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Automated pattern eduction
from turbulent flow diagnostics

By Derek Stretch

The development of an automated technique for the eduction of 3-D spatial pat-
terns in vector or scalar diagnostics has been completed. The method is based on an
iterative convolution between a trial pattern and the data field. It has been applied
to the analysis of low Reynolds number turbulent channel flow and homogeneous
shear flow. The results have yielded new information on the dominant flow strue-
tures in these flows, particularly with respect to the spatial relationships between
various forms of organized motion. A particular application of the pattern eduction
method, which we tentatively refer to as an “adaptive wavelet transformation”, is
proposed with the objective of investigating the way turbulence structure changes
with scale. Preliminary results using data from homogeneous turbulent shear flow
simulations are presented. At the low Reynolds numbers of the simulations, there
is no evidence of scale similarity. The small scales appear to be associated with the
edges of the larger scale vortical structures.

1. Objectives

A notable consequence of the recent application of powerful computers to the
simulation of turbulent flows is the vast amount of data which has, and contin-
ues to be, generated. Reliable automated diagnostic tools are needed to assist in
interrogating these data bases.

The pattern analysis technique developed in the present study is a simple and
flexible diagnostic tool for the analysis of complex data fields. The procedure is
an extension of that developed by Townsend (1979) and Mumford (1982) (see also
Ferre and Giralt , 1989a,b). It is based on an iterative convolution between the
data and a reference pattern. Details of our implementation are given elsewhere
(Stretch, 1989 ; Stretch, Kim and Britter, 1990). Each iteration of the procedure
yields an ensemble-averaged pattern which has an improved mean cross-correlation
with the instantaneous patterns in the data. Major inputs required for each pattern
analysis are the choice of flow diagnostic, the scale of the patterns, and the choice
of pattern used to initialize the iterations.

In broad terms, the basic objective of the pattern eduction approach is to educe
statistically significant spatial organization(s) of specified flow diagnostic(s). The
terminology “statistically significant” is meant to imply that the patterns occur fre-
quently, relative to other possible spatial organizations of the diagnostic in question.

Some of the issues which we wished to address using this diagnostic tool were as
follows. Firstly, what are the structures educed by this method for turbulent chan-
nel flow, and how do they relate to results obtained previously using conditional
sampling (stochastic estimation), orthogonal decomposition, and flow visualization?
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How are the various turbulence structures which have been reported spatially re-
lated to one another? How “coherent” are the turbulence structures? That is, given
a representation of a structure, such as an ensemble average, how much variation
from this representation is typical for the actual instantaneous realizations? What
is the dynamical relevance of the organized structures in terms of their contribu-
tion to the turbulence kinetic energy, average Reynolds stress, and dissipation?
What can we say about the temporal evolution of the organized motions? What
mechanism(s) is responsible for their origin, and what are characteristic time scales
for their evolution? How do the characteristic turbulence structures change with
scale? At high enough Reynolds number, conventional wisdom suggests a regime
at large scales where the structures would reflect the large scale non-homogeneities
of the flow, followed at smaller scales by an inertial range of self-similar (possibly
isotropic) eddies and finally by a distinct dissipation range of structures. Of par-
ticular interest in this context is some knowledge of how the structures at different
scales are spatially organized with respect to one another. This information may
assist us in understanding how energy is transferred between scales in turbulence.
Since the present methodology deals with eddies in their physical space representa-
tion rather than a spectral (Fourier) representation, the interpretation of inter-scale
interactions and energy transfer may be simpler.

2. Outline of the pattern eduction method

Consider a turbulent flow which is sampled at time ¢ by some chosen diagnostic
field D(x,?). The field D may be a scalar or vector valued function of the position
vector x. It need not represent a complete description of the flow, nor need it
comprise the basic primitive dependant variables of velocity and pressure. For
example, the field D may simply comprise one or more components of the velocity
or vorticity vectors. Alternatively D may be a binary function reflecting a zonal
or topological classification of the flow such as proposed by Hunt and Wray (1989},
and Chong, Perry and Cantwell (1990).

Now we shall suppose that the field D comprises a set of discrete organized struc-
tures or eddies Ep(x — %p), p = 1,2,...m, sprinkled in space and centered around
reference positions x,. Note that by definition we expect E, to have locality in
space (compact spatial support) so that Ep(x — xp) — 0 for |x —xp|/l > 1 where !
is a characteristic length scale of the eddy. While in general there could be a distinct
independent eddy structure E, at each position xp, we shall suppose for simplicity
that each of the eddies may be described by a suitable transformation of a single
basic eddy function E(x). In general, the possible transformations could include
translation, rotation, and changes in the amplitude and length scales (dilation or
contraction) of the eddy function E. For the present purposes, we restrict ourselves
to translation and amplitude transformations. We shall later address scale changes
by a simple extension of the method. In order to locate the eddies embedded in a
field of random noise, we require a pattern recognition method which is invariant
with respect to changes in the position and amplitude of the patterns and is insen-
sitive to the noise. As discussed elsewhere (e.g. Duda and Hart, 1973}, a suitable
matching criterion is cross-correlation (or convolution). If one had prior knowledge
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of E, then simply carrying out a convolution between D and E should yield local
maxima at the pattern locations x,. In the present context, however, we are pri-
marily concerned with a situation where we do not have a priori information on the
characteristic eddy or eddies. This issue is resolved by using an iterative applica-
tion of convolution. At each iteration, the function E is updated by an ensemble
average of the data centered around the local maxima at x,. The iterative convolu-
tion procedure must, however, be initialized, and several different approaches have
been tested (see Stretch, 1989) with qualitatively consistent results obtained for all
cases. For the results presented in this report, randomly selected samples from the
data field D were used to initialize E. The random selection was performed using a
pseudo random number generator to select a reference position from which a sample
was extracted.

3. Application to low Reynolds number turbulent channel flow

The pattern eduction process has been applied to data from numerical simulations
of low Reynolds number (Reg = 287, §* = 180) turbulent channel flow (Kim, Moin
and Moser, 1987). Preliminary results using various scalar diagnostics are reported
in Stretch (1989). The outcome of an extensive series of analyses using a number
of different diagnostics is summarized schematically in figure 1. More detailed
quantitative results are given later.

High strass patch
Plan view

FIGURE 1. Sketch of the pattern educed for turbulent channel flow.

The ensemble-averaged structure educed from the data comprises attached eddies
spanning most of the channel half-width. Attached eddies of this type have been
proposed by Townsend (1976) and others. Note, however, that our results suggest
that the primary pairing (if any) of eddies with opposite sense of rotation (stream-
wise vorticity) is in the vertical rather than the spanwise direction. In figure 1, we
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have indicated how the present results unify a number of structural features which
have been previously documented by many investigators. In particular, we find that
near wall low (or high) speed streaks, shear layers, quasi-streamwise vortices, and
“pockets” of high wall stress are spatially related as indicated in the sketch. These
various structural elements are thus viewed as part of the same basic “coherent”
structure. Unlike the usual conditional sampling methods, the pattern eduction
approach does not rely on point-wise matching of velocity patterns or sampling
criteria based on thresholding. It is the similarity in spatial structure as measured
by the convolution (or cross-correlation) which is the basis of the pattern eduction.
The method is thus well suited to clarifying the spatial relationship between various
features of the flow.

The spatial distribution of the patterns in the data as determined by the positions
of the local maxima in the convolution between the ensemble average pattern and
the raw data is shown in figure 2. In this example, 70 patterns were located, which
collectively represents 70% of the data volume. The normalized cross-correlation
coeflicients between the ensemble-average pattern and the data were computed at
each of the positions indicated in figure 2. A histogram of these values is plotted in
figure 3. The mean value of the cross-correlations was R=04.
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FIGURE 2. Spatial distribution of the detected patterns.

The cross-correlation coefficients provide a useful objective measure of the mean-
ing of the word “coherent” in reference to the educed turbulence structure. We
shall, therefore, further clarify what the observed cross-correlations imply by giv-
ing examples of the actual instantaneous patterns detected in the data. Figure 4
shows an series of zy plane views of the ensemble averaged pattern educed using
the spanwise velocity component as the diagnostic. These results are qualitatively
representative of those obtained using various flow diagnostics.

It can be seen that the basic elements of the ensemble averaged structure are
attached eddies spanning the channel half-width, with two eddies (or vortices) with
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FIGURE 3. Histogram of cross-correlation coefficients.

opposite sense of rotation arranged one above the other as was depicted in figure
1. Also shown in figure 4 are two examples of “instantaneous” patterns as they
were located in the data: these patterns produced local maxima in the convolution
between the ensemble averaged pattern and the data. The magnitude of the cross
correlation was 0.4 in the one case and 0.7 in the other. These examples were
selected in order to represent a typical case as well as a special case where the
correlation was unusually high. It is clear from these examples that a correlation
coeflicient of 0.7, while a rare occurrence, implies a strong similarity between the
instantaneous patterns and the ensemble average. On the other hand, it appears
that about half the located patterns (as defined by the detection of a local maxima
in the convolution regardless of the magnitude of the maxima) which have cross-
correlations less than 0.4, do not strongly resemble the ensemble average. It would
be useful if objective measures such as these cross-correlations were more widely
reported in discussions of conditionally sampled data. Clearly, they suggest that a
good measure of caution is appropriate in using a single ensemble averaged result
to characterize the flow structure, even at the low Reynolds number of the flow
considered here.

Some further details of the educed patterns are shown in figures 5 and 6. The
attached eddies have a characteristic spanwise velocity signature in the zy plané
(fig 5), comprising elongated positive and negative (paired) regions extending from
the wall to the outer part of the flow. Examples of this pattern are common in
the instantaneous spanwise velocity field, as already noted in Stretch (1989). The
characteristic inclination angle between the attached eddies and the wall can be
deduced from figure 5: it increases from zero near the wall to about 40 degrees in
the outer part of the flow.

The streamwise velocity fluctuations in an zz plane near the wall (y* = 10)
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FIGURE 4. Example of the educed ensemble average pattern (center) shown
as velocity vectors projected onto zy planes (Azt = 200, Ayt = 150) at three
streamwise locations (Azt = 36). On the left is a sample of an instantaneous
pattern with a cross-correlation of 0.4, and on the right a sample with a correlation
of 0.7. Note that only the regions delineated by the dashed lines were used for the
pattern matching.

are shown in figure 6(a) and in an zy plane in figure 6(b). Near the wall, as
expected, the educed pattern in the streamwise velocity field comprises low and
high speed “streaks” (fig 6a). There is a lateral asymmetry (spanwise kinking)
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FIGURE 5. Spanwise velocity signature of the educed structure,

associated with the streaks, and this in turn is associated with a protruding shear
layer structure (fig 6b) which is typical of those obtained from previous conditional
sampling analyses. The attached eddies, which near the wall are quasi-streamwise
vortices, have a characteristic stress signature at the wall comprising a small scale
(Azt ~ 150, Az* =~ 50) region of high stress embedded within the more elongated
high speed streaks (fig 6a). This result indicates that the surface stress can be
a useful diagnostic for detecting the vortical structures nonintrusively by means
of their stress “footprints” at the wall. This observation could form the basis for
an active control strategy aimed at reducing the surface stress by modifying the
vortical structures.

There is an interesting question concerning the contribution of the educed pat-
terns to the flow kinematics. It is possible to use the pattern eduction procedure
to decompose the flow into a deterministic contribution from the eddies E and a
random “disorganized” background field. This can be achieved by performing a
deconvolution of the data D with the educed eddy E and simply setting all contri-
butions to zero except at the pattern locations x,. Subsequent convolution of this
truncated field with the eddy function B will produce a new data field compris-
ing only translation and amplitude transformations of the eddy function E. The
turbulence statistics of this eddy field may then be computed and compared with
that of the original data. Horizontally averaged second order statistics for a single
educed eddy function E are shown in figure 7 and compared with the turbulence
statistics for the full data field D. It is apparent from these results that a random
superposition of the educed eddies can indeed produce a velocity field with at least
second order statistics which reasonably approximate those of the original data.

The pattern analysis procedure has proven to be helpful in extracting kinematical
information from the turbulent flow fields. Our ultimate objective, however, is to
understand the detailed dynamics of the flow. Firstly, we would like to establish the
dynamical relevance of the educed flow structures by assessing their contribution to
turbulence production and dissipation processes. This has been done by comput-
ing ensemble averages, centered around the pattern locations, of the instantaneous
Reynolds stress and dissipation fields. For example, second and fourth quadrant
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FIGURE 6. Streamwise velocity signature of the educed structure in (a) zz plane
at yT = 10 and (b) zy plane.

Reynolds stress events, both with positive contributions to the average production
of turbulent kinetic energy, are located around the sides of the attached eddies (refer
fig 4). Most (in excess of T0%) of the turbulence production is associated with the
located patterns, but note that the precise proportion depends on the particular
pattern size used. For accurate assessment, it may be desirable {o use a more con-
strained definition for the occurrence of the structures. For example, a threshold
could be used for the cross-correlation coefficient.

A second important issue concerning the flow dynamics is the temporal evolution
of the educed structures. It is illuminating to start by estimating some of the
time scales involved. Focussing on the near-wall region, we shall consider three
time scales for the evolution of the attached eddies: an advection time scale (T3)
characterizing the effect of the mean flow, a rotation time scale (T;) characterizing
the angular velocity of the fluid elements in a plane perpendicular to the axis of
the eddy, and a viscous decay time scale (Ty) in a Lagrangian frame of reference
moving with the eddies. Estimates of these time scales can be obtained from the
ensemble average fields yielded by the pattern analysis. We estimate (Stretch et al,,
1990) that near the wall T} o 20, T;¥ ~ 60, and T =~ 200. Since T} is an order of
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FIcURE 7. Horizontally averaged second order velocity statistics for the educed
structure (a) compared with the statistics for the full flow field (b): v, u'; 0 , v';
x ,w

magnitude larger than Tj, the structures are essentially advected unchanged. The
vorticity associated with the eddies, as characterized by T, is expected to give rise
to a weak spiralling motion for the fluid elements, Note also that many cycles of
rotation are not expected in general, an observation which is consistent with flow
visualization experiments (Stretch and Britter, 1990).

The dynamical mechanism(s) responsible for the origin of the observed structures
remains a key unresolved issue. Any proposed mechanism(s) must be capable of
explaining the observed structures, but it should also be self-sustaining, Research
on this issue is currently underway at the Center for Turbulence Research.

4. Application to homogeneous turbulent shear flow

The pattern eduction procedure has also been applied to data from direct nu-
merical simulations of homogeneous turbulent shear flow (Rogers and Moin, 1987).
Some results of the analysis where the pattern matching was done for the vertical
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and spanwise velocity components are shown in figure 8. The 2y plane view of the
velocity vectors reveals a pair of vortices arranged one above the other, as for the
channel flow results. The contours of the spanwise velocity in a zy plane at the
center of the pattern show the characteristic inclined, paired features which are a
signature of inclined roller eddies. Further investigation of the spatial configura-
tion of the vortical structures has, however, indicated that in this case, there may
not be a strong preference for pairing in a particular arrangement e.g. vertically
as opposed to horizontally. The results in figure 8 are thus partly an artifact of
the ensemble averaging process. In fact, single unpaired vortices may be the most
common occurrence, although this remains unclear at this point.
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FIGURE 8. Pattern educed from homogeneous sheared turbulence: (a) velocity

vectors projected onto the zy plane at = = 0, (b) Contours of the spanwise velocity
component in a zy plane at z = 0.
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5. Application as an adaptive wavelet transform

It is apparent that the pattern analysis procedure developed in this study has
much in common with the so-called “wavelet transform” (see e.g. Meneveau, 1989
for a brief review). Each iteration of the pattern analysis can be viewed as a gen-
eralized form of wavelet transform at a particular scale, with the current ensemble
averaged patiern as the wavelet. This is an attractive choice of wavelet since it
represents actual eddies in the flow rather than being an arbitrarily chosen math-
ematical function. The iterations now have the interpretation of maximizing the
locality of the wavelet energy by using the local maxima in the convolution as ref-
erence positions for updating the wavelet (using an ensemble average of the data
around those positions).

In addition to information on the spatial distribution of the wavelet energy,
wavelet transforms have been used to provide information on the way energy is
distributed between different scales. This is achieved by successive dilation (or con-
traction) of the wavelet function between successive convolutions. A similar strategy
could, of course, be adopted in the present context using an educed eddy pattern as
the wavelet and doing repeated convolutions for different dilations or contractions
of this pattern. However, there is no a priori reason to assume that the pattern
educed at a given scale would also be obtained by applying the eduction procedure
at different (say smaller) scales. Note that the scale of the pattern is naturally set
by the specification of the size of the pattern domain and, hence, the spatial support
of the function (which is set to zero beyond this domain for doing the convolution).
In fact, it seems natural to allow the iterative pattern selection procedure to educe
a structure at different scales. Then the issue of scale similarity can be explicitly
tested, since we have allowed our wavelet to adapt to the scales being analyzed.
From the above it is clear why the terminology “adaptive wavelet transform” is an
appropriate description of this procedure.

Some preliminary results from application of this idea to the homogeneous tur-
bulent shear flow data have been obtained and are shown in figure 9. These may
be compared with the results presented in figure 8. It is apparent that at small
scales, the educed pattern comprises a jet/shear-layer. The orientation of the jet is
partly determined by the initial conditions for the pattern iterations, which in this
case was a random selection from the data. The important feature of this result,
however, is that if the velocity field is averaged in an extended region around the
located patterns, we see that the small scale jets/shear-layers are simply a part of
the larger scale vortices which were previously educed by the analysis. Therefore,
in this case, there is no scale similarity which emerges from the analysis procedure,
which is not surprising considering the low Reynolds number of the simulation.
It would certainly be interesting to apply this method to much higher Reynolds
number flows to see if a cascade of geometrically similar eddies does emerge from
the analysis, Development and testing of the “adaptive wavelet transform” is still
underway, including investigation of issues such as normalization procedures for the
educed wavelets/eddies.
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FIGURE 9. The eddy pattern educed from applying the “adaptive wavelet” method
to homogeneous turbulent shear flow. The flow pattern shown was educed using
the v and w velocity components on the scale of the shaded region : (a) velocity
vectors projected onto the zy plane at = 0, (b) Contours of the spanwise velocity
component in an zy plane at z = 0.

6. Summary

The diagnostic tool which has been developed in this study is conceptually simple
and yet provides a flexible means of interrogating complex data fields with the
purpose of extracting spatial organization of relevant diagnostics. It is implemented
using efficient spectral methods and is thus cheap computationally (all the analysis
in this study was done interactively on a VAX). While we have not yet discovered
any “new” structures using this approach, it has clarified the spatial relationship
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between various features of the turbulence and thus presented a unified view of
the turbulence structure. Furthermore, we have used the method to quantify the
“coherency” of the structures as they occur in the flow by using a cross-correlation
measure. We have proposed an extension of the method {or more particularly, in
the way the method is used) which we refer to as an “adaptive wavelet transform”
that can be used to examine issues of scale similarity, which is a widely used concept
in turbulence. This approach has potential for studying (in physical rather than
Fourier space) the way eddies or structures of different scales interact,
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