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Recursive renormalization group
theory based subgrid modeling

By Ye Zhou

The essential purpose of this research is to advance the knowledge and under-
standing of turbulence theory. Specific problems to be addressed will include studies
of subgrid models to understand the effects of unresolved small scale dynamics on
the large scale motion which, if successful, might substantially reduce the number
of degrees of freedom that need to be computed in turbulence simulation.

1. Motivation and objectives

The study of turbulence is one of the most challenging and active research topic in
classical physics. Since turbulence, by its usual definition, implies the existence of an
extremely large number of degrees of freedom interacting nonlinearly, one is forced
into a statistical description and so encounters the problem of obtaining a closed set
of equations (Laudau and Lifshitz, 1982). A straightforward numerical approach
to high Reynolds number fluid turbulence runs into hopeless storage/resolution
problems for present-day and foreseeable future supercomputers. It is not likely that
foreseeable advances in computers will allow the full simulation of turbulence flows
at Reynolds numbers much larger than the R = O(100 — 1000) already achieved.

The fundamental problem is that we must reduce the number of degrees of free-
dom to be considered, yet at the same time retain the correct physical behavior.
If this can be accomplished, then the simplified model will correctly mimic (in a
statistical sense) the real physical system.

As an example, traditionally one averages the Navier-Stokes equations over a
range of small scales by applying an appropriate filter (Leonard, 1974; Rogallo and
Moin, 1984; Zhou et al., 1989a). The result is the Navier-Stokes equation for the
large scale motion along with new terms representing the subgrid stresses. The
subgrid stresses are now modeled using phenomenological arguments (Smagorinsky,
1963; Rogallo and Moin, 1984) and adjustable numerical factors (Deardorff, 1977).
Recently, following the impressive success in critical phenomena (Wilson, 1975; Wil-
son and Kogut, 1974), renormalization group theory (RNG) has been applied to the
subgrid modeling problem in fluid turbulence, especially since subgrid modeling is
such a good candidate for the RNG approach (Rose and Sulem, 1978). The RNG
subgrid calculations fall into two basic groups: (i) the e-expansion (Forster et al.,
1977; Fournier and Frisch, 1983; Yakhot and Orszag, 1986; Zhou and Vahala, 1988),
and (ii) the recursion (Rose, 1977; Zhou et al., 1988, 1989b; Zhou and Vahala, 1990;
Zhou, 1990) approach. We shall concentrate here only on the recursion RNG theo-
ries since we are particularly interested in the wavenumber dependence of the eddy
viscosity, v(k). In the e-expansion RNG theories, the eddy viscosity is calculated
only in the limit £ — 0. Now, unlike the e-expansion procedure (i), both free de-
cay (with given Kolmogorov energy spectrum) and forced turbulence (with spectral
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forcing chosen to reproduce the Kolmogorov energy spectrum) can be handled, and
there is no need to introduce a small parameter e.

2. Previous work

Our purpose is to construct a systematic way to model the subgrid scale in Navier-
Stokes turbulence. Originally, Rose (1977) applied recursive RNG to the subgrid
modeling of the advection of a passive scalar. Later, we have extended Rose’s tech-
nique and applied it to the cases of free decay (Zhou et al., 1988) and forced (Zhou
et al., 1989b) Navier-Stokes turbulence. The resultant resolvable scale wavenumber
dependent eddy viscosity in our model shows a cusplike behavior, in qualitative
agreement with the test field model of Kraichnan (1976), the EDQNM closure cal-
culation of Chollet and Lesieur (1981), the direct numerical simulation results of
Domaradzki et al. (1987), and recent large eddy simulation of Lesieur and Rogallo
(1989).

Another interesting feature of our recent work (Zhou et al., 1989b; Zhou and
Vahala, 1990) is that the time dependence of the subgrid modes is not ignored—in
contrast to the treatments in the free decay of Navier-Stokes turbulence (Zhou et
al., 1988) and passive scalar convection (Rose, 1977). As a result, a nonlocal time
(and space) behavior of the eddy damping is found, similar to that of Kraichnan
(1976) in his test field model. Recently, a unified framework for subgrid scale closure
is formulated, without the need to specify whether we are dealing with free decay
or forced turbulence. The identification need only be made towards the end of the
calculation when we must introduce the subgrid velocity autocorrelation function
(Zhou and Vahala, 1990). This unified framework has been helpful in examining
the effect of helicity on the subgrid scale closure (Zhou, 1990).

3. Current work

The novel feature of our model is an explicit triple nonlinearity in the renor-
malized equation of motion. On iteration to the fixed point, this term results in a
cusplike contribution to the wavenumber dependent eddy viscosity which is required
by elementary scaling arguments. However, a major difference between the recur-
sive RNG eddy viscosity and that derived from the test field model (Kraichnan,
1976) and classical closure (Leslie and Qiarini, 1979) is the “strength” of the cusp
behavior as k — k., where k. is the boundary between the resolvable and subgrid
scales. Based on the energy transfer equation, we have shown that the triple non-
linearity will contribute a term equivalent to an eddy viscosity. This furnishes an
explanation of why the renormalized eddy viscosity found by solving the recursive
RNG equations exhibits only a mild cusp behavior as k — k..

It is shown that the order of the statistical ensemble averaging procedure in
recursive RNG technique can be interchanged. Regardless of the order of averaging
process, the following results are obtained: First, the triple nonlinearity and a
nonlocal time eddy damping functions are generated. Second, the only way to
prevent the creation of triple nonlinearity is to assume that a spectral gap exists
between the resolvable and subgrid scales.
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These encouraging results, combined with the appealing structure of basic recur-
sive RNG theory, has led to a considerable level of the activity in the area, both
in the direction of more a sophisticated subgrid model and toward the extension of
the recursive RNG approach to deal with different physical systems.

4. Future plan

The fact that the subgrid scale modes evolve at a faster time scale than that
of the resolvable is the motivation behind the Markovian approximation in that
the time dependent of the subgrid modes can be ignored (Rose, 1977; Zhou et al.,
1988). To account for this separation of scales, one may attempt a treatment by
which the spatial and time coordinates are separated into two scales. A more elab-
orate study will be conducted, using the method of multiple scale analysis (Nayfeh,
1973) which has been useful in the derivation of transport theories for magnetohy-
drodynamic fluctuations in the solar wind (Zhou and Matthaeus, 1989; 1990a,b,c).
The approach which combines the RNG with a scale parameter expansion method
from perturbation theory can be considered as a further refinement from that of
the Green’s function technique (Zhou et al., 1989b; Zhou and Vahala, 1990).

One aspect of the future research is the subgrid modeling of two dimensional
(2-d) Navier-Stokes turbulence. While it is known that the eddy viscosity is nega-
tive in 2-d Navier-Stokes turbulence due to inverse cascades (Kraichnan, 1976), the
eddy viscosity representing the effects of the unresolvable subgrid scale in the cor-
responding vorticity equation is positive owing to the direct enstrophy cascade. We
plan to carry out a recursive RNG analysis of 2-d Navier-Stokes turbulence. The
resultant resolvable scale wavenumber dependent vorticity eddy viscosity will be
compared with the subgrid scale eddy viscosity computed from the results of high-
resolution direct numerical simulations of homogeneous, isotropic 2-d Navier-Stokes
turbulence. Our subgrid model of 2-d Navier-Stokes turbulence will be evaluated
according to turbulence theory (Kraichnan and Montgomery, 1980) and compared
with well-developed simulation results.

We also plan to extend our recursive RNG analysis to develop other forms of
turbulence models (such as K — ¢ model), as well as attack other important phys-
ical systems, such as passive scalar transport equations. These efforts will make
recursive RNG available for much broader practical applications. In particular, the
direct numerical simulation of the renormalized Navier-Stokes equation (Zhou et
al., 1988, 1989b; Zhou and Vahala, 1990) may have major impact on the systematic
turbulence modeling and large eddy simulation.

Furthermore, it is of great interest to use the recursive RNG for the modified
Betchov model (Kraichnan and Panda, 1988) since both the direct-interaction ap-
proximation (Kraichnan, 1959) and constrained decimated scheme (CDC) of Kraich-
nan (1985) have been applied to the Betchov model (Betchov, 1966; Williams et
al., 1989). We hope that the modified Betchov model can be used as a test site for
all available subgrid scale closure techniques because of the difficulties of applying
CDS to 2- or 3-d Navier-Stokes turbulence. Of particular interest would be the
comparison between RNG and CDS since, as Kraichnan (1985) has pointed out,
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RNG removes high-tk modes by repetitive transformations while the CDS removes

these modes in one step.
Strong collaboration with Professor W. C. Reynolds and Dr. L. M. Smith is
anticipated in several RNG related topics.
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