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Simulations of curved turbulent
boundary layers: a progress report

By P. Orlandi’

1. Introduction

The objective of this work is to develop a space-time accurate numerical method
for the solution of incompressible Navier-Stokes equations in generalized coordi-
nates. The resulting code is to be used for direct and large-eddy simulation of
turbulence in complex geometries. In a previous paper (Orlandi 1989), the sys-
tem of Navier-Stokes equations in general curvilinear coordinates was solved by a
second-order accurate finite-difference scheme. Satisfactory results were obtained
for several flows in two and three dimensions. The system of Navier-Stokes for the
fluxes are given in Orlandi (1989). The main deficiency of the numerical scheme
was the large CPU time required for the solution of the Poisson equation for the
“pressure” field. The point SOR relaxation, in conjunction with a multigrid scheme,
was used for the Poisson equation. In some cases, particularly with very fine grids,
it was impossible to obtain a divergent-free flow.

The “pressure” solver has been improved by introducing a Fourier transform in
the direction with Cartesian coordinates, and a line zebra iterative scheme has
been used for the relaxation scheme. The line sweeps are used for the direction of
stretched coordinates. The zebra scheme allows a very efficient vectorization of the
“pressure” solver and reduces the required CPU time. This improvement resulted
in a higher convergence rate and the divergence-free condition was always obtained.
The Fourier transform leads to a series of 2-D Helmholtz equations with the reduced
wave number k as the parameter, At high k, as expected, the convergence rate of
the relaxation scheme is very high because the negative eigenvalues of the matrix
have large magnitudes. Slower convergence was obtained for the zero-wave number,
however. In all cases, tested a very small reduction factor was found for the first
cycle 0(107%), and in the subsequent cycles the reduction factor was approximately
0.3. The maximum residual of 10~ is reached at k = 0 by few W multigrid cycles
with two iteration sweeps at each line zebra relaxation. At high k, the convergence
was obtained by a single multigrid cycle. This efficient “pressure” solver has been
incorporated into the direct simulation of flows over riblets by Choi (1990). As
a consequence, he could employ a much finer grid than the grid previously used
by Orlandi (1989). A very fine grid is required to represent the physics of drag
reduction by the riblets. The entire numerical method and the associated computer
program have reached a level of robustness that permits its use as a tool to obtain

reliable flow fields.
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In practical applications, one often encounters turbulent flows along curved bound-
aries with inflow and outflow conditions. In these cases, the conventional Reynolds
averaged turbulence models have not been very satisfactory, as found in the 1980-81
Stanford conference on complex turbulent flows (Kline et al. 1981). A full numer-
ical simulation, e.g. for a flow around a turbine blade or an airfoil, requires an
enormous amount of computer resources, mainly because these flows develop along
the streamwise direction for hundreds of boundary layer thicknesses. Considering
that usually in the direct simulation it is necessary to have at least ten grid points
per boundary layer thickness, at least 10° grid points are required in the streamwise
direction. A grid of 128 x 128 is necessary along the vertical and spanwise directions
to describe the interaction of large and small structures at moderately low Reynolds
numbers. With such large grid requirements, it appears to be difficult to do a direct
simulation of the flow considered by Barlow and Johnston (1988), consisting of a
boundary layer growing on a flat plate subjected to a relatively strong curvature
followed by a recovery section. The direct simulation of this flow requires inflow
conditions for the instantaneous turbulent velocity field similar to those currently
tested for other flows in the CTR.

The use of a large eddy simulation, with an affordable grid of say 64 x 64 x 64,
could give satisfactory results in simulating the Barlow & Johnston flow at a Reg =
1300. On the other hand, it is unlikely that two-dimensional Reynolds averaged
computations of such flows can give good predictions if the dominant role of the
three dimensional structures is not incorporated somehow in the turbulence model.

Enroute to large-eddy simulation of curved turbulent flows, we investigated whe-
ther the aforementioned numerical scheme can predict the well-known features of
flows in presence of curved boundaries. In presence of concave walls, centrifugal
instabilities cause the generation of Gortler vortices which enhance transition to
turbulence. For this case, a well-documented experiment of Swearingen & Black-
welder (1987) exists together with the numerical simulation of Liu & Domaradzki
(1990). In the numerical simulation of Liu & Domaradzki, it was assumed that
the boundary layer is parallel; this assumption allows the application of periodic
boundary conditions in the streamwise direction. This is not a realistic assumption,
and in the past it was criticized by Hall (1983), who showed that the assumption
could give erroneous results. Liu & Domaradzki computed a time developing flow
rather than a spatially evolving flow. They were able to reproduce qualitatively the
results of Swearingen & Blackwelder, but the transition to turbulence in the numeri-
cal simulation occurred later than in the experiment. A reason for the disagreement
could reside on the assumption of parallel flow.

In the present paper, a preliminary attempt is made to compute the spatially
evolving flow of Swearingen & Blackwelder. To reduce the streamwise distance,
the inflow was at a distance # = 60cm from the leading edge, as done by Liu
& Domaradzki. See the sketch of the geometry in Fig.l. In the experiments of
Swearingen & Blackwelder, Gortler vortices were not present at # = 60cm, but
they were present at = 90cm. At this position, the displacement thickness §* in
between the vortices reaches the maximum value, and the §* outside the vortices
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FIGURE 1. Sketch of the geometry.

reaches the minimum. We do not intend to compute the transition to turbulence,
thus the outflow condition has been located at x = 110cm.

The parameters of the present simulation are those of the experiment. The ini-
tial Gortler number is Go = (Usf/v)4/8/R = 5.6, the radius of curvature of the
wall is R = 320cm, the kinematic viscosity v = 0.15¢m?/sec, and the free-stream
velocity Uy = 500cm/sec; from these values it follows that the initial momentum
thickness # is 0.095cm. For the sake of simplicity, at the inflow the Polhausen
rather than the Blasius profile was used. In this case, 8/6 = 37/315. The initial
boundary layer thickness is § = 0.81cm and Re = Usb/v = 2685. At Go = 5.6, the
theoretical neutral stability limit corresponds to the non-dimensional wave number
k8 = 2r8/X = 0.24; the spanwise dimension of the domain is then A = 3.01756.
The “free-stream” was located at y/§ = 5. The computational domain has been
discretized by 65 x 79 points in the streamwise and normal directions, respectively.
In the spanwise direction, two grids were used, the first with 33 and the second
one with 65 points. The coarse grid, used particularly in the streamwise direction,
is not sufficient for obtaining very accurate results. However, in this preliminary
study, we intend to examine whether and in what degree the numerical method
captures the growth of the Gortler vorticés. These vortices modify the distribution
of the streamwise velocity in (y, z)-planes, generating low-speed regions separated
from high speed regions. These vortices enhance the transition to turbulence, and
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FIGURE 2. Contours of streamwise velocity in (y,z)-planes, grid 65 x 79 x 33:
a) z/6 = 98.25; b) =/é = 121.5.
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FIGURE 3. Contours of streamwise velocity in (v, 2)-planes, grid 65 x 79 x 65:
a) /8§ = 98.25; b) /6 = 121.5.




306 P, Orlands

y/é

S o e it e
] e B

0.0 0.6 12 18 24 a0

(a)

y/é

0.0 0.6 12 1.8 24 3.0

(5)

FicURE 4. Contours of streamwise vorticity in (y, z)-planes, grid 65 x 79 x 65:
a) /6 = 98.25; b) =/ = 121.5.
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as pointed out by Swearingen & Blackwelder, inflectional spanwise profiles of the
streamwise velocity are much more effective.
Liu & Domaradzki used the following initial velocity distribution

(2,4, 2) = wo(y) + eus (y)eos(2rz/)
v(z,y,2) = vy (y)cos(Z'{rz /A)

w(z,y,2) = ewy (y)sin(2mwz/A)

where uo(y) is the laminar Blasius profile and u1(y), v1(y) and w;(y) are the com-
ponent of the eigenmode obtained by the linear stability theory. We used a much
simpler relation for the perturbations

w(z,y, 2) = esin(2mz/X)sin(2ry/8), y/6< 1.

and w = 0 elsewhere. In order to have a faster growth in time, ¢ = 0.05 was used.
The perturbation u(y, z) was set to 0 and v(y, z) was obtained from continuity. At
the outflow, convective boundary conditions were imposed.

2. Results

In this section, we present some qualitative results which will demonstrate the
formation and growth of the Gortler vortices. Quantitative comparisons with the
experiment of Swearingen & Blackwelder will be made only after checks of grid
independence has been completed. At present, the results strongly depend on the
grid.

We wish to point out that the number of grid points used in the present finite
difference simulation (up to 65 x 79 x 65) is much smaller than that used in the
numerical simulation of Liu & Domaradzki. Considering that they were using a
spectral method, the present grid is too coarse to lead to reliable results. The
present scheme, however, has the advantage that it can be extended to different
boundary shapes. Fig. 2 shows contour plots of streamwise velocity in the (y,z)-
planes at the streamwise locations z/8 = 98.25 and z/6 = 121.5 obtained using a
65 x 79 x 33 grid. The larger growth of the boundary layer between the vortices
is apparent. The numerical solution also shows that the spanwise extent of the
Gortler vortices grows with the downstream direction.

Fig.3 shows that the solution improves with doubling the number of grid points
in the spanwise direction; a more defined structure is observed in the low-speed
region, The numerical diffusion in the spanwise direction, although reduced in
respect to the previous grid, is still quite large. The effect of the numerical diffusion
is observed also in the contour plot of streamwise vorticity (Fig. 4), where two very
strong vortices appear at the center, with some scattered vorticity on the side. The
numerical simulation predicts that the boundary layer in the low-speed region grows
by a factor of 1.8 at z/§ = 98.25 and 3.4 at /6 = 121.5. The experiments reports
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factors of 2.0 and 2.6, respectively. A further grid refinement has been performed
by using 128 points along the streamwise direction; the results improve, but still
the high-speed regions are contaminated by the low-speed regions. The reason of
this is the very coarse mesh used in the streamwise direction.

We have presented in this paper the work in progress to simulate furbulent bound-
ary layers along concave walls. The numerical scheme requires 10 secs of CPU for
the grid 65 x 79 x 65 for a full-third order Runge-Kutta step, which is slightly
larger than the typical times required by a spectral method. However, with finite-
difference schemes, larger time steps can be taken as compared to spectral methods.
The complete grid convergence test has not been finished. When this check is done,
quantitative comparison with the experiments will be presented.
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