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Progress in understanding the renormalization
group skewness and x - ¢ models

By L. M. Smith AND W. C. Reynolds

1. Motivation and objectives

The immediate goal of this work is to understand and validate the Yakhot-Orszag

model for the velocity-derivative skewness and model equation for the rate of energy
dissipation £ (Yakhot and Orszag (YO), 1986). This report is a summary of a more
detailed manuscript in preparation (Smith and Reynolds (SR), 1990a). Our purpose
is to clarify some limitations of the theory by careful examination of key assumptions
and approximations, and thereby to encourage its improvement. Our focus is as
follows:

1.

We reformulate their recursive solution for the velocity field of the removed scales
as a perturbation analysis and show that it is unlikely to be quantitatively accu-
rate at the perturbation levels involved.

We examine the effect of using the low wavenumber limit of the modified viscosity
in the solution for the high wavenumber modes. This work suggest that their
approach significantly overestimates the low wavenumber limit.

We introduce the concept of “displacement value” characterizing the contribution
of the dissipative high wavenumber portion of the spectrum to various integrals
in the theory.

. We correct an identifiable algebraic error in the velocity derivative skewness,

finding § = —0.59 instead of their value of —0.488.

. We correct several errors in the development of the transport equation for the rate

of energy dissipation £. The most important of these corrections gives zero as
the coefficient of YO’s term proportional to the rate of production of energy Py.
There may exist a non-zero term responsible for the production of £ at higher-
order in the approximations involved. However, we show that its structure is
different from the structure of the £-production term reported by YO and in
current turbulence models. Hence, the RG method has not yet placed the &-
transport model equation on solid ground.

In spite of these difficulties, it seems clear that YO have introduced an important
approach worthy of further exploration. Although the method does not provide
a derivation of the £-transport model equation presently in use, the correct RG
E-transport equation may be useful and should be developed.
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2. Accomplishments

2.1 The perturbation ezpansion for the high wavenumber modes

YO use RG techniques to develop a theory for the large scales in which the
effects of the small scales are represented by modified transport coefficients. The
effect of the very large scales on eddies in the inertial range is represented by a
random force chosen to produce the correct form of the inertial range spectrum when
opposed by the modified viscosity. The force is assumed Gaussian, white noise in
time, homogeneous in time and space, and isotropic in space. YO assume that the
statistics of the inertial range of homogeneous turbulence forced in this manner will
be representative of the inertial range of turbulence sustained by inhomogeneities.
They refer to this assumption as “the correspondence principle.”

The dynamical equations for the large-scale field are derived by averaging over an
infinitesimal band of the small scales to remove them from explicit consideration.
This procedure yields infinitesimal modifications in the equations for the large scales.
The removal process is iterated, and these corrections accumulate to give finite
changes. YO retain only the modifications of the viscosity, arguing that other
modifications are unimportant to the large-scale dynamics.

The iterative averaging is carried out in (d+1)-dimensional Fourier space in which
the Fourier amplitudes are functions of the (d + 1)-vector k = [k,w], where k is
the d-dimensional wavevector and w is the frequency. At each stage, the averaging
requires knowledge of the statistics of the scales being removed. YO generate these
statistics by repeated substitution of the equation for ¥+ into the equation for v<,
which is originally given in terms of ¥<, f< and ¥>. Since ¥> is in terms of V<,
£> and ¥>, the statistics of ¥> are given by the assumed statistics of .

One can show that the repeated substitution of ¥~ is equivalent to a series expan-
sion in which zeroth-order effects are linear and nonlinear effects are higher-order
corrections,

7> =¥ 4+ AvM 4+ o(A?) (1)

3O [k] = f7 (k) | (2)

. B ke dg . -
SO0 = LGPl [ e (o5 lalos k- al + 95 1alfZ k- a

+osth -zl + F2la k- ) (3)
where
G, [k; ke) = (—iw + vplk, w; kJk?) 2. (4)

Here k. is the current cutoff wavenumber above which all scales have been previ-
ously removed, [, indicates a (d + 1)-dimensional integral, P;;x[k] is a compound
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projection operator, G, is called the “propagator”, and A = 1 is the ordering param-
eter. Square brackets [ ] will be used throughout to indicate functional dependence.
The modified viscosity vr[k,w; k] is the term through which the high wavenumber
modes affect the retained scales. YO assume that when k. = A, is a Kolmogorov
scale, all significant scales are retained and then vr(k,w; Ao] = v, is the (constant)
molecular viscosity. YO do not discuss the dependence of vr on k and w, but it is
implicit in their analysis.

Use of the above perturbation expansion can be expected to give quantitatively
correct results only if the Reynolds number of the removed eddies, based on the
modified viscosity, is small. We denote the Reynolds number of the removed eddies
by R. = v.l./vr where the velocity scale v, = D(l,lec/u;!z, time ¢, = 12 /vy, and
length I, = 1/k. are characteristic of the high wavenumber band to be eliminated
and D, « £ is the amplitude of the two-point force correlation.

The requirement that R, be small is not met very well because the removed scales
are in the inertial range. One may estimate the actual value of R, at each iteration
of the fine-scale elimination (SR). One finds that R. = O(10) at each iteration of
the removal process, which seems large for a perturbation parameter and suggests
the possibility of quantitative inaccuracy.

2.2 The modified viscosity

The differential equation describing how the modified viscosity changes with cut-
off wavenumber is developed by averaging over infinitesimal bands as described
above in section 2.1. The modified viscosity at any low wavenumber A is calculated
by integrating this equation from the first removal, where the viscosity was the fluid
viscosity v, and the cutoff wavenumber was the Kolmogorov cut-off A,.

The modified viscosity is in general a function of the retained wavenumber, the
frequency and the cutoff wavenumber: vz = vplk,w;k.]. The modified viscosity
is calculated to be independent of k and w only in the “distant-interaction” limit
k << ke, |iw| << vrk?. It is important to realize that the distant interaction
approximation includes only the effect of triad interactions between two modes
in the removed shell and a retained mode at very small wavenumber. Hence, the
modified equation will be most accurate at low wavenumber and least accurate near
the new cutoff wavenumber, where it will be used in the perturbation solution for
the next band of removed wavenumbers. Thus the YO procedure assumes

vrlke,w; ke] = vr(0,0; k] (5)

For the remainder of this section, we focus only on the k-dependence of v and
suppress the w-dependence by writing vr[k; k..

Many studies suggest that a realistic eddy-viscosity model exhibits a plateau far
from the cutoff (k << k.) and increases to several times its plateau value very near
the cutoff (k ~ k.). This “cusp-up” behavior of the modified viscosity is predicted
by EDQNM (ref) and the Test-Field model of Kraichnan (ref), and is consistent
with direct numerical simulations (ref).

In order to study the effect of assumption (5), we instead use
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vrlke; ke] = Cvr(0; ke) (6)
where ¢ is a constant. The differential equation for v7[0; k] is
dk. vi|ke; kek? C2wd 05 ke)k3
YO’s approximate differential equation is
dvr[0; k] _ B
dke  vA[0;k)k3 (8)

In the limit of small k., the solution to (8) overestimates the solution to the correct
differential equation (7) by a factor ¢?/3.

We can estimate ¢ by comparing YO's results and EDQNM (ref). We denote
vr[0; k] = A081/3k:4/3. EDQNM predicts 49 = 0.28 for YO’s value of the Kol-
mogorov constant Cx = 1.6, whereas YO predict Ay = 0.49. These numbers suggest
[ =1238.

The same assumption (5) is made in the differential equations to derive the skew-
ness and the modified source term in the model £-equation. Thus some quantitative
error is expected in the YO skewness value and £-model coefficients.

2.8 The concept of the “displacement value”

YO assume that the Fourier modes vanish when k£ > A,, beyond which there
is no significant physics. In their analysis, A, is an ultraviolet cutoff of the iner-
tial range. This is a reasonable assumption when dealing with the kinetic energy,
since the Kolmogorov modes contain only negligible energy. However, turbulence
quantities related to velocity derivatives, such as the dissipation, receive significant
contribution from modes beyond the inertial range. Therefore, it seems essential
in performing RG on such moments to allow for undetermined physics beyond the
inertial range. We introduce the term “ displacement value” to represent the cu-
mulative effect of modes beyond the ultraviolet cutoff. The displacement value of
the kinetic energy is taken to be zero.

Since interactions among wavenumbers above A, are not modeled by the YO
theory, only moments that are negligibly small above the ultraviolet cutoff A, and,
hence, have displacement value zero can be calculated using their method.

For moments of velocity derivatives, the displacement values are nonzero and
dominant. Although the YO method does not provide values of individual velocity-
derivative moments, YO use it to provide estimates for Reynolds-number indepen-
dent combinations of derivative moments. They argue that such combinations can
be evaluated from the statistics of RG-filtered turbulence acted on by the modified
viscosity, which at large Reynolds numbers is independent of Reynolds number.

Two examples of Reynolds-number-independent combinations of derivative mo-
ments are the velocity-derivative skewness S and the “source” terms Y in the &-
transport equation. The RG models for S and ) are discussed in sections 2.4 and
2.5, respectively.
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2.4 The RG skewness model

The velocity-derivative skewness is defined

(Vim)’)) _ 4
((V1vy)2)3/2 = p3/z° (9)

Estimates of A and B are provided by a spectrum model of the form

g

Ek)=0 for k<Af

Elk] = Ck€*°k~" exp[~a(kn)’]  for A;<k<oo (10)

where 7 = (13/€)'/%, A, = .2/, A; is the integral scale, and we take Cx = 1.6 for
consistency with the YO theory. This form of the exponential tail has been predicted
by various theoretical considerations and elsewhere (Smith and Reynolds, 1990b)
we show that it is the preferred exponential form of the Kolmogorov spectrum.

Using the model spectrum (10), one can show (SR) that A = O(R;./ ?) and
B = O(Rr) where Rt = K?/(v,€) is the turbulent Reynolds number. Also, the
displacement value accounts for 70% of B. The skewness for isotropic turbulence is
found to be —0.694 in agreement with observations at moderate Reynolds numbers.

The RG differential equations for A” and B> are found from the Fourier trans-
forms A and B by the averaging over infinitesimal bands of high-wavenumber modes
as described in section 2.1. The distant-interaction approximation leads to (see sec-
tion 2.2)

dA>[kl] a€?

ki v3[0,0;k!)(kL)3 (1)
dB>[kl] b€

B a0, 0 ERL (12)

where @ and b are constants. Notice that error is introduced in (11) and (12) by
using v1[0,0; k.] instead of vp[k.,w; kL.
Integration of (11) and (12) over k. < k < A, gives A”[k.] and B”[k.]. Taking

k. = 0 corresponding to elimination of the entire inertial range, one finds

3

A>[0] = _0.0044%3}2;/2 + 4, (13)
£2

BZ[0] = 0.022- Rr + Bo (14)

where A, and B, are the displacement values. One sees that the RG method yields
the proper scaling of the individual moments 4 and B. However, their values cannot
be determined because the displacement values A, and B, are unknown.

An estimate for the skewness is made from RG-filtered turbulence having scales
k < A, acted on by the modified viscosity »7[0,0;A]. One approximates A<[A]
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and B<[A] from the RG expressions for A”[k] and B [kc]. To do this, the differ-
ential equations (11) and (12) are integrated over 0 < k; < A, where A/A, — 0
corresponding to Ry — oo,

dk,
< 2
AS[A) = o f —__(h’)avT[O 0k (15)
A
dk!,
< ~
B<[A] Nbsfn et (16)
Then the RG skewness is formed as
g A<[A]

where A<[A] and B<[A] are both O(1) quantities. The RG prediction § = —0.59 is
in good agreement with experiments at moderate Reynolds numbers. YO made an
algebraic error in their calculation of the constant @ which defines A”, which led
them to find § = —0.488 instead of the correct value —0.59 (SR).

2.5 The RG model E-transport equation
The RG model £-transport equation is derived by applying the iterative-averaging
technique to the evolution equation for the instantaneous value of the dissipation
rate ¢ in homogeneous flow,

¢ = VD(VJ"U,')Z. (18)

Then £ =< ¢ > under the assumption that the dissipative scales are locally homo-
geneous.

Differentiation in time of (18), followed by substitution from the Navier Stokes
equations, gives

. y]{x,t]
a ,—-——J\—u_\
(,;: -v;V;dp+x.V;iVid— 202 (Vo VJ‘U,)
y“[x Y }‘m[x R
(v 9)(V3V9) — 20V 0)(V 5om ) (Vr0) (19)

where xo = vo.

The RG calculation of the modified “source” terms )1 =< Ji[x,t] >, Ju =<
Yu(x,t] > and i =< M [x,t] > follows the RG procedure to find velocity mo-
ments, outlined for the velocity-derivative skewness in section 2.4 above. Since the
source term is observed to be independent of Reynolds number at high Reynolds
number, the RG modified source term is calculated from the RG-filtered turbulence
field acted on by the modified viscosity vr.
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At this writing, our results for the RG modified source term differ from YO'’s
results. We find a different decay rate for isotropic flow and a different form for the
term responsible for the production of £ in anisotropic flow. In the limit of high
Reynolds number, we find

o€ £ .

e ~U;V;€+ VixrV;E — 5'65f +1II (20)
The decay rate for isotropic flow is 5.65, in poor agreement with observations and
the K — € models in current use. The term II* is responsible for production of £ in

anisotropic flow. The Fourier transform IT*[k; k., k] has the form (SR)

fo o g2 £ (R)PTVTA kI b didg
TN a—y=d s o

(00 /1) + Olrafk2) + O /D) (s =)ol - ho5laleste — . (21)

ib

where ( )jis is a function of the angles of k., r and q, and f oz indicates two (d+1)-
dimensional integrals. YO reported

o€ &t

i =U;V;€4+VjxrV;€ — LTE +1I (22)
where the decay rate 1.7 is in good agreement with observations and the K — &
models in current use. The Fourier transform II[k; k., k.] of the production term is

given as (YO)

d—2 B4 (kL)v-2 — pd-v-2

I=—i
Yd(d+2) vE 2—y—d

k! A 1a

< didq A alal Al A  a
N W(kj — ;)07 [k — #65[G)8°[F — 4], (23)
where By is a constant. We found that integrals of the form (23) exactly cancel,
and that the power of the wavenumber in the integrand must be at least two (SR).
We are in correspondence with YO over these differences.

3. Future Plans

We will continue our correspondence with Yakhot and Orszag until we agree
on the correct form of the RG £-transport model equation. This may involve
calculations to higher-order in the distant-interaction limit in order to derive a
term responsible for £-production.

We may also consider an exponential roll-off to the inertial range spectrum, in-
stead of an abrupt ultraviolet cutoff, by adjusting the statistics of the force. Then
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displacement values could be calculated using RG and may have interesting conse-
quences for the RG skewness and K — £ models.

A longer term project is the reformulation of the RG method to produce the
cusp-up behavior of the modified viscosity (see section 2.2). The cusp-up behavior
appears essential for a realistic eddy viscosity model (Kraichnan, 1976, Chollet and
Lesieur, 1981, Domaradzki, Metcalfe, Rogallo and Riley, 1987). It has been shown
(Zhou and Vahala, 1989) that the present RG modified viscosity (in the absence of
the triple nonlinearity) cusps down instead of up: vr decreases instead of increases
as k increases to the cutoff wavenumber k.. One would like to correct this unphysical
behavior.

Finally, we hope to derive the RG modified viscosity in the presence of a strong
shear. This calculation will involve a forcing which is anisotropic at lowest order.
We intend to find the appropriate form of the force correlation from the direct
numerical simulation data for homogenous shear flow. One must also retain the
sweeping and straining terms due to the mean shear in the equations of motion.
These terms may be too cumbersome to allow for analytic RG, but present no
difficulty for numerical implementation of an RG algorithm.
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