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On the origin of the streak
spacing in turbulent shear flows

By Fabian Waleffe

It is shown that the ideas of selective amplification and direct resonance, based on
linear theory, can not provide an explanation for the well-defined streak spacing of
about 100 wall units (referred to as 100% hereafter) in wall-bounded turbulent shear
flows. In addition, for the direct resonance theory, the streaks are created by the
non-linear self-interaction of the vertical velocity rather than of the directly forced
vertical vorticity. In view of the failure of these approaches, it is then proposed
that the selection mechanism must- be inherently non-linear and correspond to a
self-sustaining mechanism. The 100+ value should thus be considered as a critical
Reynolds number for that mechanism. Indeed, in the case of Poiseuille flow, this
100+ criterion for transition to turbulence corresponds to the usually quoted value
of 1000 based on the half-width and the centerline velocity. In Couette flow, it
corresponds to a critical Reynolds number of about 400 based on the half width
and half velocity difference.

1. Motivation and objectives

An intriguing feature of wall-bounded turbulent shear flows is the existence of
bands of low- and high-speed fluid, elongated in the streamwise direction and with
a very consistent spanwise spacing of about one hundred wall units, i.e. 100v/u,
where u, = (vdU/dy)!/? is the friction velocity. In addition, those streaks appear
to initiate a localized instability referred to as a “burst”. That localized instability
would be the mechanism by which momentum is exchanged between the wall and
the outer fluid, thus sustaining the turbulent flow (Kline et al. 1967, Kim et al.
1971).

The goal of this project, performed in collaboration with John Kim, is to try
to understand the mechanisms which lead to the creation and destruction of the
streaks. We believe that those mechanisms are the key to understanding why and
how-a flow ceases to be laminar and maintains a turbulent state. Our approach was
to first review and test some ideas which had been proposed in the literature for
the origin of the streaks. If these theories were successful, our objective was then
to extend them so as to explain the bursting and regeneration processes.

2. Work accomplished

2.1. RDT and selective amplification

A number of papers (e.g. Lee et-al. 1990) show that the mechanism for streak
generation is linear. The argument is that in the near wall-region the time scale for
the mean (d@/dy)~" is much shorter than the time scale for the non-linear effects,
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measured by ¢*/c where g is a turbulent velocity scale and ¢ is the dissipation rate.
The evolution is then dictated by linear equations, and streaks are created from the
redistribution of the downstrearn momentum by vertical and spanwise motions. The
mechanism is a simple advection and is most efficient when the fluctuating fields
are elongated downstream. The question here is to determine whether the linear
mechanism favors spanwise scales of about 100*, The mathematical description of
the mechanism is briefly stated in the next few paragraphs.

The governing equations for the fluctuating field, obtained by eliminating pressure
and the continuity constraint, are:
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where v and n denote respectively the y-component of velocity and vorticity, and
@ is the mean velocity. The right-hand sides, NL,, NL,, represent non-linear
terms. Flows in a channel will be considered in this paper (plane Poiseuille or plane
Couette flow) with the boundary conditions v = dv/8y = n = 0 at the walls, located
at y = £1.

In the linear case, the equation for v is homogeneous and admits eigensolutions

of the form: _
= ,ﬁ(y)ei(az+ﬂz—wt) (3)

where #(y) satisfies the Orr-Sommerfeld equation. In general, for a turbulent mean
profile, all of these eigensolutions are decaying. The 7-equation, on the other hand,
is non-homogeneous for v fluctuations with a spanwise variation. When forced by
an eigenmode of the v equation, the linear response of the vertical vorticity has the

form: _
n= n(y’t)e‘(az'l'ﬁz) (4)

with n(y,t) given by:
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and 7,(y), pin represent the eigenmodes and eigenvalues of the homogeneous -
equation. Note that the vertical vorticity response corresponds to streaks, as op-
posed to vortices.

When the OS eigenvalue w is close to the Squire eigenvalue p,,, the n-th coefficient
will behave as texp(—ipnt). This corresponds to an algebraic growth followed by
exponential decay as i, corresponds to a viscously decaying mode. For a significant
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algebraic growth to occur, the real parts of w and x must be sufficiently close
otherwise the modes will decorrelate, and the viscous damping must be small. Thus
one expects and verifies numerically that the largest responses occur for downstream
modes (& = 0) for which the real parts of the eigenvalues vanish (downstream modes
are not advected) and the decay rate is inversely proportional to the Reynolds
number. In fact the, eigenvalue problems can be solved analytically in that case,
and one finds (with n > 0)

¢ even modes:

Nt - 24+ (2n—1)22%/4
Nan—1(y) = cos(2n—1)§y Han—1 = __ﬂ ( = Y2/
2 2
+ Pn
v2n—1(y) = (cosh B cos ppy — cos py, cosh By) Won—y = _g__R.E__

¢ odd modes:

ﬂz + nz,n.2

N2a(y) = sinnmy H2n = — R
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where p,, and g, are the solutions of:

pntanp, = — Btanh g
Btan ¢, =q, tanh g

and obey the ordering:
(2n~1)1/2 < pp < 7w < gn < (2n + 1)7/2

In the inviscid case, the streaks appear to grow indefinitely with time. However,
the ezact equation for the downstream velocity u is:

—u+v—u+w£u = —E—P

ot dy Oz oz

where 8P/0z is a constant. This equation is linear, as v and w decouple, and
expresses an advection of the momentum by the cross-stream flow. The term v8u /0y
creates the linear growth described above, creating 8u/8z which then limits the
process through the term wdu/dz which is considered “non-linear” in the preceding
analysis. If ¢ is a measure of the amplitude of the cross stream flow (v, w), the “non-
linear” saturation of the algebraic growth occurs on a time scale O(e™1), the time
scale for advection by the cross flow, It is faster than the usual ¢=2, characteristic
of non-linear interactions. '

The possibility of a scale selection by the linear mechanism was investigated nu-
merically by introducing a downstream 08 mode, normalized so that the maximum
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FIGURE 1. Mean profile and mean shear.
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vertical velocity i unity, onto a turbulent mean profile with R, = 180. The mean
velocity profile was chosen as a Reynolds-Tiederman profile, defined by :

di Ry
dy (1 + Vt)

v = {1+ KR —3*)(1 +29°)(1 - exp((1 + ) R/ADPY/ - 2

where K and A were chosen respectwely as 0.525 and 37. The mean profile and
mean shear are shown in fig. 1.

The forced responses of the vertical vorticity are shown in fig. 2. It can be seen
that there is a peak around A} = 35, but it is too weak to represent a significant
selection. The streamwise fluctuating velocity responses would be obtained by mul-
tiplying the vorticity by the wavelength, and the largest response would correspond
to the largest wavelength. This does not match the experimental observations which
show a scale selection both in the velocity and vorticity spectra. In any case, the
“peak” does not correspond to the typical value for the streak spacing, which is
between 80% and 100%. We must conclude that the linear mechanism does not
provide a scale selection.

2.2. Direct resonance theory

In the direct resonance scenario, streaks originate from a three-step process (Ben-
ney and Gustavsson 1981, Jang et al. 1986). The first step is linear and consists of
the resonant forcing of the vertical vorticity by the velocity, exactly as in the pre-
vious section, but focuses on oblique disturbances for which the non-linear effects
can be less trivial. The second step is the non-linear interaction of the vorticity
with its mirror image across a vertical downstream plane. This would create down-
stream vortices which, finally, give rise to the streaks. That sequence of interaction
is illustrated by the following diagram.

ev(a, +8) — etn(a, +5)
nm* — v(0,28)
v(0,28) — 5(0,28)

A non-linear theory was developed in (Benney and Gustavsson 1981) and applied
to turbulent boundary layers in (Jang et al. 1986). Using a turbulent boundary
layer profile, Jang et al. found that an OS eigenvalue coincides with a “Squire”
eigenvalue (a direct resonance) for the horizontal wavenumbers: ot = 0.0093 and
Bt =0.035. The common eigenvalue is equal to w* = 0,090 —40.037. They showed .
that the interaction of that mode with its spanwise reflexion induces streamwise
vortices with a spanwise wavelength around w/8% ~ 90+,

One problem with the direct resonance concept is that it must assume not only
that the eigenvalues of the two linear homogeneous operators are close, but also
that the damping rates are small.: Otherwise, as discussed above, the algebraic
growth will be quickly shut off by the exponential viscous decay. Another problem
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comes from multiple resonances or near-resonances. There is no a priori criterion
for which one should prevail.

Here, the direct resonance route to streaks is followed in the case of a turbulent
channel flow obtained numerically (Kim et el. 1987). The Reynolds number is about
180, based on the half-width and the friction velocity. A near direct resonance is

found for :
at ~0.005 g ~0.039

the eigenvalues being:

wi; =0.07871485 — 10.02168581
pfs =0.07871461 — £ 0.02168558

These values are different but quite close to the values reported above for the tur-
bulent boundary layer. The non-linear interaction of the pair of modes {(a,+83)
leads to streaks with a spanwise spacing of about 80%. The vertical vorticity re-
sponses are displayed in fig. 3. The initial conditions were such that the maximum
v amplitude was 0.1 with no vertical vorticity. As indicated by the subscripts, this
direct resonance occurs at the 14th O8 mode and the 15th Squire mode, where the
modes are ordered according to their decay rate. Although this looks encouraging,
the picture is not as sharp when one analyzes other modes.
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FIGURE 3. Linear (lower curves) and non-linear (upper curves) vertical vorticity
response for direct resonance: v : (a,f) = (0.9, 7.07) (forced by 14th OS mode);
o : (0,14.14); x : (0.8,6) (forced by 13th OS mode); o: (0,12).

For instance, the linear response obtained from the 13th OS mode for slightly
different wavenumbers is very similar to the direct resonance mode, but the non-
linear response is even larger (fig. 3.). Something seems very wrong once the
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response to the 19th OS mode for (a,8) = (1.6,12) has been computed (fig.4.). In
that case, the linear response ig almost four times larger than the direct resonance
one, but the non-linear response is much smaller. One would expect that if the linear
response is four times larger than for the direct resonance modes, the non-linear
response should be sixteen times larger than in the direct resonance case.
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FIGURE 4. Linear and non-linear vertical vorticity response for direct resonance:
v : (o, ) = (0.9,7.07) (forced by 14th OS mode); o : (0,14.14); x : (1.6,12) (forced
by 19th OS mode); 0 : (0,24). '

To understand what went wrong, it is necessary to analyze the non-linear inter-
actions. The computations and the theory are started with a pair of oblique rolls
such as:

v = cos Bz (v1(y,1)e™® + v (y, t)e %)
The linear processes then introduce a pair of oblique streaks:
n = sin Bz (m(y,1)e™ + 7} (y, t)e~**)

The non-linear effect of primary interest is the generation of streamwise vortices -
V(y,t)cos28z. The complete equation for V(y,t) is obtained from (1) with the
non-linear forcing provided by the pair of oblique rolls. After some manipulations
(see e.g. Benney 1961, Lin and Benney 1962), one finds:

(L _apyv =
[“S—t“—(?—ﬁ)](a—yg—ﬁ) =

8? 9
ﬁ(%g + 4% vrw} + v}wy) + 4ﬂ28—y(m; + wiw?)
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where w; is given in terms of v; and n; by
wy =k (wﬂ%%l- + o)

with k? = «® 4 §%, so that the right-hand side can be rewritten as the sum of three
forcing terms Fyy + Fy + F,m, where:

232 2
a8 . 19 Ovy B, B°
F 4 kz (1 l)+4k4ay ay ay) kga 3( 11’])
z 7]
Fu = 21 + 46 vt — nion) + 2 i o~ mipod

40’ 2
Fpy = k“ﬂ By == (mmy)
In the direct resonance theory, the oblique streaks (1;) are supposed to be much
larger than the rolls so that only their non-linear interaction, i.e. the term Fyy, is
considered. The three forcing terms are shown in fig. 5. for the direct resonance
case at the time when (e, +3) reaches its maximum amplitude (cf. fig.3).
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FIGURE 5. F,u: v, Fyyt e and Fypy: A at tune when 7 is maximum. Computed
for the direct resonance mode.

Figure 5 shows that the streamwise vorticity is the result of the non-linear inter-
action of the oblique rolls (v;) and not of the “directly forced” oblique streaks (7).
Thus the mechanism for the streamwise vorticity formation is the non-linear inter-
action of the vertical velocity of the oblique rolls, instead of the vertical vorticity as
proposed in the direct resonance theory, We must conclude that the formation of
streamwise vortices, and the streaks they induce, are not directly associated with
“direct resonances”.
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2.8. Marginal flow

In view of the failure of the linear mechanism to provide a scale selection, we
conclude that the selection must come from the original disturbance. In a turbulent
flow the disturbance seems to arise from the breakdown of the streaks themselves
(the bursting process). Thus the 100 selection must come from the complete self-
sustaining mechanism. Qur conjecture is that disturbances with a spacing smaller
than about 100" can not be maintained. The 100% should then be considered as a
eritical Reynolds number. Experimental evidence for that proposal can be found in
the work of Jimenez and Moin (1991). They show that for a channel flow at three
different Reynolds numbers, Uk /v = 5000, 3000, and 2000 (U, is the centerline
velocity, h is the half-height), the flow returns to a laminar state when the spanwise
width of the periodic box is reduced below about 100+.

We observe that for channel width of about 1007, the channel is very narrow., The
characteristic length for the scaling of the disturbance should then be taken as the
half width as opposed to the half height. In more general terms, the characteristic
length should be taken as the smallest of half the channel height and width. Doing
so, it turns out that “turbulence” disappears if u, ), /v < 100 which corresponds
to UeA,/(2v) < 1000 (A./2 is the half-width), irrespectively of the value of Uh/v.
But 1000 is the usually quoted value for the critical Reynoclds number in channe]
flow. If one had reduced the height A as opposed to the width Az, “turbulence”
would have also disappeared when Uch/v < 1000 or u,h/v < 100.

In order to capture the self-sustaining process in its simplest form, the next step
is to reduce both dimensions (2k and },) to their minimum value so as to eliminate
all unnecessary scales. One should be reminded at this point that the streaks
are expected to be an essential element of the whole mechanism. The streaks are
created from the redistribution of downstream momentum. From the distribution
of the mean shear in a channel flow, the simplest self-sustaining non-laminar flow
should then consists of a pair of opposite streaks in the spanwise direction and in the
direction perpendicular to the walls as well, i.e one pair of streaks in either half of
the channel. In Couette flow, where the mean shear has only one sign, the simplest
solution should correspond to only one pair of streaks in the middle of the channel,
Thus the simplest marginal channel flow should have dimensions 14,2k /v =2 100 and
Az /v ~ 100, while the simplest marginal Couetie flow should have u 2h/v ~ 50
and u,A; /v ~ 100,

A number of simulations of both flows support the above reasoning. “Turbulent”
Couette flow could not be maintained at Reynolds numbers of 324 and below {based
on the half height and half velocity difference) but was maintained for over 2000
convective time units (2k/2U,,) at a Reynolds number Uy, h/v = 400. Thus the non-
laminar flow was maintained for over five viscous units (h2/v), a time scale over
which the slowest decaying scales would decay by a factor exp(—2.57%) if they were
not sustained. The computed flows show considerable similarity with the near wall-
region of higher Reynolds number flows. The main mechanism appears to be the
breakdown of the streaks due to a spanwise inflectional instability. That instability
seems to roll up, creating vortices inclined downstream, probably because of the
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effect of the mean vertical shear. This vortices then proceed to recreate the streaks.
However, this latter part of the complete process is still somewhat too disordered
to firmly establish the mechanisms at play. It is hoped that imposing symmetries
will further constrain the mechanism and clarify the nature of the fundamental
self-sustaining flow.
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