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Modeling hypersonic boundary-layer
flows with second-moment closure

By P. G. Huang

This report presents an ongoing research effort designed to apply the best possible
second-moment-closure model to simulate complex hypersonic flows. The baseline
model under consideration is the Launder-Reece-Rodi Reynolds stress transport
turbulence model. Two add-ons accounting for wall effects are tested, namely,
the Launder-Shima low-Reynolds-number model and the compressible wall-function
technique. Results are reported for flow over a flat plate, both adiabatic-wall and
cooled-wall cases. It has been found that further improvements of the existing
models are necessary to achieve accurate prediction in high Mach number flow
range,

1. Motivation and objectives

It has been reported that Reynolds-stress models yield marked improvements in
predicting a range of complex incompressible turbulent flows over models based
on the conventional eddy-viscosity concept. This experience has encouraged the
extension of the models to turbulent flows with strong shock/boundary-layer in-
teraction. Dimitriadis and Leschziner (1990) have implemented an algebraic stress
model with the Cell-Vortex scheme. Vandromme et al. (1983) and HaMinh et
al. (1985) solved a complete Reynolds stress model employing the implicit /explicit
MacCormack scheme.

While these Reynolds stress models offer a direct extraction of stress quantities
without additional approximations, the models are numerically unstable. This is
partly due to their highly non-linear and coupled nature and partly due to the lack
of turbulent viscosity in the momentum equations as can be found in eddy-viscosity
models. As a result, a numerical stabilizing strategy is often required to secure
a solution. A major effect in this phase of the study has been focused on these
numerical issues.

Calculations based on two variants of the Launder, Reece and Rodi Reynolds-
stress model (1975) will be reported: one uses the wall function technique and the
other is the low-Reynolds-number extension of Launder and Shima (1989). The
former uses the law of the wall to bridge the region between the fully turbulent
zone and the wall, while the latter allows a direct integration of all quantities to
the wall. While the extension of the low Reynolds number model to compressible
flow calculations is straightforward, the use of the wall-function technique requires
special attention for the compressible law of the wall and the viscous heat generation
inside the near-wall layer need to be taken into account.

Results reported in this study are limited only to flow over a flat plate. The Mach
number ranges from 2 to 8 for insulated wall; the Mach number is fixed at 5 for
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the cold-wall cases, and the wall temperature varies from 20 to 100 percent of the
adiabatic wall temperature.

2. Turbulence models

2.1. Reynolds-stress equations

The turbulence model used here is the high-Reynolds-number Reynolds stress
model of Launder, Reece and Rodi (1975). The transport equation for pu;; is

Dpuiw;

-"':D—t{ — Dij = Pij + i — peij (1)

The convective and the generation terms, Dpu;u;/ Dt and

oU; oU;
Pij=—p (u,'ukai + ujukéa:—k) (2)

are exact and require no approximation. The diffusion term is represented by the
generalized gradient diffusion hypothesis;

0 k ouin;
D;; = Bor [(CkP:u;'ﬂrj + #6H) o2, ]

The pressure-strain correlation ®;; is modeled according to Gibson and Launder
(1978) to be composed of three processes, namely, Rotta, rapid, and wall-echo
terms;

(3)

®i; = Bij1 + Bij2 + Pijw (4)

In equation (4)
®;;1 = —c1peaij (5)
Bij2 = —ez (Pij — 2/36:; Py) (6)

where P = 1/2P; and a;; is the dimensionless anisotropic part of the Reynolds

stress,
Wiy

aij = — =~ — 2/38;; (7)

The wall-echo term arises from the reflection of pressure fluctuation from the rigid
wall and contains contributions from turbulent and mean strains;

Bijw = Puwiyij + Puz,ij (8)
where
€ g
Bo1,ij = c]wpz(uwmnknm&j — 3/2urminin; — 3/ 2uxu;nwn:) f (9)

and
¢
Pu2,ij = CszE(‘I’km,znkﬂmsij —3/2®; 2nin; — 3/2®p;j2mini) f (10)
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The wall damping function, f, is taken as 0.4k*/2 /ey,, y, being the distance normal
to the wall. Finally, dissipation is assumed isotropic,

€ij = 2/35553' (11)

The turbulence energy dissipation rate is governed by solving

Dpe 7] k Oe € pe?

s i Do 4 i) OF i, . A L

Dt~ 3z, [(cepeukuz +p u) Bw;} teapPe—ca (12)
The suggested constants are (Launder and Gibson, 1978):
€1 C2 Cilw C2w Ck Ce Cel Ce2
1.8 0.6 0.5 0.18 0.22 0.18 1.44 1.92

Launder and Shima (1989) have extended (1) to the viscous sub-layer. The
basic ingredient is to introduce three dimensionless parameters to modify the model
constants. The dimensionless parameters are the turbulent Reynolds number, R; =
k% /ve, and the second and the third invariants of the stress tensor,

II = ajjaj; (13)

and
IIT = a;rapjaj; (14)

After systematic tuning, the following modifications to the constants are recom-
mended;

e1=1+42.58 AII'* [1 — exp (—(0.0067R,)?)] (15)

cz = 0.754/? (16)

1w = —2/3¢1 + 1.67 (17)

caw = 2/3(c; — 1) + 0.5 (18)

cer = 1.45 + 2.5A( Py /e — 1) + 0.3(1 — 0.31I)exp[—(0.002R,)?] (19)
ce2 =1.9 (20)

where A =1 — 9/8(11 — III)
Furthermore, in order to prevent the sink term of (12) going near to infinity as
the wall is approached, the term is modified according to

ok1/? 2
€e—2v ( 3y ) :| (21)
where ¢ vanishes at the wall.

It should be noted that in the high-Reynolds-number region, the constants pro-
vided by Launder and Shima do not revert to those recommended by Launder and
Gibson.

3
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2.8. Heat-fluz equations

In addition to the stress equations, the heat flux equations are needed in compress-
ible flow calculations. The following assumptions are made to obtain the heat-flux
equations:

(1) Following the ASM local-equilibrium assumption, the transport terms are
neglected.

(2) The fine scale dissipative motion is assumed to be isotropic, ®,— , = 0.

(3) The wall influence on the pressure-temperature-gradient interaction is as-
sumed insignificant.

The heat-flux equations yield:

P+ @ =0 (22)

The generation PW is exact and contains two parts, the stress-temperature-
gradient and the heat-flux-strain interactions.

I u; T =1 u;T',1 + 1 T2 (23)
where
or
jul.Tl'l = _ukuia_k (24)
——0U;
P, vl
u;T",2 —Uk sz (25)

The pressure-temperature-gradient interaction is modeled to comprise two terms
(Launder and Gibson, 1978):

o=t (26)

where ¢
oy = _clT}c‘“iT' (27)
o = —arPp, (28)

The constants recommended are er; = 3 and ¢ = 0.5. These constants are
used in Reynolds stress calculations employing wall functions.

In the present study, however, it was found that, with ¢y = 3.19 and ez = 0, the
Launder-Shima model provides a better recovery factor for flow over an adiabatic
flat plate. This set of constants is thus used for low-Reynolds-number calculations.
It is noted that this set of constants is in accord with the one suggested by HaMinh
et al. (1985).

2.8. Wall functions

The present wall functions follow closely the approach suggested by Bradshaw
(1977) and independently by Viegas and Rubesin (1985). For compressible flows,
the law of the wall can be expressed as

Ue _ _1 (“"y

Ur

€ (29)
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where U, is a pseudo-velocity representing the Van-Driest transformation and can
be shown to have the following form:

E=l{m—l[R(U/“T“LH)]_M—I[ 2 ]} (30)

%, R (C1 + RZH?)1/2 (C1 + REH?)1/2
where ' » 2
R=u, ( ch’;w) (31)
qlf
Bt o

The constant €' and C; recommended by Bradshaw (1977) are:

C = 5.2+ 95M] + 30.7B, + 226 B2 (34)
Cr =1 (33)
where
a5 a5
P et )
M, ==~ (36)

cy and gy, are the speed of sound and the rate of heat transfer at the wall. The
turbulent Prandtl number, Pr;, is fixed at 0.9 for all calculations.
The heat transfer from the wall to the first finite-volume cell (where y+ ~ 30) is
calculated according to:
97 = qu + UnTw (37)

where U, represents the velocity mid-way between the first grid point and the wall.
The production of Reynolds stresses is modified in the near-wall layer according
to

ou 1 % 9@ U
—pUT— R~ ——-/ iy s e (38)
ay Yev Jo 33! Yev
where subscript cv indicates the position of control-volume face between the point
adjacent to the wall and the one above it.
The average € over the near-wall cell is approximated as:

3/4 k32 +
g Po# B Ve (39)
Yev
Finally € at the point adjacent to the wall, 2, is prescribed as;
k312 3/
€ = kot ML (40)

KY2



SKIN FRICTION ON AN ADIABATIC FLAT PLATE
VANDRIEST TRANSFORMATION, LAUNDER-SHIMA TURBULENCE MODEL
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SKIN FRICTION ON AN ADIABATIC FLAT PLATE
VANDRIEST TRANSFORMATION, LAUNDER—-GIBSON + WALL PUNCTIONS TURBULENCE MODEL
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FIGURE 1. Generalization of adiabatic-wall skin friction, Cy vs. Rey, (a) L-S, (b)
L-G.
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3. Numerical method

Although the differential equations are expressed in Cartesian coordinates, the
code implemented solves the complete 2-D Navier-Stokes’ equations in non-ortho-
gonal curvilinear mesh, plane and axisymmetric geometries. All dependent variables
are stored at the center of the control-volume cell and a finite-volume principle is
applied to impose conservation across the control-volume faces.

TVD schemes are used to discretize the convective terms (Huang, 1989) while the
center differencing scheme is used for the diffusive terms. The numerical diffusion
provided by the TVD schemes can, on the one hand, prevent unrealistic oscillation
in regions where gradient of the dependent variable is high, and on the other hand,
offer an “optimum” artificial diffusion to stabilize the calculation.

The numerical algorithm is implicit and is based on a symmetric Gauss-Seidel
line-by-line relaxation method, which combines features derived from Gnoffo (1986)
and MacCormack (1985). This method, coupled with implicit treatments of the
boundary conditions, has been found to provide a rapid acceleration of solution, for
it allows a large value of Courant number to be used in the calculation.

4. Accomplishments

Attention is confined in this section to computations of flow over a flat plate:
insulated-wall and cooled-wall cases.} Comparisons are made with the Van Driest
IT theory, which has been found to provide good agreements with the available
experimental data (Hopkins and Inouye, 1971).

Figures 1(a) and 1(b) show variations of the adiabatic-wall skin friction with
Reg, obtained from the Launder-Shima model (L-S) and the Launder-Gibson-wall-
function model (L-G), respectively. The Van Driest II theory is used to deduce
the incompressible results from the compressible calculations. The solid line is
the Karmén-Schoenherr formula, and the symbols represent results obtained from
calculations. The results have shown that L-S returns an incorrect slope of the
skin friction variation, reflecting a poor prediction of the skin friction at high Mach
number, shown in Figure 2(a). In contrast, L-G results in a correct slope of the skin
friction variation while the predicted values are slightly lower than the experimental
correlation, as depicted in Figure 2(b).

The skin friction profiles on a non-adiabatic plate at Mach number equal to 5 are
shown in Figure 3. Again, the Van Driest II formula is used to scale all predicted
data to the incompressible one. For calculations based on T, equal to adiabatic
wall temperature, T, both L-S and L-G return results similar to those shown in
Figure 1.

As shown in Figure 3(a), L-S still displays the same incorrect slope of skin friction
profile, resulting in a better skin friction prediction at low T,,. While Figure 4(a)
shows that L-S provides a good prediction for Ty, /T, = 0.2, it should be noted
that the experimental data does not seem to support the Van Driest II theory for
region where Ty, /T4y < 0.3. The failure of L-S can also be depicted in Figure 5(a)

T Some of these results are presented in a recent paper by Coakley et al. (1990)
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EFFECT OF MACH NUMBER ON ADIABATIC SKIN FRICTION ON A FLAT PLATE
VANDRIEST TRANSFORMATION, LAUNDER—SHIMA TURBULENCE MODEL
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EFFECT OF MACH NUMBER ON ADIABATIC SKIN FRICTION ON A FLAT PLATE
VANDRIEST TRANSFORMATION, LAUNDER-GIBSON + WALL FUNCTION TURBULENCE MODEL
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FIGURE 2. Effect of Mach number on adiabatic-wall skin friction,(a) L-S, (b) L-G.
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SKIN FRICTION ON A NON—ADIABATIC FLAT PLATE AT MACH NO. =5
VAN DRIEST TRANSFORMATION, LAUNDER-SHIMA TURBULENCE MODEL
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FIGURE 3. Generalization of non-adiabatic-wall skin friction, Cy vs. Rey, (a) L-S,
(b) L-G.
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WALL TEMPERATURE EFFECT ON SKIN FRICTION, FLAT PLATE, M=5
LAUNDER-SHIMA TURBULENCE MODEL,THEORY(RECOVERY PACTOR=0.9)
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WALL TEMPERATURE EFFECT ON SKIN FRICTION, FLAT PLATE, M=5
LAUNDER—-GIBSON + WALL FUNCTION TURBULENCE MODEL,THEORY(RECOVERY FACTOR=0.9)
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FIGURE 4. Wall temperature effect on skin friction at M =5, (a) L-S, () L-G.
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WALL TEMPERATURE EFFECT ON STANTON NUMBER, FLAT PLATE, M=5
LAUNDER-SHIMA MODEL,THEORY(RECOVERY FACTOR=0.9, REYNOLDS ANALOGY FACTOR=1.0)
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FIGURE 5. Wall temperature effect on Stanton number at M = 5, (a) L-S, (b)
L-G.
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where Stanton number are compared in a manner analogous to the skin friction
shown in Figure 4(a). The theoretical Stanton number, (Ch)ihe, is obtained by
assuming a recovery factor of 0.9 and a Reynolds analog factor of 1.0. It can be
found that Stanton number prediction does not agree well with the experimental
data. The experimental data shows a positive slope across the theoretical line while
the prediction displays a negative slope.

In contrast, L-G tends to under-predict the skin friction and the Stanton number
at low wall temperature, showing a departure of the predicted values away from the
theoretical ones as the wall temperature decreases. This observation has suggested
that improvements of the wall functions for non-adiabatic flows are needed.

5. Future plans

(1) Improve the Launder-Shima model for high Mach number flow.

(2) Consider the FRAME model (HaMinh et al., 1985), which has been found to
offer excellent agreements in predicting the above-mentioned flow (Coakley et al.,
1990).

(3) Modify the wall functions to predict flow in non-adiabatic conditions.

(4) Extend the Reynolds Stress models to complex hypersonic flows.

REFERENCES

BRADsSHAW, P. 1977 Compressible turbulent shear layers. Ann. Rev. Fluid Mech.
9, 33-54.

Coakiey, T. J., ViEcas, J. R., Hvuang, P. G. & RuBesIN, M. W. 1990
An assessment and application of turbulence models for hypersonic flows. 9th
National Aero-Space Plane Technology Sym.. 106, Orlando, Florida.

DIMITRIADIS, K. P.& LESCHZINER, M. A. 1990 Modeling shock/turbulent-bound-
ary-layer interaction with a cell-vortex scheme and second-moment closure. 12th
Int. Conf. on Num. Meths. in Fluid Dynamics, Oxford, England.

GiBsoN, M. M.& LAUNDER, B. E. 1978 Ground effects on pressure fluctuation
in the atmospheric boundary layer. J. Fluid Mech. 86, 491-511.

GnorFFo, P. A. 1986 Application of program Laura to three dimensional AOTV
flow fields. ATAA-86-0565. 24th Aerospace Sciences Meeting, Reno, NV.

HAMINH H., RUBESIN, M.W., VANDROMME, D. & ViEGAs, J. R. 1985 On the
use of second order closure modeling for the prediction of turbulence boundary
layer/shock wave interaction: physical and numerical aspects. Int. Sym. on
Computational Fluid Dynamics, Tokyo, Japan.

HopPkiINns, E.& INOUYE, M. 1971 An evaluation of theories for predicting turbulent

skin friction and heat transfer on flat plates at supersonic and hypersonic Mach
numbers. AIAA J. 9, 6, 993-1003.

Huang, P. G. 1989 A numerical method for prediction of compressible turbulent
flows with closure models. Annual Research Briefs - 1989. Center for Turbu-
lence Research, 185-193.



Modeling hypersonic boundafy-layer flows 89

LAUNDER, B. E., REECE, G. J. & Robp1, W. 1975 Progress in the development
of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537-566.

LAUNDER, B. E. & SHIMA, N. 1989 Second-moment closure for the near-wall
sublayer: development and application. ATAA J. 27, 10, 1319-1325.

MacCorMACK, R. W. 1985 Current status of numerical solutions of the Navier-
Stokes equations. ATAA-85-0082. 23rd Aerospace Sciences Meeting, Reno, NV

VANDROMME, D., HAMINH, H., VIEGAS, J. R., RUBESIN, M. W. & KOLLMANN,
W. 1983 Second order closure for the calculation of compressible wall bounded
flows with an implicit Navier-Stokes solver. 4th Sym. on Turbulent Shear Flows,
Karlsruhe, Germany.

VIEGAS, J. R. & RUBESIN, M. W. 1985 On the use of wall-functions as boundary
conditions for two-dimensional separated compressible flows. AI4AA-85-0180.
23rd Aerospace Sciences Meeting, Reno, NV.



