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A dynamical systems analysis of the
kinematics of time-periodic vortex
shedding past a circular cylinder

By J. M. Ottino?!

Computer flow simulation aided by dynamical systems analysis is used to in-
vestigate the kinematics of time-periodic vortex shedding past a two-dimensional
circular cylinder in the context of the following general questions: Is a dynamical
systems viewpoint useful in the understanding of this and similar problems involv-
ing time-periodic shedding behind bluff bodies? Is it indeed possible, by adopting
such a point of view, to complement previous analyses or to understand kinematical
aspects of the vortex shedding process that somehow remained hidden in previous
approaches? We argue that the answers to these questions are positive. What
follows is the result of a collaborative work with K. Shariff from NASA-Ames.

We find that several kinematical aspects of the problem become clear when viewed
in terms of dynamical systems concepts such as periodic points and their associ-
ated manifolds. The flow is shown to produce transversal heteroclinic and ho-
moclinic intersections, and it is, therefore, mathematically chaotic; these findings
easily translate into an understanding of the transport mechanisms operating in
the flow. The analysis relies on the identification of two classes of periodic points:
(i) parabolic periodic points associated with separating and attaching pathlines,
which produce unstable and stable manifolds that are associated with zero time-
averaged wall shear, and (ii) a period-one hyperbolic point located in the wake
itself. Stretching and transport are largely dominated by manifolds belonging to
period-one parabolic points attached to the cylinder and a period-one hyperbolic
point in the wake. Computed manifolds agree well with experimentally obtained
streaklines and give a good indication of the regions of maximum and minimum
stretch. Passive tracers are deformed in such a way that they approximate the
regions traced out by unstable manifolds, the fluid filaments that stretch the most
originate from near the stable manifolds and are initially oriented normal to them..

1. Setting .

The understanding of the flow behind a cylinder is important in fluid mechanics
and transport processes from both theoretical and applied viewpoints. However, in
spite of numerous studies, it is apparent that there are still a few basic points that
deserve some clarification and that new approaches should probably be examined.
One such possibility is the application of dynamical systems tools which have proved
useful in the analysis of chaotic advection and mixing (for a review see Ottino 1990).
Such a viewpoint does not seem to have been used in the context of wake flows.
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Let us review a few of the most important experimental results. Consider a
circular cylinder with diameter D placed in a stream of fluid moving with uniform
speed U in the z-direction. -For R, = pUD/p << 1, the flow is symmetric with
respect to both the z-axis and the y-axis; as the R, increases, the flow loses y-
symmetry, and two attached eddies form behind the cylinder which grow in size
with increasing R, until, at R. ~ 40, the flow ceases to be steady and becomes
time-periodic. Dye injection experiments show that when R. ~ 100 eddies are
shed periodically from the top and bottom part of the cylinder, all the vortices .
originating from the top rotate in one direction; all the vortices originating from
the bottom rotate in the opposite direction while the whole pattern of vortices
travels downstream but with a speed smaller than U. As R, is increased above 200
or so, the flow develops three-dimensionality, time-periodicity is lost, and the flow
ultimately produces a turbulent wake (see figures 40-48 in van Dyke, 1982).

Computations have been able to mimic several of these findings (a recent and
fairly complete analysis is given by Eaton 1987). However, it is apparent that a few
points remain imperfectly understood and that there is a need for further studies.
For example, until rather recently, there seemed fo be questions regarding the topol-
ogy of the streamlines and the implications on transport in the time-periodic vortex
shedding regime. In a recent work, Perry, Chong & Lim (1982} tried to get insight
into the transport process by studying streamline patterns at various phases. They
argued that once the vortex shedding process begins, instantaneous “alleyways” of
fluid are formed which penetrate the cavity, Even though they acknowledged that
the relationship between instantaneous streamlines and streaklines is far from triv-
ial, they nevertheless put forward a picture of the folding of a sheet of dye in the
Kirmén vortex street in terms of a thought provoking “threading” diagram (figure
8 of their paper), which looks, to someone trained in dynamical systems, very much
like a portrait of a manifold.

It was, in fact, this threading diagram that prompted us to pose the following
question: Can we use dynamical systems tools to understand, reveal, or at least
rationalize known or new aspects of the vortex shedding mechanism? We are of
the opinion that the answer to this question is affirmative and that a dynamical
systems approach provides a complementary viewpoint to previous analysis for the
analysis of the shedding process. In order to apply these tools, we need first to
numerically simulate the velocity field. Such simulations were carried at NASA-
Ames by K. Shariff. The numerical method used was ARC2D (Pulliam 1985), and
the Mach number was 0.1 in all cases. The computational analysis was restricted to
80 < Rep < 180, and the results show good agreement between the computational
simulations and available experimental results such as vortex shedding frequencies as
a function of the Reynolds number (Williamson 1989) and streakline experiments.
The structure of the instantaneous streamlines agrees, in general, with previous
observations: separation bubbles grow and decay, and the topology of the velocity
field allows for the formation of open “alleyways” for transport of fluid. However,
we find also that separation bubbles achieve a minimum size and do not disappear,
that there are small secondary bubbles which periodically merge with the primary
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bubbles, and that the instantaneous streamlines have at most one saddle point and
sometimes they have none,

Once the velocity field is obtained, the analysis proceeds along the following
points: (i) establishing the existence and location periodic points; (i) determining
the character of the periodic points; (iii) computing their associated manifolds and
possible intersections. The analysis is conducted over a range of Reynolds numbers
to study local and global bifurcations (changes in the character of periodic points
and changes in intersections of manifolds, respectively; this program program of
analysis is, in fact, very similar to that proposed for the analysis of other chaotic
flows; see Table 7.1 in Ottino 1989). In our particular case, the key point resides
in establishing the fact that there is a period-one hyperbolic point in the wake
flow and that manifolds belonging to different periodic points produce transversal
intersections.

2. Dynamical systems background

Consider a two-dimensional volume preserving time-periodic velocity field, i.e.
defdt = u(z,y,1), (la)

dy/dt = v(m,y,tj, (18)

with 8u/8z+08v/8y = 0 and u(z,y,t) = u(z,y,t+7T),v(z,y,t) = v(z,y,t+T). The
fixed points (or critical points) of the system (1a, b) correspond to the condition
= v =0, and as is well known, due to incompressibility, only saddles and centers
are possible. In our case, however, we do not deal with the velocity field itself but
rather with its associated “flow” or “motion”, that is, the solution of (1a, b) for all
possible initial conditions (zo,y0). The flow is typically written as

2(t) = 3¢(su), (2)

and indicates that the initial condition z¢ = (z¢,y) is found at position z = (z,v)
at time ¢. However, since the velocity field (1a, b) is time-periodic, it is sometimes
more convenient to deal with a map describing the state of the system at times
T,2T,3T,...,nT. This is usually written as

Tn = f(mn—l)y (3(1)

or, equivalently,
' &, = f*(zp). (3b)

Flows and maps have fixed points and periodic points. Thus, P is a fized point
of the flow & = ®,(zp) if

P=&,P) (4)
for all times ¢ . On the other hand, P is designed as a periodic point of period T if
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P=&,(P) but & (P)#P for i<, (5)

i.e. the material particle that happened to be at the position P at that time ¢ =0
will be located in exactly the same spatial position precisely after a time nT'

The definitions for mappings (3a, b) are similar. A point P is a fized point of the
mapping f(-) if a

P =f"(P) for all n, (6)
on the other hand, we say that P is a periodic point of order n of the map f(:)if

P=fYP) but f™(P)#P forany m<mn, ()

i.e. the particle initially located at P returns to its initial location after exactly n
iterations [It is important to note that, in general, a fixed point of a flow and its
corresponding mapping are in general not the same, and in general, the fixed point
of a mapping corresponds to a periodic point of the flow.]

Fixed and periodic points of area-preserving maps and flows can be classified as
hyperbolic, elliptic, or parabolic, according to the eigenvalues A, and Ay of the flow
in the neighborhood of the periodic point.

A1) > 1> A2, Aidz =1, hyperbolic
Al =1 (k=1,2) buthp #1, elliptic
Ay = +1 (k=1,2), parabolic.

The associated physical picture is as follows. A small circle surrounding an elliptic
point returns to its original position and undergoes a net rotation; within periods,
there is a periodic stretching and compression as well. On the other hand, a circle
enclosing a hyperbolic point returns to its initial location stretched in one direction
by an amount A; and compressed in the other by 1/)y; since the process is repetitive,
this leads to outflow in one direction and inflow in the other. Finally, the parabolic
case corresponds to simple shear.

In the case of hyperbolic points, the linearization captures the essential behavior
of the full nonlinear system (Hartmann-Grobman theorem, see Guckenheimer &
Holmes 1983, p. 13). Hyperbolic points have associated invariant sets called the
stable [W*(P)] and unstable [W*(P)] manifolds defined as

W*(P) = {all 2o € R? s.t. ®4(mo) > P as t > oo} (8a)
WH(P) = {all zg € R? s.t. ®(zxq) = P as t — oo}, (8b)

which are tangent to the eigendirections, §; and {3, of the linearized problem in the
neighborhood of P (the definitions for maps are entirely similar).

Manifolds admit a physical interpretation; for example, the unstable manifold
corresponds to region of fluid traced by a blob of fluid injected at the periodic point



Kinematics of time-periodic vortez shedding past a circular cylinder 125

or to the streakline traced by a dye injected with an injection apparatus that moves
as a whole with the periodic point (see figure 5.8.3 in Ottino 1989). It should be
noted as well that in general, manifolds move in time. If observations, however, are
made at the period of the hyperbolic point, the manifold remains motionless.

By definition, manifolds are invariant; particles zo belonging to W*(P) and
W*(P) do so permanently and cannot escape from them. A point belonging si-
multaneously to both the stable and unstable manifolds of two different fixed {or
periodic) points P and Q is called a transverse heteroclinic point. H P = (, the
point is called homoclinic. One intersection implies infinitely many and implies
sensitivity to initial conditions. This is one of the fingerprints of chaos, and it is
entirely equivalent to the formation of what is called a horseshoe map (Smale 1967,
Moser 1973).

The definition of stable and unstable manifolds can be extended to parabolic
points. In this case, however, as opposed to the case of hyperbolic points, the
linearized flow fails to capture the essential aspects of the nonlinear system. In
general, much less is known about this case in spite of its importance in transport
processes near solid walls (see for example, Danielson & Ottino 1990, Camassa &
Wiggins 1990).

The separation point point corresponds to a change of sign in the vorticity,
Ou/8y = 0, but it is evident that a linear expansion is unable to reveal this fact. A
second order expansion about a point z = zy,3 = 0 at a no-slip wall gives

v = A2y + 24112(% — o)y + A122° (9a)
V= —A112y2, (98)
where the coefficients
Axz = (81/0Y)zq0,y01 (10a)
Anz = (1/2)(8%w/828Yy)aq 40, (108)
Arzz = (1/2)(32u/3y2)zu,yo: (10c)

are, in general, functions of time which can obtained by forcing the expansion to
satisfy the Navier-Stokes equations and suitable boundary conditions. The vorticity
at the wall is given by

wly=0 = [Ov/8z — Bu/By]y=9 = —[24112(2 — =) + A12], (11)

and the condition for w = 0 is met at
2y — @ = —A12/24113. (12)

In general, the separation point z, moves as a function of time, If 455 < 0, z,
corresponds to a point of separation and if A;y; > 0, z, corresponds to a point
of attachment. The angle of separation is given by tan® = 3u(8w/8z)/(8p/8x)
where p is the viscosity and p is the pressure (Oswatitsch 1958, Lighthill 1963). In
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terms of the coefficients of the expansion (9), tan® = —3Ay12/A122. In this case,
the manifold can be obtained by placing a blob at z = z,,y = 0. These results
for steady flow may be generalized to time-periodic flow, and this will be discussed
elsewhere (Shariff, Pulliam & Ottino, 1990).

3. Periodic points and manifolds

The entire wall of the cylinder consists of parabolic points, and the points of
special interest are those corresponding to a change of sign in time-averaged shear
stress, i.e. separation and attachment points of the time-averaged flow. It can be
shown that manifolds emanate from such points. There is as well a periodic point in
the wake itself; this is a period-one hyperbolic point. It is important to stress that
this point is completely unrelated to the critical points in the velocity field itself.
An important difference is that periodic points do not disappear; on the other hand,
critical points in the velocity field itself can appear or disappear as the topology of
the streamlines changes in time.

>

FIGURE 1. Qualitative picture of intersections between stable and unstable man-
ifolds in the time-shedding regime. : ‘

Stable and unstable manifolds can produce heteroclinic and homoclinic intersec-
tions. In this particular flow, four types of transversal intersections are possible:
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(a) Re= 100

(b) Re= 100

FIGURE 2. Intersections between unstable manifolds associated with (parabolic)
separation points attached to the cylinder (denoted P) and stable manifolds as-
sociated with a hyperbolic points (denoted H) at Re=100; (a) manifold structure

corresponding to the upper wake, (b) manifold structure corresponding to the lower
wake, '
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heteroclinic intersections are produced by intersections of stable manifolds of the
period-one hyperbolic with unstable manifolds of the periodic points attached to
the cylinder as well as by unstable manifolds of the hyperbolic point intersecting
the stable manifolds attached to the surface of the cylinder, homoclinic intersec-
tions are produced by crossings of stable and unstable manifolds belonging to the
hyperbolic point as well as those of parabolic points attached to the cylinder. The
complete manifold picture of the system is, however, more complex since there are
additional period-one hyperbolic points close to the surface of the cylinder as well
as higher order periodic points; they, however, seem to contribute much less to the
gross aspects of the transport in the flow.

The manifold structures of the periodic points described in the previous sections
results in the qualitative picture shown in figure 1 {the picture has been deformed,
without changing topology, to improve clarity). Such a picture is characteristic of
chaotic systems and contains information regarding transport of material in the
flow (Rom-Kedar, Leonard & Wiggins 1990). Figure 2 shows computed pictures
corresponding to R, = 100, whereas figure 3 shows the changes in structure at
R, = 180. For the sake of clarity, figures 2(a) and 3(a) show the manifold structure
corresponding to the upper wake; figures 2(b) and 3(b) show the manifold structure
corresponding to the lower wake.

The manifold structure of figures 2 and 3 provides a template for stretching and
transport and provides a qualitative picture for the stretching and folding of a
streakline in the wake. Previous work suggests that dye patterns are well repre-
sented by the unstable manifolds belonging to low order hyperbolic periodic points
(Swanson & Ottino 1990, Shariff 1989). This expectation is confirmed in the present
work, and unstable manifolds associated with low order periodic points provide an
excellent template for the study of evolution of stretching in the flow; most of the
stretching originates from regions in the neighborhood of the stable manifold, and
the orientations corresponding to the maximum stretch are oriented normal to the
manifold. :

Another quantity of kinematical interest is the stretching history, Vv : mm,
following a fluid element, which is related to the Lyapunov exponents (Khakhar
& Ottino 1986). This quantity enters in the convection diffusion equation which
governs the molecular diffusion of the dye comprising the streakline (Ottino 1989,
p. 276). Regions with large values of Vv : mm correspond to large stretching
along m, which tends to minimize the spread of molecular diffusion normal to the
streaklines but at the same time tends to make the streakline less visible since the
thickness of the dye streak is significantly reduced. On the other hand, low or
negative values of Vo : mm blur the picture. Such a situation arises near the tip
of folds since as the dye folds there is a change of sign of D : mm. A comparison
of computational results and experiments shows that it is precisely in these regions
where molecular diffusion effects become important. ‘Another quantity of interest
for which experiments are available is the computation of distribution of residence
times of fuid elements behind the cylinder. A detailed presentation of all the above
results is in preparation (Shariff, Pulliam & Ottino, 1990).
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(a) Re= 180
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FIGURE 3. Intersections between unstable manifolds associated with (parabolic)
separation points attached to the cylinder (denoted P) and stable manifolds as-
sociated with a hyperbolic points (denoted H) at Re=180; (a) manifold structure

corresponding to the upper wake, (b} manifold structure corresponding to the lower
wake.
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