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Single and double point modeling
of homogeneous turbulence

By C. Cambon?

1. Introduction

Investigations carried out for revisiting homogeneous turbulent flows in the pres-
ence of mean shear, rotation, or external compression are summarized in this report.
The simplest and most concise RDT (Rapid Distortion Theory) formulation, which
includes a comprehensive linear stability analysis, is used for this purpose. Such a
linear approach could be extended by a generalized EDQNM (Eddy Damped Quasi-
Normal Markovian, Orszag, 1970) to two point closure in order to model non-linear
interactions, especially when pure Coriolis effects are present. The results are dis-
cussed in connection with databases obtained by DNS (Direct Numerical Simula-
tions), including previous CTR results and new calculations in progress. The main
goal is to contribute to and significantly improve on the rational one-point closure
models in progress at the CTR and at ECL.

In the case of a mean planar flow, including arbitrary rate of strain and rotation,
previous studies suggest that the products of the spanwise (normal to the plane
of the mean flow) integral length scales by associated Reynolds stress components
£ = WLEJ- are relevant quantities to be examined. Such quantities, referred to
as Quasi-2D energy components are shown to have a very simple behavior in the
inviscid RDT limit. Moreover, they play an important role for the study of streaks,
or jet structures, predicted by Lee, Kim and Moin (1990) in the case of pure shear
flows. Simple RDT solutions and non-linear effects exhibited by DNS could be
used for developing transport equation models for the spanwise Quasi-2D energy
components. The validation of this model will be done in the case of pure rotation
(see Jacquin et al., 1990, for example) and pure shear.

More generally, all of these works could support a one-point closure model re-
cently proposed by Reynolds (1989, 1990), which includes transport equations for
both the Reynolds stress tensor and the structure tensor. This model could comple-
ment a proposal by Cambon, Jacquin and Lubrano (1990) based upon splitting the
Reynolds stress tensor anisotropy b;; into a part unaffected by the “rapid” back-
ground rotation b5; and a complementary part bi;. The latter was shown to be
damped by a strong system rotation.

Additional works concern the non-linear effects of the Coriolis force. New DNS
(Mansour, Cambon and Speziale, 1990) are in progress in order to achieve com-
parisons with the generalized EDQNM model and the experiment (Cambon and
Jacquin, 1989, Jacquin et al., 1990). Good agreement is obtained for predicting
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the non-linear non-isotropic behavior of the integral length scales in an intermedi-
ary range of Rossby numbers (from 0.01 to 1). These results also complement our
knowledge of the behavior of the Quasi-2D energy components, mentioned above.
Speziale, who is also interested in these studies, proposed, moreover, to revisit the
case of pure shear flow in a rotating frame. By looking only at RDT, we selected
very simple cases for challenging the one-point closure models. Note that the effects
of stable stratification and buoyancy (with or without mean shear) could be studied
in the same theoretical framework (Itsweire et al., 1990).

Regarding the theoretical understanding, we hope that the non-linear non-isotro-
pic trends predicted by the EDQNM (in the case of pure rotation) could be retrieved
by a more straightforward analysis (deriving a dynamical system) starting from the
same expansion in terms of the eigenmodes of the linear regime (inertial waves).
Such an approach was successfully used by Waleffe (1989) for studying non-linear
stability of the elliptical flows. Moreover, a new experimental approach of Elliptical
flows but also hyperbolic or linear (pure shear) in progress (Moulin, Leuchter and
Geoffroy, 1989) could benefit from the theoretical support by Walefte and me.

Finally, the effects of an external compression on a solenoidal fluctuating velocity
field are also revisited by means of RDT. Such a study is relevant for predicting
the drop of the cross-correlation coefficient when the turbulent flow passes through
a shock wave. Non-isotropic upstream conditions (sheared turbulence) are needed
to complement the previous calculations by Lee et al. (1991). In the same frame-
work, the interaction between periodic external compression and swirl could lead
to comparisons between RDT, DNS and EDQNM, following the stability analysis
by Mansour and Lundgren (1990).

2. Formalism

2.1. Fluctuating velocity field

Classic RDT formulations in Fourier space can be made simpler and more general
if one considers the initial value problem for the fluctuating velocity and pressure
fields and if one reduces the number of components by taking explicitly into account
the incompressibility constraint. By decomposing the Fourier mode of the fluctu-
ating velocity field into two solenoidal modes, any RDT solution can be generated
by a simple matrix gog with only four coefficients (Cambon, 1982, Cambon et al.,
1985).

This approach is also very close to the linear stability analyses using a time
dependent wave vector k(t) (and, therefore, not based upon the classic assumption
of space and time separation, the perturbation phase being k -z — ot), proposed
in the last years (Craik and Criminale, 1986, Baily, 1986, Waleffe, 1989). It can
be pointed out that the strong analogies between stability analyses and RDT are
masked if one looks only at statistical quantities. For example, linear solutions of
the equation governing the spectral tensor of double correlations were studied at
Lyon, following Craya (1958). Craya proposed to use a local frame to reduce the
number of components of the spectral tensor of double velocity correlations, but
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working with a covariance matrix (the spectral tensor) is more intricate and less
general than working with the fluctuating field itself.

Townsend (1976) looked at the fluctuating field, but he did not use a local frame.
Similarly, the use of the vorticity field, following Batchelor and Proudman (1954),
presents interest only in the case of irrotational mean flows. For more detailed
appreciation of RDT application, the reader is referred to the earlier reviews by
Hunt (1978), Aupoix (1987) and Cambon (1989). I just would like to recall that a
complete approach to homogeneous turbulent flows in the presence of a mean flow
with uniform and arbitrary rates of strain and rotation (including a first evidence of
the so-called “elliptical flows instability” for unbounded eddies) was carried out in
my thesis where RDT and EDQNM were revisited. This general approach (including
a numerical code) supports all the studies presented in this report. The formalism
is given in what follows.

Let i;(k,t) be the 3D Fourier transform of the fluctuating velocity field. It is
convenient to introduce an orthonormal frame (e!,e?,k/k) attached to the wave
vector k, so that

di(k,t) = ¢ (k,t)e} (k) + @*(k, t)e? (k) + *‘“’3% M)

In this frame, the Fourier transform of the fluctuating vorticity field is also expressed

Bi(ky) = ~TkG?(k, )el (k) + Tk (k, t)e? (k) (2)

according to its derivation in spectral space
& = Ik x (k1) 3)

where k = ||k|| and I? = —1.

The component ¢* along k corresponds to the dilatation part of the velocity field.
It will be neglected in the following, except in subsections 3.3 and 3.4. The two
solenoidal modes are orthogonal to each other and located in the plane normal to
the wave-vector k. As the definition of a system of spherical coordinates, the precise
characterization of ¢! and e? requires to choose a preferential fixed axis n, referred
to as the polar azis. In accordance with Herring (1974), one has
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The first mode corresponds to the solenoidal part of the transverse planar flow
(i.e. normal to n), and the second one collects both the axial velocity (i.e. parallel

to n) and the residual (dilatation) part of the planar field. From equations (1), (2),
and (4), it is clear that
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(the notations v = vi.n; and vy = [v? — 'vﬁ being systematically used). In ac-

cordance with the above equations and the terminology used by Reynolds, the first
solenoidal mode ¢e! could be christened azial vortical mode and the second one
@2e?, axial jet mode. Note that such a decomposition is current in geophysical tur-
bulence (Riley (1981)) but is always considered from a very specific point of view
(not as a general and convenient mathematical basis for any solenoidal velocity
field!).

Regarding the homogeneous incompressible turbulence in the presence of uniform
mean velocity gradients \;; = Uy,j, the velocity field is governed by the following
system of equations:

n1 21 1 1 Ll 2 21 1
¢ 2 (¢ e;hijej ef(hij —Aszi)es\ (@1 _ (R
(¢2) TR («,az) i (26,?)“,-;:} e2\jel o) =\r) ®

" + vk?$* + mogp? = R

or

(Greek indices taking the value 1 or 2 only) in which R are non-linear terms. The
superimposed dot represents a material derivative, so that

ki + Ajik; =0 (6)
The solution of the latter equation is
ki = Fj_‘-l(t,O)Kj =0
in which the role of the mean distortion gradient tensor

Oz;
9X; U

Ffi(tro) =

F;;(0,0) = &;;
is clearly displayed. Recall that the mean trajectories in physical and in spectral
space are respectively
;= F,‘jX,' 1k = FJEIKJ;

so that k;z; = K;X; (wave conservation law). Capital letters stand for material
coordinates of the mean flow (also called Rogallo’s space). In the case of RDT, the
relation l;(t) = Fj;(t,0)l;(0) allows calculation of the deviatoric tensor 6;;/3—1:l;/ 12
proposed by Reynolds(1990) as a model for the deviatoric part of the structure
tensor y;;.

Solving equations (5) with R* = 0 is the simplest and the most general way for
obtaining RDT. Non-linear terms can be reintroduced in a statistical way by a
convenient two point closure. For the record, the formal solution of equation (5) is
given as follows:

¢ (k1) =gag(&,t,0)¢ﬁ[ﬁ(t,0).&, 0]+ftgaﬂ(k,t’t’)Rﬁ[E(t’t')-k: t'ldt' (8)
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where F‘;j = Fj;. Linear as well as non-linear approaches start from equation (8).
The matrix gop generates the basic linear solution (first term in the right hand
side of (8)) and is also involved if an explicit form of the non-linear terms is given
(second term in the right hand side).

2.1 Statistical approach

The spectral tensor of double correlation I},-,-(K_ ,t) is obtained by correlating @}
with 4 . In the local frame (¢!, e?,k/k), it has only four non-zero components in
the case of incompressible turbulence. These four components 7 correspond to
¢>*.¢P. Regarding the reduced spectral tensor at fixed k, in the local frame (¢, e?),
the anisotropy is accurately characterized by using a set of variables (e, Z).

11 P12\ (e 0 + —ReZ SmZ ©
1% 22 ] T \0 e SmZ +ReZ )
(Z is a complex term, having a real and an imaginary part). This decomposition
of type trace-deviator exhibits the invariants of the spectral tensor (namely e and

1Z]|, with the unique realizability constraint e > ||Z||). Moreover, a very simple
expression of U;; is found in the fized frame of reference

Jij(kyt) = e(k, t).Pij(k) + Re[Z(k, t)Ni(k)N;(k)] (10)

Recall that e = %I};i and P;j; = §;; — kik;/k? is the classic projector. One also has
| o pTH 2 1

If the turbulence is isotropic, Z is null everywhere and e is only dependent on the
modulus of k. By reintroducing the averaged energy spectrum E(k,t) (integral of
e over spherical shells of radius k), it is now possible to distinguish two kinds of
anisotropy

~

E E
U= P;; + (e — W)Pij + %E(ZN;NJ') (12)

4mk?

Regarding the three terms in the right hand side, the first one is the pure isotropic
part, the second represents the anisotropy due to the angular dependence of the
spectral distribution of energy, and the third reflects the polarization of this energy
at fixed k. Any one point correlation could be calculated in terms of these three
contributions. So the Reynolds stress tensor is obtained by an integral of the spectral

tensor over k-space.
wwi(t) = [ [ [os@ ek

From equation (12), a decomposition into three terms is easily derived,

.
Uiuj = ‘12(?3 + b3; + b5;) (13)
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The deviatoric part b;; of the Reynolds stress tensor is, therefore, split into two
parts. bf; reflects the dimensionality of the spectral tensor and bj; reflects its com-
ponentiality. In accordance with equation (12) and with the spectral derivation of
the structure tensor Y;; used by Reynolds (1989), the following exact relation is
found: ! s -
g*b}; = —E(Yij - Yu—;—’ = “%yij (14)

Note that the structure tensor is also connected with the structure of the vorticity
field. From equations (2) and (11) it is possible to derive a splitting equivalent to
(14) for the vorticity correlations tensor @;w; by only changing e into ke and Z
into —k*Z.

Finally, the Quasi-2D energy components are given by integration over a plane

gfj = ui“jLij = ﬂ'ffﬁ;j |key=o0 d*k (15)

The two indices 7 and j, which refer to the components of the velocity fluctuation,
are not summed, whereas ! shows in what direction the integral length scale Lij
is calculated. As for the velocity and vorticity correlations tensor, a splitting in
terms of e and Z can be found,but the distribution in the wave plane k; = 0 is only
emphasized. )

From the equation which governs U;; (usually referred to as Craya’s equation), it
is possible to derive an equation for the set (e, Z). The same result is more easily
obtained from equation (5) and leads to

e+ 2wk?e+L,=T.

Z4+2wk?Z+L, =T, (16)

The detailed form of the linear terms L. and L, with respect to e, Z and Z*
(derived from mqg in (5)) is not given for the sake of brevity. T. and T represent
spectral transfer terms (including also “slow” pressure effects) mediated by non-
linear interactions.

3. Revisiting homogeneous shear flows

3.1 Behavior of the integral length scales

It is possible to show with the formalism presented in Section 2 that the products
of the spanwise integral length scales by associated Reynolds stress components (see
equation (15)) are conserved in the inviscid RDT limit for any planar mean flow,
provided that the initial data are isotropic. These 2-D energy components

Bl u,-ujL?j = constant
(where 3 corresponds to the spanwise direction) are derived from the spectral tensor
of double correlations by integrating in the plane, k3 = 0, in which no effect of
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stretching by the mean flow is found. Recall that the incompressible planar mean
flow is characterized by the following velocity gradient matrix (Craya, 1958):

. 0 D+ 0
Uii=Aij=|D-% 0 0 (17)
0 0 0

In the case of a pure shear D = 2 = §/2, a simple solution is also found for the
streamwise quantities, which display the spectral distribution at k; = 0.

e(t) =wmm)sh (1) = 1+ ENT o)1t 0)

E5(t) = wwi(t) L3;(t) = constant; i=2 3

Thus the increase in the component u} with a quasi-linear law (for large St) corre-
sponds to a decrease in L}, and an increase in L}, in the same proportion. The ap-
pearance of jet structures—or streaks—in the streamwise direction with a decreasing
distance in the spanwise direction can be connected to these simple RDT solutions.
Indeed, one can assume that Li; gives the length of the streaks (in the streamwise
direction) and that L{, gives the distance across the streaks (in the spanwise di-
rection). The DNS databases by Moon Lee (Lee, Kim and Moin, 1990) are in very
good agreement with the RDT behavior of the streamwise quantities E;lj in the case
of high shear rate.

Regarding the spanwise quantities at high shear rate E;
is found for wyusL},, whereas w33 L}, remains almost constant. Recall that both
these terms are constant in RDT with isotropic initial data, where £, = 1€35. The
different behavior of £3, observed in DNS leads to a crossover of the two former
quantities (€5, > £3;) about St = 7. Such a crossover is also observed in a low
shear rate case, although a strong decrease in the £}; prevails at the beginning of
the evolution. The significant departure from isotropy (valid for very low shear
rapidity) and RDT (valid for very high shear rapidity) presents a strong analogy
with the non-linear non-isotropic behavior predicted for an intermediary range of
Rossby numbers in the case of pure rotation. So a transport equation for the
spanwise quasi-2D energy components is in progress. The closure model for non-
isotropic non-linear terms in the transport equations for Sf’j could be validated in
pure shear and pure rotation. Note that the total transverse (with respect to the
direction of the rotation axis, and thus spanwise) energy

%, a significant increase

e =x [ / O |uyo dhydhy = TS LS, + T3,

displays exactly the contribution of the transverse mode of energy in the wave-plane
normal to the mean rotation axis, which plays an essential role in the theoretical
and experimental approach by Jacquin et al. (1990). Recall that the spectral energy
is concentrated in ®!? |ky=0 in the case of pure 2D turbulence.



30 C. Cambon

3.2. Shear flow in a rotating frame

This case presents a particular interest in turbomachinery. It questions the cur-
rent one-point closure models, which are almost exclusively sensitive to the Richard-
son number. Recall that the stability analysis in terms of the Richardson number
ignores the complex redistribution effects of the pressure. Previous RDT calcula-
tions (for example Bertoglio, 1981) and DNS show that the Richardson number is
not the uniquely relevant parameter, even for predicting the evolution of the tur-
bulent kinetic energy. So C. Speziale proposed to revisit RDT, EDQNM, DNS,
especially in order to compare different ratios » = 2/ (i. e. rotation rate divided
by shear rate) which give the same Richardson number 2r(1 — 2r).

A first investigation of the two coupled equations which govern the two incom-
pressible modes for two different ratios r; and r; with ry+7 = % clearly shows that
the role of the“vortical” mode seems to be interchanged with the role of the“jet”
mode (when changing r to (3 — r). Simpler equations are found by choosing the
polar axis in the vertical direction, or n; = §;2, although the mean vorticity is in the
spanwise direction. The vortical mode under consideration is, therefore, a vertical
mode. Equation (5) leads to

@+ (S — 29)%‘,&2 =0 (17.1)
(kp?) + 20ks@! =0 (17.2)

in the linear inviscid limit. The role of r is clearer by working with the dimensionless
time St. A single second order equation is easily found

(k37) - 20(S — 20)("2 Y (kp?) = 0

Although the Richardson number seems to be the unique parameter in the latter
equation, the individual role of the two solenoidal modes must be taken into ac-
count in the complete linear solution. These effects are particularly simple in the
“marginal stability case” Ri = 0; for » = 0, the case of pure shear in an inertial
frame is retrieved. The other “symmetric” case with » = 1/2 corresponds to a pure
strain, the principal axes of which are being continuously rotated, when looking at
the inertial frame, in which the total mean vorticity is null. As a consequence, the
RDT solution for the fluctuating vorticity is an incredibly simple Cauchy solution

wi(z,t) = Fi;(t,0)w;(X,0)

in the case r = 1/2. Detailed solution of equations (17) also show that the increase
in turbulent kinetic energy is stronger in the case of » = 1/2 than in the case of
pure shear flow. Moreover, the structure of the vorticity correlations tensor is very
different in the two cases. The increase in the turbulent vorticity (in (St)?) is also
stronger in the case r = 1/2. These results could explain why a DNS carried out
by Rogallo seems to indicate opposite behavior with respect to RDT (a stronger
increase in kinetic energy in the case » = 0 than in the case » = 1/2). Indeed, if
the rapidity of the shear is not large enough, the increase in the turbulent vorticity,
which strongly affects the dissipative scales, can significantly counterbalance the
production of kinetic energy.
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3.8. Stratified turbulence in the presence of shear

If we consider the framework of Boussinesq approximation and homogeneity, a
complete analogy could be found with the former case. By taking into account the
two previous incompressible modes of the fluctuating velocity field and by adding
a pseudo-compressible mode connected to the fluctuating temperature 8 (along the
wave-vector) in eqn. (5),

% — @9‘

P = N
the RDT and EDQNM formalism are almost unchanged with respect to the flows in
presence of system rotation (see Cambon, 1989). This approach suggests revisiting
the databases by Holt (1990) in the same way.

Without shear, the straightforward study of linear and non-linear effects of the
dispersive gravity waves very close to the inertial waves could lead to improve both
the physical understanding and the modeling of stably stratified flows. Note that
only vague and unconvincing considerations about the “collapse” were derived from
the more recent DNS, or LES in this case. (see Metais and Lesieur, 1990).

If a mean vertical shear is also present, the unique difference with the case of
shear in a rotating frame is that the Richardson number takes into account the
ratio r = N/S in a monotonic form, Ri = r2. N is the Brumt-Waisala frequency,
which plays the same role as 21).

3.4. Towards compressible turbulent shear flows

The shear flow is one of the cases with constant mean velocity gradients, which
is consistent with the homogeneity of a compressible fluctuating field. Recall that
the skew part of the tensor A;; + A;i\i; must be zero in incompressible turbulence.
Verifying such a condition is equivalent to following the Helmholtz equation for the
mean vorticity. Moreover, the symmetric part must also vanish in the compress-
ible case in order to eliminate the position-dependent term p'(\;; + Ai)i;)e; in the
equation governing the fluctuating velocity field u;. p' is the density fluctuation.
The databases of G. Blaisdell suggest considering a “true” dilatation term in the
fluctuating velocity field and suggest looking at the associated new terms in the
spectral tensor. In the local orthonormal frame (e}, €?, e! = k;/k), the general de-
composition (1) into three orthogonal modes is applied (including the axial vortical
mode, the axial jet mode, and the dilatation mode).

Regarding the spectral tensor (or the covariance matrix) in the same frame, we are
concerned with six components (% i < j < 3). The components $°# associated
with the solenoidal part are collected into a solenoidal 3-D energy spectrum e’(k, t)
and a deviator Z°(k, t), as previously (equation (10)). Three new components
correspond to a dilatation 3-D energy spectrum, e?(k, t) = %@33 and two cross-
correlations ®*° between the dilatation mode and the solenoidal modes. As a
first assumption, the contribution of these cross-correlations are neglected in the
one point correlations. Damping effects of the acoustic waves could be invoked in
accordance with the behavior of the integrals

Flet) = ‘[0°° h(k) exp(£Ikct)dk
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for large values of ct (c is the speed of sound). Accordingly, a generalized splitting
of the Reynolds stress tensor is easily obtained:

6i' a ()
Uy = qz'?J + g™ (b3 + b)) + Y5

where b5 is exactly minus half the deviatoric part of the structure tensor intro-
duced by Reynolds (yi;), and Yg is exactly the structure tensor associated with the
dilatation part of the energy spectrum.

k.k. 1 L] k k
d d t . d 1n
Yij = ././,[28 (k,t)-—; dak, e =Uim—3

If one assumes that the solenoidal field evolves almost independently on the dilata-
tion one, one can keep unchanged closed equations for the quantities with “s” and
only add a new equation for Y,‘; DNS databases available at the CTR could be
used to validate such a model.

4. Revisiting non-linear non-isotropic effects of pure rotation

The linear effects of the Coriolis force are easily characterized by looking at equa-
tions (5) and (16). The polar axis is now chosen to coincide with the system rotation
axis (n; = &3 = 0:/Q). Regarding the fluctuating field, linear combinations of the
dependent variables in eqn. (5), @1 + Ip?, lead to a diagonal form of the matrix
Map, which exhibits the two eigenvalues 212k /k. 1t is, therefore, very simple to
work with the eigenmodes of the inertial waves. Recall that the eigenpulsation

k
o(k, 1) = 201
k
gives the dispersion relation. Regarding double correlations, e and Z correspond
to quadratic products of the eigenmodes. In equation (16), L =0 and L, = 21o.
The linear solution of equation (16) is, therefore,

e(k,t) = e(k,0) exp(—2vk®t); Z(k,t) = Z(k,0) exp(4fﬂtikl-l-)exp(—2uk2t) (18)

As a consequence, the quantities involving e, such as g% and bf;, are unaffected by
a rapid rotation. This fact reflects that the Coriolis force produces no energy. The
quantities involving Z in a 3D integral, such as b}, are damped in accordance with
the behavior of the integral

500 = [ W explaratin

for large values of Qf. This fact reflects the angular dispersivity (influence of
p = ky/k) of the inertial waves, and is called “phase-randomization” by Reynolds.
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Nevertheless, the quantities which involve Z in the wave-plane kj =0, such as c‘,'f‘j,
are not affected by the linear Coriolis effects. These linear effects are now well
known (see also Veeravalli, 1989).

Non-linear effects are reflected by T. and T, in the system of equations (16).
The influence of the rotation on these terms is crucial for predicting the behavior
of an initially isotropic turbulence. Indeed, the linear terms are null, at least in a
preliminary phase. The generalized EDQNM model used by Cambon and Jacquin
(1989) (for closing T. and T,) predicted very spectacular non-isotropic behavior of
the integral length scales in agreement with results from experiment and DNS (Roy
and Dang, 1985). Non-isotropic features in physical and spectral space began to
be verified by 128 DNS (Teissedre and Dang, 1987). New DNS are in progress at
the CTR in order to complement this information. The most important anisotropy
criterion is chosen to be,

A=E — (€ +E) =ulL) — WL, (19)

A dimensionless form could also be proposed by using ¢?L,. Regarding the Reynolds
stress tensor, the axisymmetric trend is quantified by
Bew— Y@ amd = (.33
= Uy — 2(“1 +u3) = (vj —ul) = 29 bss (20)
The spectral derivation also leads us to separate the two contributions of the latter
criterion, according to B/q? = 3 (b3, + b3,).

Now, it is easy to explain why the anisotropic features occur only for an inter-
mediary range of Rossby numbers. -If the Rossby number is too large, the specific
effect of rotation is weak and the initially isotropic behavior prevails. -If the Rossby
number is too small, the non-linear effects are assumed to be weak (in relative value,
with respect to the linear ones), but the true feature is that the rotation tends to
inhibit the level (in absolute value) of triple correlation. The phase scrambling of
cubic products of fluctuating velocity components gives the simplest explanation of
this phenomenon. So a regime of pure viscous RDT is obtained. Hence, an isotropic
behavior is again retrieved. Previous DNS by Speziale, Mansour & Rogallo (1987)
confirms these results at very low Rossby number.

The best indicator of the peculiar anisotropy, generated by non-linear interac-
tions, is A. This criterion, which is rigorously null in the isotropic case, is unaffected
in any case by linear (RDT) Coriolis effects because it involves only the polariza-
tion part of the spectral energy Z in the transverse wave-plane (k normal to ).
Considering Rossby number built on the axial integral length scale L3,, the new
DNS by Mansour et al. 1990 predicts that the criterion is weak for initial Rossby
numbers larger than the unity or smaller than 0.01. A maximum is found to be
about 0.1. The upper limit of the intermediary range (about 1) is in good agreement
with the experimental and EDQNM results (Cambon and Jacquin (1989), Jacquin
et al. (1990)). The capture of the lower limit by DNS is also a surprisingly good
result, regarding the risk of numerical inaccuracies (especially on the lengthscales)
in the case of very strong rotation rates.
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The DNS and the EDQNM (new computations carried out at the CTR) are also
in agreement in predicting the rise of a weak but significant azisymmetry of the
Reynolds stress tensor, only due to the contribution of the structure tensor. By
using Reynolds’ notations, it is found that

1
b3z = —5Yss >0

This tendency corresponds to a relative concentration of the spectral energy in the
transverse wave-plane. Unfortunately, it is weak, especially when looking at the
classic invariants of b;; (quadratic and cubic). The order of magnitude of the dif-
ference between the axial and a transverse component of the Reynolds stress tensor
(B indicator) is no larger than 5 per cent of the trace (or %633 = 0.05). Never-
theless, the different anisotropic trends remain consistent with the first phase of
a transition towards two-dimensionality in accordance with our previous theoreti-
cal analyses. Regarding physical interpretation, the rise of a positive value for b33,
which reflects a preferential concentration of € in the wave-plane k| = 0, corresponds
to a decrease in the axial variability 8/0z) . Such a trend is often deduced from
the Proudman-Taylor theorem, but one recalls that this theorem was proposed in
the zero Rossby number limit. Although the exact RDT contradicts this theorem
(and the dogma that a strong rotation makes two-dimensional any turbulent flow),
weak but significant non-linear terms (and possibly boundary conditions) are able
to reduce the axial variability, in agreement with the rise of columnar structures.

Moreover, the strong negative value of A indicates a polarization of the spectral
energy in the more energetic wave-plane k) = 0. Accordingly, the axial vortical
mode is found to dominate in this plane at least in the low wave-numbers range.

Both of these trends contribute to align the turbulent vortices with the system
rotation axis, but they are not in agreement with the decrease in the axial velocity
(u \)- (See Cambon, 1990, for a more detailed analysis of the 2D tendencies in
MHD, rotated, and stably stratified turbulence). During the evolution, the constant
decrease of the Rossby number and the increasing action of the viscous effects tend
to block these transient mechanisms. Accordingly, I think that only a very high
Reynolds number and the presence of a forcing term (in the wave vectors range
ky =0, &k < ko) would lead to complete transition towards 2D in the intermediary
range of Rossby numbers.

5. Solenoidal turbulence undergoing external compression

5.1. Contribution to a study of boundary layer-shock wave interaction

A first approach of the effects of a strong one-dimensional compression on a non-
isotropic turbulence was carried out by using a solenoidal homogeneous RDT. The
upstream conditions are built by a preliminary application of a pure shear, so that
an important cross-correlation coefficient (between uy and u3) is created. The shock
is then considered as a strong compression in the streamwise direction. The RDT
solution shows a strong decrease of the absolute value of the cross-correlation coef-
ficient and even a change of sign. If the “rapid” pressure-rate of strain correlations
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are ignored or badly modeled (as in a current Reynolds stress model), this coeffi-
cient is conserved. Note that a new model, that includes the structure tensor of
W. C. Reynolds, is in good agreement with RDT in this case. Regarding the role
of the cross correlations in the balance of kinetic energy in a boundary layer, it is
obvious that this mechanism must be correctly predicted. The idea of this RDT

calculation was prompted by Mathieu (private communication), regarding experi-
mental results obtained at ONERA.

5.2. Periodic compression with swirl

The validity of a solenoidal model in the presence of a strongly compressed mean
flow requires moderate values of the “turbulent” Mach numbers. A previous analysis
of Mansour justifies this framework of assumptions which is implicitly used in most
of the turbulence models for reciprocating engines. Following a recent summer
workshop at Lyon (Pepit workshop, July 1989), a particular emphasis is made in
my laboratory about the interactions between external compression and rotation,
so the stability analysis by Mansour and Lundgren (1990) is of great interest. The
parameters are the ratio of the swirl rate to the period of the coaxial compression.
An instability behavior is shown in narrow domains of angular dependence (in
wave-space). First RDT calculations with a code based upon equations (5) (see the
following section) and a DNS code (Mansour), in which the non-linear terms are
omitted, seem to validate each other.

6. Towards a general one-point closure model

A very good agreement in the guidelines is found when one compares recent
progress in the modeling of turbulent flows in the presence of rotation carried out
in France (Jacquin et al., Cambon et al., 1990) with the works of the CTR, especially
by W. C. Reynolds and S. Kassinos. The idea of introducing two contributions of
the Reynolds stress tensor anisotropy, according to eqn. (13), leads to exactly the
same amount of information that the use of the structure tensor together with the
Reynolds stress tensor provides.

The validation in homogeneous turbulence of the most general model, recently
proposed by Reynolds, could be made with the support of the numerical code
“Thanatos”, which could provide the spectra of the terms involved in the new
single point closure model. This code takes into account any mean velocity gradi-
ent matrix, with possible time dependency and external compression, and solves the
solenoidal RDT problem (time advancing eqn. (5) using a Runge-Kutta high order
scheme). An EDQNM model using a parameterization of T, and T, (eqn. (16)) in
terms of angular harmonics is included but not yet completely validated.

Specific EDQNM models used for studying non-linear interactions of internal
waves in sections 3.3 and 4 (pure rotation or stable stratification) are more compli-
cated, although they are restricted to quasi axisymmetric turbulence. They do not
use parameterization of angular dependence, and they are too expansive (in com-
putational time) and too cumbersome to handle to be implemented in the general
case.
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Note that the specific expansion in terms of angular harmonics is used in eqn.(16)
only for decomposing the general transfer terms T, and T, in accordance with a
3D EDQNM formulation. It involves spherical coefficients (depending only on the
modulus of the wave vector) of e and Z, which easily generates the spectra of both
the structure tensor and the Reynolds stress tensor.

We hope that the use of two anisotropy tensors, namely b5; = —2yi;j and bi; =
bi; + -;-y,'j, will improve the classic single point closure models, in which b;; is used as
the only anisotropy indicator. Regarding only RDT, the classic procedure leads to
a connection between the rapid part of the pressure-rate of strain correlations and
the production terms in the balance of the Reynolds stress tensor. It is questioned
in the presence of system rotation, or more generally by the effect of any body
forces generating waves (such as the buoyancy forces), and even in the case of pure
straining processes applied to initial data influenced by rotation (as in section 5.1).
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