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The interaction of superﬂuid vortex
filaments with a normal ﬂui‘d‘ channel flow

By D. C. Samuels

Vortex filaments in superfluids such as helium II may provide new insights into
very high Reynolds number flows. We simulate the behavior of a superfluid vortex
ring interacting with a normal fluid shear flow, specifically channel flow. The vortex
ring evolves into a stable horseshoe configuration which propagates without further
change of form. In this simulation, we demonstrate a boundary layer behavior in a
superfluid through the coupling of the superfluid and the normal fluid.

1. Motivation and objectives

Superfluids such as helium II provide a true vortex filament system which can be
explored both experimentally and numerically. Vorticity in helium II is confined to
filaments with a measured radius of approximately one A. These superfluid vortices
may be treated as one-dimensional singularities to a good approximation for all
length scales greater than ~ 1024, The circulation about each vortex filament is
quantized in units of h/m where h is Planck’s constant and m is the mass of the
helium atom. Due to energy considerations, only a single quantum of circulation
is present around each vortex; therefore, we have the circulation I' = h/m for all
helium IT vortices. For a detailed discussion of vortices in helium II, see Glaberson
and Donnelly (1986).

The motion of a vortex filament in the rest frame of the superfluid is determined
from the Biot-Savart law,

where the integral is taken over all of the vortex filaments in the fluid. Since
evaluation of the Biot-Savart integral is very expensive in computer time, the local
induction approximation (LIA) is commonly employed (Arms & Hama 1965). In
this approximation, the velocity at any point on the vortex filament is given by
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where ' denotes differentiation by arclength, ay is the core radius, and R, #f is an
arbitrary length scale. In this project, we choose R.;; = 8R ; where R is the local
radius of curvature of the filament. This choice gives the correct velocity for vortex
rings (Glaberson & Donnelly 1986). The LIA is only valid if the Biot-Savart integral
is dominated by the local region 5~ 7. A practical rule of thumb is that the LIA
is not applicable if ‘non-local’ sections of the vortex filament approach within a
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distance of one R. Note that the logarithmic term in Eq. 2 prevents us from non-
dimensionalizing the equation of motion unless the logarithmic term is considered
constant. In this project, we have allowed the logarithmic term to vary and have,
therefore, not non-dimensionalized the equations.

A major difficulty in applying the results of superfluid turbulence experiments to
high Reynolds number flows is that helium II is not a pure superfluid but instead
behaves as a combination of two fluids, a superfluid and a normal fluid (Wilkes &
Betts 1987). The normal fluid is a classical Navier-Stokes fluid with a very small but
non-zero viscosity ( ~ 20uP). The quantum excitations which form the normal fluid
are scattered by the superfluid vortices, allowing momentum and energy transfer
between the two fluids. This coupling, known as mutual friction {Vinen 1957), is
represented as a force per unit length on the vortex filament.

Firag = 10(n — 71) (3)

where «, is a2 temperature dependant parameter, ¥, is the velocity of the normal
fluid, and ¥}, is the velocity of the vortex filament. Including this drag force, the
filament velocity is given by

17L=i}'.+ﬁ']+a§'®(ﬁ'n—€a—{"1) (4)

where « is another temperature dependant parameter, ¥, is the imposed superfluid
flow, and ¥y is the self-induced vortex velocity given by either the Biot-Savart law
or the LIA.

In our simulation, superfluid vortex filaments are represented by a series of linked
straight vortex segments connected at nodes. The velocity at each node is calculated
by Eq. 4 using the LIA and the positions of the nodes are integrated forward in
time by an adaptive Runge-Kutta-Fehlberg method.

Experiments in superfluid turbulence (Tough 1982) reveal a wealth of turbulent
behavior with four possibly distinct turbulent states characterized by geometrical
factors and the relative velocity (¥, — ¥,). Through simulation studies, Schwarz
(1988) has developed a theory of homogeneous, isotropic superfluid turbulence.
This theory has had mixed success in explaining some of the behavior observed in
superfluid turbulence experiments.

A feature which has been neglected in superfluid simulations is the interaction of
the vortex filaments with a shear flow (or boundary layer) in the normal flow. In
simulations of classical vortex filaments, Aref and Flinchem (1984) have found that
an initially linear vortex filament placed in the spanwise direction of an imposed
external shear flow is unstable (in the. LIA) to small perturbations, developing
oscillations which the authors liken to turbulent spots. In a similar study, Leonard
(1980) has demonstrated an instability of an array of interacting vortex filaments
initially arranged to represent a shear layer. Though these studies involve different
couplings of the vortex filament and a shear fiow than is present in superfluids, they
do suggest that such couplings are dynamically interesting.
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2. Accomplishments

The first phase of this project has been to upgrade the simulation code of the
author so that the full effects of mutual friction may be accurately included. The
most important adaptation was to implement a remeshing algorithm to allow the
computational grid to adjust to the shrinking and growing of the vortex filaments.
These subroutines compare the length, £, of each vortex element to the local radius
of curvature, R, of the vortex filaments. Nodes are added or subtracted from the
filament meshing to keep the ratio £/R within set limits. This allows the behavior
of the vortex filament to be followed as the length scales evolve over many orders
of magnitude. When nodes are added to the filament meshing, I have found that
the new nodes must be interpolated using splines of at least third order so that
the second derivative (corresponding to curvature) is modeled continuously along
the filament. If lower degree interpolation is used, artificial curvature fluctuations
are introduced which affect the vortex dynamics. It is possible that fourth order
interpolation may be necessary to avoid artificial discontinuities in the torsion of
the filament. This question is currently being examined.

The physical situation under study at the present time is channel flow of super-
fluids. We assume that the normal fluid is in laminar channel flow

3 Z.2
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where a is the half-width of the channel, and that the superfluid has a constant
velocity v,. In the simulations discussed in this report, the superfluid velocity is
chosen so that the net superfluid and normal fluid flow through the channel are
equal, v, = v5,9. The vortex behavior that we have observed should not depend
qualitatively on the magnitude of v,. The flow is in the positive y direction, the z
axis is spanwise to the flow, and the z axis is normal to the channel boundaries. We
initialize the simulation with a small vortex half-ring attached to the lower wall.
The ring lies in the -z plane and is oriented against the flow. The initial radius of
the ring is 10~1a. We find that the final shape of the vortex filament is independent
of the initial size of the vortex ring, provided that the initial radius is larger than
a small value dependant upon v,. Since rings are unlikely to be generated with
small radii (Schwarz 1990), this limitation is unimportant here. The vortex ring
evolves into a horseshoe shape (Figures 1 and 2) with a length longer than the
channel height (Figure 3). This horseshoe vortex propagates against the direction
of the external flow with little or no change in shape or size. The coupling between
the superfluid vortex and the normal fluid boundary layer causes a boundary layer
behavior to appear in the superfluid. The existence of these long vortex filaments
may play a crucial role in the initiation of superfluid turbulence.

3. Future work

The immediate future phase of this project is to examine the dynamics of the
horseshoe vortex filament. Of particular interest is the process which transports
energy from the boundary, where mutual friction is causing growth, to the tip of
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FIGURE 1. Instantaneous configurations of the vortex filament in the X —Y plane
as the filament evolves. The time evolution is from right to left.
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FIGURE 2. Instantaneous configurations in the ¥ — Z plane.

the vortex, where mutual friction causes the vortex filament to shrink. How is
this energy balance maintained to form a vortex with constant length and shape?
And very importantly, does this balance break down at higher external flow rates,
causing unlimited growth of the vortex filament?

A problem which must be addressed is the possibly non-negligible interaction of
a vortex filament of this shape with the solid boundary, represented by an image
vortex. In this situation, the local induction approximation may not be sufficient,
and full Biot-Savart calculations may be necessary.

In the less immediate future, interactions of these horseshoe vortices will be stud-
ied, including merger of vortices and the possible formation of regular arrays of
these vortices as is seen in classical fluids (Herbert 1988). It will be necessary to
use full Biot-Savart calculations in these simulations.
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Ficure 3. Total length of the vortex filament. These results were taken from a
simulation with & = 102 cm and 44y = 5.0 em/sec.
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