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Dual spectra and mixed energy cascade of
turbulence in the wavelet representation
By C. Meneveau!

The wavelet-transformed Navier-Stokes equations are used to define quantities
such as the transfer of kinetic energy and the flux of kinetic energy through scale r
at position #. Direct numerical simulations of turbulent shear flow reveal that al-
though their mean spatial values agree with their traditional counterparts in Fourier
space, their spatial variability at every scale is very large, exhibiting non-Gaussian
statistics. The local flux of energy involving scales smaller than some r also exhibits -
large spatial intermitiency, and it is negative quite often, indicative of local inverse
cascades.

1. Introduction

Much has been learned about the physics of turbulence by transforming the ve-
locity and the Navier-Stokes equations to Fourier space. The velocity field (&, 1) is
then represented as a linear combination of plane waves, characterizing the motion
at different scales. For isotropic turbulence, the energetics of turbulence is described
(Monin & Yaglom 1971) by the three-dimensional energy spectrum E(k,t) obeying

BE(k, 1)
ot

where T'(k, 1) is the net transfer of energy to wavenumbers of magnitude k. T(k,1)
is formally defined in terms of triple products of velocity and, thus, embodies the
closure problem resulting from the nonlinearity of the equations. For the statistically
stationary case, the total spectral flux of energy through wavenumber k to all smaller
scales is given by

= T(k,t) — k2 E(k, 1), ()

oo k
w(k)= [ T(k")dk' = — [ T(k')dk'. (2)
L= .

Usually the energy transfer is thought to occur by creation of small scales through
stretching and folding of vortical elements, which is modeled by simplified processes
such as the successive break-down of ‘eddies’ (see e.g. Meneveau & Sreenivasan
1990). One then argues that through scales of motion of size k™1, there is a net flux
of kinetic energy to smaller scales, which is equal to (k). In the ‘inertial range’
(Monin & Yaglom 1971), one expects this flux to be equal to the average rate of
dissipation of kinetic energy < ¢ >.
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Of course, it has been known for a long time that the local rate of dissipation is
distributed very intermittently in space and time. This can be modeled within the
framework of breakdown of eddies but with the assumption that the flux of energy
to smaller scales exhibits spatial fluctuations at every scale (see e. g. Frisch et al.
1978, Meneveau & Sreenivasan 1990) . Thus, we need to define a flux of kinetic
energy which, as opposed to Eq. 2, should also depend on position (see, for instance,
the discussion in Kraichnan (1974)). In general terms then, it is clear that from
Fourier spectra, any information related to position in physical space is completely
hidden, which is a disadvantage when dealing with spatially localized flow structures
or intermittency. On the other hand, with the purely spatial representation, the
information about different scales of motion is hidden. This information is often
a useful ingredient for modeling and physical insight. This difficulty calls for a
representation that decomposes the flow-field into contributions of different scales
as well as different locations. In other words, we want to use basis functions that
behave more like localized pulses than extended waves. If one wishes them to be
self-similar, one is led to rather special basis functions called wavelets. :

Using the wavelet representation of the velocity field, we introduce quantities that
are analogous to the Fourier spectra of energy E(k,?), transfer T(k,t), and energy
flux w(k,t), but which depend on location as well as scale. These quantities can
be used in several ways, e.g. to correlate specific local events with possible struc-
tures or topological features of the flow field. Here we will restrict our attention
to statistical descriptions of the spatial distribution of these quantities via their
probability densities and second-order moments. Measurements are performed in
two 3-D fields obtained from direct numerical simulations of isotropic and homoge-
neous shear flows. Here we present only results on transfer of energy to some scale
of motion, and on the flux of energy to scales smaller than some cutoff r for the
shear flow simulation. More extensive results and a more detailed description of
this study can be found in Meneveau (1990).

2. Orthonormal wavelets

Wavelets (Grossmann & Morlet, 1984) are pulse-like functions of zero mean whose
dilations are convolved with the signal, providing simultaneous resolution in scale
and position. In the field of turbulence for instance, continuous wavelet analysis
has been used for the study of coherent structures (Farge & Rabreau, 1987) and
of two-dimensional data from a turbulent jet (Everson ef ol 1990). Recently,
gseveral orthonormal wavelet basis functions have been constructed by using a log-
arithmic spacing of scales and increasingly coarser spatial discretization at larger
scales (Meyer 1986, Daubechies 1988, Mallat 1989); the absence of redundancy of
information makes this form of wavelets particularly useful in higher dimensions.
In one dimension, orthonormal wavelets are of the form

P - i) =2 FpC ST, )

where m indicates the octave band of the scale parameter, h is the mesh-spacing
of the basic lattice (smallest scales), and the index i refers to location in units of
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2™h. Notice that the basis functions corresponding to the larger scales are spaced
more coarsely, according to a dyadic arrangement on a binary tree structure. Some
particular functions 1(2) exhibit the property that {4(™)(z — 2™h4)} forms an
orthonormal base for all (i,m), as for instance the Lemarie-Meyer-Battle (LMB)
wavelet shown in Fig. 1. It has exponential decay in z space and w™* decay
in Fourier space. For more details on this, on discrete transforms, and on fast

algorithms, see Mallat (1989), Daubechies (1988) and Meneveau (1990).
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FIGURE 1. Example of an orthonormal wavelet basis function () (Lemarie-
Meyer-Battle wavelet). -

In an extension of this formalism to three dimensions (Meneveau 1990), the ve-
locity field (at some instant t) is written as

7

wi(@ =YY ) wl™O wm(z — 2m ), (4)

m g=1 7 :

where m denotes again the scale, 7 = (¢1,%2,73) is the three-dimensional position

index on a cubic lattice of mesh-size 2™h, and ¢ gives additional internal degrees

of freedom (this is needed because ¥{™9) is decomposable into functions such as

Fig. 1in each Cartesian direction). Because of orthonormality, the discrete wavelet
coefficients can be computed as

wi™If] = f ui(8) ¥™D(F — 2™R]) 33, (5)
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3. Energetics of turbulence in wavelet space

We now start with the Navier-Stokes equations in physical space written for the
fluctuating velocity and pressure, and we take its inner product with the wavelet
basis function ¥{(™9)(F — 2"‘h§). This yields an evolution equation for the wavelet

coefficients wgm’q) [f). Multiplication by 'wgm’q) [i] and contraction over the three
directions ¢ and the index q yields an evolution equation for the local kinetic energy
density,

2 () = k) - o, ©

where

3 T
() = =30 Yl (52 + L2y wem@ - mh) 5 (1)
2

=1 g=1 p i

is the net energy transfer through scale 2™h at location 2mhi, el™[3) is the kinetic
energy and v(m)ﬁ] is the contribution of the viscous terms, including molecular
diffusion of energy and dissipation at that scale and location. Equation 6 is the
(discrete) analogue of Eq. 1, written for the energy of orthonormal pulses rather
than waves. In analogy to Eq. 2, the flux of kinetic energy through a spatial
region of characteristic size 2™ and location 2™ hi can be computed by adding the
transfer-density (local transfer divided by the total number of grid-points at each
scale) over all scales larger than 2™h at that particular location:

WR] = - 3 2 (O, ®

n=m

Here M is the scale index of the largest scale considered, and ; (given by the integer
part of 2™~"3) is the position index of the larger scales (n). Several studies (Siggia
1978, Zimin 1981 and Nakano 1988) have used ‘wavepackets’ (essentially wavelets)
for obtaining approximations to the Navier-Stokes equations and have then deduced
energy cascade models. Here we perform actual measurements of these quantities
relevant to the energetics of turbulence, without approximations.

To proceed, we compute the spectral transfer density at wavenumber k. =
27 /(2™h) by dividing the total transfer in the band m,

I = 22 -m) < ymp) (9)

by Ak, = kmin(2) and by the total number of points 2°M, We obtain

Tu(bm) = 275"k In(2)] 7 < V] >, (10)

where the average extends over all points [i]. Ty(km) is equivalent to the Fourier
transfer spectrum T'(k) but is not necessarily identical at every k because of the
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width of the wavelet in Fourier space. Also, the wavenumber resolution is poorer
in the orthonormal wavelet case because of the discretization of scales in octaves.
The additional information is available as spatial resolution which increases with
decreasing scale. In addition to the spectral content, one can inquire about the
spatial variability of (™3], which is given in terms of its standard deviation (in
units of T'(ky,)) according to

Fi(km) = 27k In(2)] 7! (< MG > - <M SHE, (1)

where the average again extends over all points [i]. A plot of Tw(km) and Ty (k) £

oi(km) as a function of k,, will be called the dual spectrum of transfer, dual be-

cause it gives information both about the contribution of various scales and about

the spatial variability associated with it. Similar definitions of dual spectra can be

introduced for the kinetic energy and the flux of energy (Meneveau 1990). Fur-

thermore, in Meneveau (1990), it is shown that the local kinetic energies form a.
(non-conservative) multifractal measure. '

4. Analysis of turbulent fields

Next we furn to the analysis of three-dimensional turbulent fields. We consider
direct numerical simulation of homogeneous sheared turbulence on a 128° grid, de-
scribed in detail in Rogers et al. (1986) and Rogers & Moin (1986). We consider
the field C128U12, which is at ¢ = 12 in units of the imposed shear, when the Taylor
microscale-scale Reynolds number is about 110. The field is not isotropic as elon-
gated vortical structures are visible (isotropic turbulence of lower Reynolds number
was also considered (Meneveau 1990), We compute the 3-D wavelet transform of
the three velocity components, using the LMB wavelet basis. To compute the local
transfer ¢™[7), we need to compute the wavelet transform of the nonlinear terms of
the Navier-Stokes equation (the pressure is computed from the known fluctuating
velocity field using the Poisson equation), and then we apply Eq. 8.

Figure 2 shows the dual transfer spectrum T'(kn,) and T(k,,) + o't(m) computed
from the homogeneous shear-flow, in Kolmogorov units,

- The mean transfer (circles) is negative for low-wavenumbers and positive at high
wavenumbers, showing that on the average energy is being transferred from large
to small scales. The solid line indicates the corresponding radial Fourier transfer
spectrum (obtained from the usual Fourier analysis), in reasonable agreement with

the mean wavelet transfer. However, the standard deviation a§"" is seen to be very
large, implying that locally the transfer of energy is often quite far from its spectral
mean value, This is borne out even clearer in the probability-density functions of
3(m) [E] of Fig. 3, which is for three scales m = 1,2,3. Large deviations away from
the mean are visible, both on the positive and negative side. Also, we note the long
tails of the distributions, which are of the exponential type. The same calculations
for the isotropic flow yield similar results (Meneveau 1990).

The quantity {™[i] represents the local transfer through a certain scale without
discriminating between the other two scales involved in the nonlinear interactions.
In order to define a position-dependent flux of kinetic energy to all scales smaller
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FIGURE 2. Dual spectrum of transfer of kinetic energy for homogeneous shear sim-
ulation, in Kolmogorov units. The solid line is the usual Fourier transfer, the circles
are the mean wavelet spectrum, and the triangles and crosses are the wavelet mean,
plus and minus one standard deviation computed from the spatial fluctuations at
every scale. '

than some cutoff-band m which does not include sweeping by the larger scales, one
needs to decompose the non-linear terms in more detail. In Meneveau (1990) we
show that '

Hmm[] =

3
332 ™R [(ptus—u7m3 457 pp < JUO(E -2 5, (12)
i=1g=1 z; Ti ;
represents the transfer of energy between scales m and all scales smaller than n, a
quantity that is analogous to the Fourier transfer spectrum T'(k | k) (Kraichnan
1976), defined as the total contribution to T'(k} from triads of wavenumbers (k, ¢, k—
g) having k < k,, and at least one of the other two legs larger than k,. In Eq. 12,
the superscripts > n {< n) refer to low-pass (high-pass) filtered fields obtained from
Eq. 4 by performing the sum over all m > n (m < n).

A quantity of great practical importance (Rogallo & Moin 1984} is the effective
sink of kinetic energy due to scales of motion smaller than some cutoff. In the
- Fourier representation, this sink of energy is given (Kraichnan 1976) as a flux

k
Tag(k) = — f T(k' | k) di'. (13)

ki=0
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FI1GURE 3. Probability density distribution of transfer of kinetic energy at scale
m = 1,2, 3, in Kolmogorov units, ‘
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FIGURE 4. Dual spectrum of the flux of kinetic energy from interactions with all
smaller scales of motion (flux to or from the subgrid scales), for the homogeneous
shear flow simulation. Symbols as in Fig. 2.
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The analogous definition in the wavelet representation is the local flux of energy
to smaller scales,

M
M) = ~ ) 28k ylkm)gm—ky) (14)
k=m

This quantity is measured in the homogeneous shear flow simulation, its dual spec-
trum is computed, and we obtain the probability density of this subgrid flux at
every scale. The results are shown in Figs, 4 and 5.
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FIGURE 5. Probability density function of spatial fluctuations of local subgrid flux
of kinetic energy for the homogeneous shear simulation, for scales corresponding to
m=1,m=2,and m=3.

We make the following observations: The mean subgrid flux is always positive,
indicating that on the average, energy flows from large to small scales. There are
strong spatial fluctuations, and the statistics of m,, are far from Gaussian, exhibiting
very clearly, again, long and exponential tails, These long tails mean that the flux
is very intermittent in space at every scale of motion. The fluctuations of the
subgrid flux are such that it can be negative very often (local backscatter). In
such locations, energy actually flows from the small to the large scales of motion,
i.e. there are local inverse cascades. The phenomenon of local backscatter has also
been observed recently during analysis of channel flow and compressible turbulence
(Piomelli et al., 1990), with very similar results concerning the fraction of points at
which backscatter is observed. The tails of the distributions are nearly symmetric to
both sides; thus, the average being positive comes from a delicate balance between
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large positive and not-so-large negative excursions of localized events. The analysis
of isotropic decaying turbulence yields similar results (Meneveau 1990).

We have shown elsewhere (Meneveau 1990) that these results are relatively robust
with respect to the precise wavelet used. One of those wavelets was essentially
a sharp Fourier band-pass filter in octaves (Fourierlet), suggesting that statistical
results obtained by such approaches (e.g. the study of Domaradzki & Rogallo 1990)
give results that are comparable to the ones using wavelet analysis.

5. Concluding remarks

We conclude with some general observations regarding the usefulness of orthonor-
mal wavelets and will then proceed to recapitulate the results regarding spatial
distribution of turbulence energetics.

The traditional discrete Fourier transform maps a 3-D function sampled on N3
points onto N?/2 complex Fourier coefficients (conserving the amount of informa-
tion N3)., From this, useful and compact statistical information can be extracted
as power-spectra of the field, either the radial spectrum or separate spectra in the
different Cartesian directions. The usefulness of this approach stems from a variety
of reasons including: (a) the existence of the Fast Fourier Transform, which allows
efficient calculation of the transform (this also has permitted the manufacture of
appropriate hardware such as digital spectral analyzers); (b) the straight-forward
interpretation of the power-spectral density as related to the squared amplitude of
waves in which the field is being decomposed; (c) the fact that the discrete Fourier
transform is used not only as a tool of analysis but also to solve partial differential
equations. Other basis functions such as Tchebychev polynomials are often em-
ployed to deal with particular boundary conditions; for the purpose of the present
discussion, however, we consider them of the same family as the Fourier modes due
to their global nature.

Orthonormal wavelet functions have the property that they also conserve informa-
tion, that is, a discretely sampled field on N? points will yield only N?® coefficients.
However, these will be organized in a fashion that allows distinction between scale
and location. This property is best illustrated in one dimension: here we have a
total of N gridpoints and, thus, N coefficients: N/2 of them give information at
N/2 different locations about the smallest scale, N/4 on the spatial distribution
at the next largest scale, etc. The last coefficient is related to the global mean
of the field. This dyadic arrangement not only makes sense physically (the larger
scales are sampled more coarsely than the smaller ones), but it also allows for the
implementation of a fast algorithm, analogous to the Fast Fourier Transform.

One of the objectives of the present work was to propose a variety of tools to ana-
lyze turbulence using the orthonormal wavelet decomposition instead of the Fourier
transform. In order for the analysis to be practical, we had to achieve significant
reductions in the amount of data. In-the case of the 3-D Fourier transform where
we start with N*® values, the spectra essentially reduce to a single-valued function
consisting of O(V) points. This is easy to visualize and to interpret physically. Here
we obtain more than the spectrum, using the additional spatial information that




272 C. Meneveau

is now available. In this work, the focus is still statistical, but the idea is to post-
pone spatial averaging as long as possible. In comparison with the discrete Fourier
analysis, we have then that the orthonormal wavelet approach has the following
properties: (a) there is an efficient fast wavelet algorithm allowing the computation
of all the coefficients with at most O(NlogN) operations (for some wavelets, the
operation count can be as low as O(N) !); (b) The interpretation of the square of
the coefficients as the energy of localized pulses is straight-forward and very intu-
itive; (c) statistical properties (or more detailed spatial characterizations) of these
coefficients in addition to the power-spectrum can be obtained and are easy to visu-
alize and interpret. So far then, there is no practical difference between Fourier and
wavelet analysis, but the latter allows more meaningful analysis of spatial properties
at every scale, which is of great importance in the case of turbulence. The other
important point raised in connection with the usefulness of the discrete Fourier
transform, namely that it can play a key role in actually solving the equations, can
not be made so far with the wavelet basis functions (there are several preliminary
efforts in that direction, but it is too early to emphatically conclude as to their
usefulness in this context). Therefore, for the time being, we only concentrated on
properties (a), (b), and (c) listed above, which we feel are worth exploring in the
hope of characterizing turbulent flow-fields in a systematic fashion.

The idea of studying turbulence using a space and scale dependence is not new: It
was the motivation for band-pass filtering turbulent signals, an approach that was
employed to study intermittency (see e.g. Kennedy and Corrsin 1961). Such studies
were decisive in showing that turbulent activity becomes more and more intermit-
tent at smaller and smaller scales, as quantified by appropriate statistical measures
such as flatness factors. However, such methods of analysis are rather arbitrary in
terms of the shape of filters, their bandwidth, etc. Here we attempted to circumvent
this arbitrariness by invoking the more rigorous foundations of orthonormal wavelet
analysis, which has the prospect of becoming a more standardized tool.

The relative simplicity of the analysis of turbulence with wavelets stems from
the fact that they are generated from a single function, known @ prieri, and this,
therefore, does not depend on the specific flow. This is in contrast to the method of
‘proper orthogonal decomposition’ (Lumley 1967), which constructs basis functions
that maximize the energy contained in the smallest number of modes. Here we
do not attempt any such optimization, and so the number of wavelets needed is
generally high. However, such an approach is necessary to study local properties
of instantaneous realizations of turbulent flows because, for example, in the case of
homogeneous flows, the proper orthogonal decomposition yields the usual non-local
Fourier modes.

We introduced the dual spectral representation, which measures the contributions
of each scale as well as its spatial variability. This could then be used to quantify the
intermittency of the local transfer of kinetic energy in wavelet space. This quantity
was then measured in direct numerical simulations of turbulence, and strong spatial
fluctuations were observed, their mean spectral value being quite unrepresentative
of local values. This is consistent with the findings of Piomelli et al. (1990).
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By appropriately decomposing the non-linear terms of the Navier-Stokes equation,
we could subtract the transfer (and flux) due to the interactions with the large
scales from the total values. This then allowed the definition of a dual spectrum
of 7ee(r, &), the flux of energy involving the scales smaller than r, at location &.
Again, this quantity exhibited intermittent spatial behavior with exponential tails
in its probability density distributions, while its spatial mean values were consistent
with the usual spectral behavior. The importance of exponential tails in turbulence
is confirmed by these observations. Quite importantly, large negative values of
Tag(7, &) were observed, implying local inverse energy flux from small to large scales
of motion. Although these results have been obtained for a low-Reynolds number
flow where no fully developed inertial range exists, it seems unlikely that the local
backscatter would disappear completely at higher Reynolds numbers. In fact, the
analysis of channel flow by Piomelli et al. (1990) suggests a modest increase of
backscatter with Reynolds number. Much of the phenomenological cascade models
of intermittency work under the assumption of local (in z- and k-space) energy
transfer from large to small scales, where, from dimensional arguments, the locally
averaged rate of dissipation (always positive) is the quantity representative of the
local inertial-range flux of energy. Such a picture must be revised in order to allow
for negative fluxes to occur.

In Meneveau 1990, we have proposed a simple extension to the traditional cas-
cade models of energy, which allows for backscatter (negative energy flux) in an
intermittent fashion. The model suggests (but does not prove) that the detailed
spatial statistics of the backscatter are intimately linked to the intermittency of the
cascade. In this mixed cascade model, if there was no intermittency (as in the orig-
inal Kolmogorov cascade picture), there also would not be negative flux, Only the
strong spatial fluctuations produced by intermittency allow some small scales to be
very active, so that if they pair (passing a part of their flux of energy to the larger
scale), the resulting negative flux may locally overwhelm the positive one. We have
shown that such mixed cascade models exhibit the same qualitative features as the
real local flux: increasing intermittency at decreasing scale, exponential-like tails of
the probability density for both positive and negative values. However, measure-
ments of (™ (%) need to be made at higher Reynolds numbers before we can make
more quantitative comparisons with such mixed cascade models.

In summary, the general picture of turbulence that is confirmed by this analy-
sis is that there is strong spatial intermittency in all non-linear quantities, their
mean spectral behavior resulting from a delicate balance given by the difference of
large positive and negative excursions in space. The wavelet analysis is a way of
quantifying these observations in a standardized fashion by using ‘low-independent
eddies’ to decompose the velocity field. The present study shows that orthonor-
mal wavelet analysis can be performed just as easily as Fourier analysis, and we
believe the physical interpretation of the wavelet coefficients is more natural to the
phenomenon of turbulence than the coefficients of globally extended functions such
as Fourier modes. As remarked by Stewart (1989), one is decomposing the motion
into ‘solitons’, a concept more appropriate for non-linear phenomena.
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