangian time-scale (after invoking Reynolds’
analogy).

When the turbulence is non-homogeneous, Lagrangian statistics are non-station-
ary so T cannot be an integral scale. Rather, it is a local decorrelation scale in the
following sense: The Lagrangian auto-correlation for an ensemble of trajectories
originating at y is

u(tiy) ult+7iy)
(lu(y)? lu(t + ;y)[2)1/2

Ri(y) = (20)
By Kolmogorov scaling

Ry =1-cer/k+O(er/k)?, 7, <«7<T
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where ¢ is a constant. Define T' by

1 _ lim 1-Rg
T(y) */T—=0 71 ° (21)

(The limit is asymptotically equivalent to 7/7; — 00.) One finds that T' o k/e.
Hence, k/¢ is a Lagrangian decorrelation time-scale.

3. Future plans

A primary motivation for developing near wall models is the need to predict non-
equilibrium boundary layers, especially those approaching separation. My hope is
to extend the present efforts into that direction. Such work on boundary layers has
already begun. The present near wall model appears to be satisfactory. However,
the rotational-irrotational interface seems to be a source of difficulty. Irrotational
fluctuations contribute to the turbulent energy in the outer part of the boundary
layer. Again, the irrotational ‘action at a distance’ cannot be identified with any
term in the Reynolds stress budget (it is not an effect of pressure-strain correlation).
Near the wall, the dominant effect of these irrotational fluctuations was to suppress
the normal velocity. In the outer half of the boundary layer, they contribute to the
total kinetic energy. This problem is under investigation. A parabolic code with an
expanding grid was written for this work. Ultimately, it will be necessary to write
a fully elliptic code. Use can be made of DNS techniques.
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