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Methods for direct simulation of
transition in hypersonic boundary layers

By J. J. W, van der Vegt AND J. H. Ferziger

An implicit numerical algorithm for the time accurate solution of the compress-
ible Navier-Stokes equations is described. Results for steady flow past a finite flat
plate are presented, together with preliminary results for the temporal simulation
of second mode instability in a flat plate boundary layer at Mach 4.5..

1. Motivation and objective

The proposed new generation of supersonic and hypersonic vehicles pose tre-
mendous challenges to prediction methods for high speed flows. Transition to turbu-
lence is crucial to the design of these vehicles but is far from completely understood.
Direct simulations can complement experiments by offering opportunities to study
cases which are very difficult or impossible to realize experimentally. This report
discusses numerical methods for direct simulation of transition in boundary layers.
We have developed and improved a time-accurate numerical method for flows with
both strong shocks and boundary layers; for more details see van der Vegt (1991).
Efficient ways to obtain steady state solutions, needed as initial conditions, have
been implemented. Calculations of the temporal stability of the second mode in
a flat plate boundary layer have been started; the main objective is to study the
effects of wall temperature on stability.

2. Accomplishments

The main activities in 1990 have been the further development of a time accurate
method for the Navier-Stokes equations; a start has been made on transition cal-
culations on a flat plate. The requirements of time accuracy and rapid convergence
to a steady state are partially conflicting because one can improve convergence by
adding dissipation while one tries to minimize dissipation in time-accurate calcu-
lations. Whenever there is conflict between these requirements, time accuracy is
favored. Strong shocks and boundary layers present different problems. It was de-
cided to develop a fully implicit method because the equations are stiff, resulting
in an impractical time step limitation for explicit methods.

An implicit method is, however, more complicated than an explicit method. There
are a number of implicit methods available for the compressible Navier-Stokes equa-
tions. One of the most widely used methods is that of Beam and Warming (1978),
which is not well suited for our problem. For time-accurate solutions, the approx-
imate factorization adds an additional error and the viscous cross-coupling terms
cannot be factorized. In addition, the use of central differences requires artificial
viscosity to obtain stable solutions when there are shocks. The Beam-Warming
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method obtains steady state solutions efficiently but is not well suited to time-
accurate calculations.

An alternative is to choose one of the modern upwind methods developed for
the Euler equations such as flux splitting according to Steger and Warming or van
Leer, approximate Riemann solvers, and TVD methods; for a review see Vinokur
(1989). These methods all incorporate some properties of the Euler equations and
accurately compute shocks without explicit artificial dissipation. We chose Steger-
Warming splitting in which the components related to the positive and negative
eigenvalues of the operator are treated differently. The method accounts for infor-
mation travel along the (inviscid) characteristics. At high Reynolds number, this
is nearly correct in most of the flow. Flux splitting for the non-linear terms has
an additional beneficial effect; it yields a diagonally dominant matrix well suited
to iterative solution. In the viscous region, however, flux splitting can produce un-
wanted numerical dissipation, as was demonstrated by MacCormack and Candler
(1989). The correction to the Steger-Warming splitting proposed by MacCormack
was adopted and modified for the boundary layer, whereas the Steger-Warming
splitting, described in Steger and Warming (1981}, is used in a shock. The diagonal
dominance of the matrix allows iterative solution and all the viscous components
to be treated implicitly, It also gives more freedom in the choice of boundary con-
ditions.

Numerical Method

A finite-volume method is used because an integral formulation is conservative
and better suited to flows with shocks. The present algorithm solves the two-
dimensional compressible Navier-Stokes equations in conservation form in an arbi-
trary coordinate system. These can be written:
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The equation of state is: p = P-'f—‘—’—g-

Here p represents the densnty, # and w the velocity components in a Cartesian
coordinate system, p the pressure, T temperature, and e the total energy. The
variables » and y represent Cartesian coordinates, whereas £ and 7 represent curvi-
linear coordinates. The coeflicients M and Pr are the Mach and Prandtl numbers,
while g, A, and & are the two viscosities and thermal conductivity. The shear stress
and heat flux components in V and I are functions of £ and 5. All variables are
non-dimensionalized using free-stream variables and a characteristic length, Use of
a general coordinate system adds flexibility but greatly increases the complexity of
the code.

The numerical scheme will now be summarized. The first step is the choice of a
time integration method, The time integration is formulated as a Padé relation, cf.
Beam and Warming (1978):

@B O BB B
AU = S5m0 eV s
with: AU™ = Ut — O
The coefficients a and 3 allow different time integration schemes to be obtained.
For instance, @ = 1, § = 0 give the implicit Euler method, o = .5, 8 = 0 give
the trapezoid rule, and « = 1, 8 = 0.5 give a three point backward scheme. The
superscript n refers to time ¢ = ¢,,.
Introducing the compressible Navier-Stokes equations (1) into this relation yields:
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which is first or second order accurate in time, depending on the choice of o and G.
Applying Gauss’ theorem and integrating equation (2) over a small volume gives
the finite-volume formulation for the compressible Navier-Stokes equations:
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where a barred quantity with index ¢,7 is an average of the unbarred quantity over
the cell with index 4,j and indices ¢ & § and j £ } refer to values at the cell faces.




312 J. J. W. van der Vegt & J, H, Ferziger

Fluz Veclor Splitting

Flux vector splitting is powerful for computing flows with strong shocks. Upwind
methods are, however, dissipative. Dissipation is necessary in shocks but not in
smooth flows such as boundary layers. MacCormack and Candler (1989) presented
a way to improve the accuracy of flux vector splitting significantly in regions outside
shocks. This method, in modified form, is discussed in this section.

The Steger-Warming splitting is based on the homogeneity property of the Euler
equations:

Br(U) = (-‘?a,%) U" = §71C"'ACSU

with : § = %, where V = (p,u,v,p)%, C is related to the metrics, density and
speed of sound a, and A = (u,u,u + a,u — a)7, the eigenvalue matrix.

In the Steger-Warming approach, the flux vector is split in vectors Bt by sepa-
rating the matrix A in matrices with positive and negative eigenvalues. As demon-
strated by MacCormack and Candler (1989), this gives a dissipative approximation
to the flux at the cell surface when using a finite-volume method. They demon-
strated that for the incompressible flat plate boundary layer, it is much better to
approximate the Jacobian matrix % at the surface i + } by alternately using its
value at ¢ and 7 + 1 for the components related to the momentum equations. This
method was tested in great detail, but like the explicit predictor-corrector MacCor-
mack scheme, it has the disadvantage that the error is oscillatory and depends on
the time step, so the computation never reaches completely a steady state. Also,
the location at which the metrics of the coordinate transformation are computed is
not clear in their paper. In their finite-volume formulation of the Steger-Warming
splitting, they use the metrics at the cell center, while the metrics at the cell faces
should be used. This requires four times as many computations of the metrics, but
it pays off in terms of accuracy.

The modified MacCormack splitting can now be defined in terms of:

D = diag(e, a2, 05, 04)

-

SH“;' = DS; + (I - D)S{+1

Similar expressions define C’,- +1 and Ai+ 1. Here I represents the identity matrix

and D a diagonal matrix. The modified flux is defined as: !
nt  _ g-1 A-1
E‘+% = i+%O‘+%A£+%Oi+IS‘+1U;

with an equivalent relation for ﬁ}; 1, with U; replaced by Uj;4q.
)
The main difference between the splitting presented in MacCormack and Candler
(1989) and the one used in this paper is that the computation of the inverse matrices
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S g +3 and O T3 is exact and removes the oscillations of the MacCormack scheme but

requu'es a,bout 30% more work per time step than the Steger-Warming splitting.
Another advantage of the new scheme is that it unifies several types of flux splitting,
which is helpful when changing schemes. The Steger-Warming splitting is obtained
using D = diag(1,1,1,1) for the positive flux vector and D = diag(0,0,0,0) for
the negative flux vector. The MacCormack splitting is obtained by using at odd
time intervals D = diag(1,1,1,1) and D = diag(0,1,1,0) and at even time intervals
D = diag(1,0,0,1) and D = diag(0,0,0,0) for the positive and negative flux vectors
respectively. More details can be found in Van der Vegt (1991).

Linearization

The flux vectors defined in the previous section are all non-linear functions of U,
so in order to solve the set of non-linear equations (3) implicitly, they have to be
linearized around their value at time ¢ = ¢,,. This is a delicate procedure if time
accuracy is to be maintained. If only a steady state solution is needed, one can use
the Steger-Warming splitting for the implicit part, but this adds a significant error
when time accuracy is important. Due to the averaging process, the flux vector at
surface ¢ 4+ 1 is a function of both U; and Uy

. j HES nEs
QE:E(U,-,U,'.H) o %EAU + 8‘1?1-]-1 AU,
with similar linearization for the vector AG™, Analogously we have to linearize the
viscous terms:
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A similar linearization is used for AV;"“" The suffices + and — on the Jacobian
matrices of the inviscid flux vectors refer to the components corresponding to pos-
itive and negative eigenvalues. In order to maintain time accuracy, none of the
components in the matrices obtained by linearization should be neglected; this is
not possible with approximate factorization. However, this greatly increases the
difficulty of solving the linear system of equations, as discussed in the next section.
Careful linearization is important because it greatly extends the stability limit of
the scheme. Ii, for instance, the homogeneity property is used to linearize the in-
viscid flux vectors E and G then, in many cases, the time step can not be much
larger than the time step for an explicit scheme.

Iterative Solution of Matrix Equation
After discretization, a system of linear algebraic equations is obtained:

ALAUY; + BEAUY ., + CRAUY,_, + DLAUY,  + ELAUL, 4+

FnAU=+1 g1t GtJAUt 1,541+ HnAU;+1 g-1t I AU;—I -1 R
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Here fi{;, con ,f,’; represent the Jacobian matrices obtained by linearizing the flux
vectors and R; is the right-hand side. For the compressible Navier-Stokes equations
in two dimensions, they are 4 x 4 matrices.

Solution of this system is a time consuming part of the algorithm, taking about
30% of the total time. The use of flux splitting for the non-linear terms makes the
matrices diagonally dominant and allows use of iterative methods. Gauss-Seidel
line relaxation in the streamwise direction reduces the block nona-diagonal matrix
to a block tri-diagonal matrix. The block tri-diagonal matrix is solved by direct
inversion. If a steady flow is being computed, it is not necessary to iterate the
Gauss-Seidel line relaxation to convergence at each titne step, but for time-accurate
solutions, convergence to accuracy smaller than the truncation error is required.
Direct inversion may become then prohibitively expensive. An alternative must be
found. Dexun et al. (1989) suggested that using LU decomposition of abridged
matrices, consisting of the main diagonals of the block tri-diagonal matrices, as a
preconditioner and solving the block tri-diagonal matrices iteratively gives a sig-
nificant improvement. It is convergent for moderate time steps, fully vectorizable,
and gives a significant reduction in computing time. The full iterative scheme so
obtained converges very rapidly, Dexun ef al. (1989) only used two iterations
for a steady state problem. Machine accuracy is obtained in two to four Gauss-
Seidel sweeps. The inner iteration, used to invert the block tri-diagonal matrices
within each Gauss-Seidel sweep, converges in about ten to fifteen iterations for the
first sweep and one to four iterations for the following inner iterations. Residual
correction and under- or over-relaxation were tried out and did not improve the con-
vergence rate. If a steady state solution is required, solving the block tridiagonal
matrices with a direct method allows a significantly larger time step.

Boundary Conditions

Outflow boundary conditions within the boundary layer present problems. The
main trouble is in the subsonic region close to the wall. Setting the pressure in
this region to the free-stream pressure does not work because it creates instabilities
whenever the pressure becomes smaller than the free-stream pressure. The outflow
boundary conditions adopted are zeroth order extrapolation, which performed well
and had no noticeable upstream influence. For some applications, this condition is
not suitable because it is reflective. The boundary conditions at the solid surface
also require special attention. For an adiabatic wall, the conditions were zero ve-
locity and heat flux at the wall, determination of the pressure from the equation of
state, and use of the continuity and energy equations to close the system. For an
isothermal wall, the temperature was fixed and only the continuity equation was
used to close the system. The conditions are implemented using a half cell at the
solid wall, as discussed in Vinokur (1989), and works very well. Conditions such
as zero normal pressure gradient and/or zero density gradient are not valid at the
wall in a viscous fluid and should not be used. In regions with nearly inviscid flow,
characteristic boundary conditions are used which minimize reflections, for more
detail see Giles (1988).



Methods for direct simulation of transition in hypersonic boundary layers 315

FiGURE 1. Grid for calculation of flow field above flat plate.

Boundary Layer on a Finite Flat Plate

Careful testing has been performed to investigate the accuracy of the numerical
scheme. The first test case was the flow about an adiabatic flat plate at zero angle
of incidence. Results were compared with the analytically derived results of Crocco
(1941); see also Schiichting (1979). The Mach number was 2 and Prandtl number,
1. The viscosity law pp = T’ was used in order to enable comparison with the results
of Crocco. All quantities are non-dimensionalized with their free-stream values and
plate length. In order to test the ability of the model to compute shocks, the case
of a finite plate in a uniform flow was considered and the results at the trailing edge
were compared with Crocco. This removed the problem of choosing an inflow profile.
Because the x- and y-derivatives are equally important at the nose of the plate, it is
necessary to use small square grid cells in this region, see Fig. 1, while strong grid
stretching is required in the boundary layer region further downstream. If the grid
is strefched too much in one direction at the nose, the computations diverge. In
Fig. 2 and 3, the Steger-Warming and MacCormack splittings on a 100 x 100 grid
are compared with the results of Crocco. It is clear that the MacCormack splitting
gives much better results; the Steger-Warming splitting is much too dissipative
in the boundary layer. It must be remarked, however, that the Steger-Warming
splitting does not perform as badly as claimed by MacCormack et al. (1989) for
the Blasius boundary layer. The small deviations from the Crocco results must be
attributed to the effects of the shock.

The second test case was the same flat plate but with an isothermal wall and
Prandtl number .7. The general features of the flow field are presented in Fig. 4,
which shows the density field at steady state. There is a large density jump at the
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FIGURE 2. Velocity profile in flat plate boundary layer with adiabatic wall.
Mach = 2, Pr=1, Re=530000.
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FIGURE 4. Density contours at nose of isothermal flat plate. Mach = 2,
Pr=.7, Re=530000.
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FIGURE 6. Velocity profile at different stations in flat plate boundary layer with
isothermal wall. Mach = 2, Pr=.7, Re=530000.

nose of the plate, followed by expansion around the outer edge of the boundary
layer; a weak shock originates from the nose of the plate. After the nose region,
the flow relaxes to a boundary layer. Fig. 5 shows how fast the temperature profile
relaxes from the nose to the boundary layer profile. The rapid change puts severe
demands on the numerical scheme. In order to test the outflow boundary conditions
and {o see how well the similarity laws are satisfied, the velocity and temperature
profiles at several downstream locations are plotted in Fig. 6 and 7. The plots show
that the similarity law is very well satisfied, even at x=1, the last grid point on the
plate, so there are no noticeable effects of outflow boundary conditions, even in the
subsonic region. The results also compare well with those obtained by Hantzsche
et al.; see also Schlichting (1979). Good agreement with the similarity profile was
also obtained for the adiabatic flat plate at Mach=2.

The third test case is the flat plate with adiabatic wall, Mach number 5 and
Prandtl number 1. This is a much more severe case due to the rapid changes at the
nose of the plate. Fig. 8 and 9 show the velocity and temperature profiles at various
downstream locations plotted against the similarity parameter 5. The temperature
rise is now as large as a factor of six in the boundary layer and much higher at the
nose. The boundary layer is much thicker than in the Mach 2 cases due to heating.
Another problem is the definition of the initial field. The computations for M = 2
were started from a uniform flow field, but at higher Mach numbers, the converged
Mach 2 result was used as initial field.
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Second Mode Instability in a Flat Plate Boundary Layer at Mach 4.5

Calculations are currently being done on the transition in a flat plate boundary
boundary layer with an adiabatic wall at a Mach number 4.5. This case has been
studied by Erlebacher and Hussaini (1990), (E&H), with a spectral code and is a
severe test case of a finite-volume code because a spectral code is better suited to
this problem. The stability calculations investigate the temporal stability of the
second mode in the flat plate boundary layer. The existence of multiple unstable
modes at high Mach numbers is a feature not found in low Mach number flows.
For a review of compressible stability theory see Mack (1984). The appearance
of multiple unstable modes starts at a Mach number of approximately 2.2. The
purpose of the direct simulations is to study the effect of wall boundary conditions
on flow stability. It turns out that the first mode is stabilized by wall cooling, which
was discovered by Lees and Lin (1946), but the second mode is destabilized by wall
cooling; for a detailed discussion see Mack (1984). Another motivation for studying
the second mode is that two-dimensional waves are the most unstable second modes.
The simulations are temporal, so the boundary layer is assumed to be parallel and
periodic along the flat plate. The initial perturbations are of the form:

u'(a:,y,t) — ﬁ(,y)ei(az—-w,t)-{-w.'t

50 w, is the frequency and w; is the growth rate. In order to prevent the boundary
layer from growing, source terms are added to the right-hand side of the Navier-
Stokes equations to cancel the terms which would create a non-zero vertical velocity
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in the laminar flow. With this modification, the mean flow remains the constant
mean flow used in the stability calculations, which generate the initial disturbances
for the direct simulation. These disturbances are now added to the mean flow
profile.

Linear stability calculations were made using the Cosal code of Malik (1982} for
the case done by E&H. Identical results were obtained for the first mode, but for the
second mode the results were slightly different. We used the parameters Mo, = 4.5,
Rese = 8000, « = 2.25, Pr = .7, and Sutherlands viscosity law. All parameters
are non-dimensionalized using the displacement thickness §* and free stream values.
The growth rate obtained from Cosal was: w = 2.04706 + .02283i, whereas E&H
obtained 2.04674 + .02149i, using a spectral code. Their Reynolds number was
reported incorrectly as Rege = 10000 instead of Rese = 8000. It was decided to
test the convergence of the eigenvalue computation with Cosal and use this result
in the direct simulation. Table 1 shows the results of the growth rate for various
numbers of grid points:

npoint Wy w;

250 2.047045514267 .02294520289382
500 2.047060523908 .02285383626108
750 2.047063145850 .02283708143864
1000 2.047064045772 .02283124312681
1250  2.047064484897 .02282849820898
1500  2.047064741600 .02282702318168

Table 1. Convergence History of Eigenvalue Calculation for Flat Plate,
My, = 4.5, Pr = .7, Res = 8000.

This table shows that a large number of grid points is needed. This can be partly
attributed to inefliciencies in the Cosal code, which is currently being improved,
and to the steep gradients in the eigenfunctions; see Figures [10]-[13].

Using these as initial profiles pointed out several problems in direct simulations
of transition. The two main problems are the boundary conditions far from the flat
plate and providing enough resolution at the right places. At the top surface, non-
reflecting characteristic boundary conditions based on inviscid flow are imposed. I
reflecting boundary conditions are being used, as in E&H, the reflections influence
the transition after some time. The problem with the non-reflecting boundary
conditions is that they enforce zero mean vertical velocity, which is unphysical.
The zero vertical velocity makes the top wall a characteristic surface for the mean
flow and does not allow imposition of boundary conditions. Most theories for non-
reflecting boundary conditions assume small disturbances around some mean value,
but this becomes a singular case in our situation. The alternative, linearizing about
the eigenfunctions, does not work either becausé this creates local inflow and outflow
which change in time. These boundary conditions allow information to travel from
infinity into the boundary layer, which is unphysical. It was finally decided to
impose outflow everywhere on the top surface because this reflects most closely the




322 J. J. W. van der Vegt & J. H. Ferziger

P P ————S e e

200

150

o0

50

PhaseT

6#

FIGURE 10. Phase of Temperature Disturbances in Flat Plate Boundary Layer.
Mo, = 4.5, Pr = .7, Reg+ = 8000.

12 M ) v T v L) v 1 E L1 v Ll

AmplitudeT

6‘#

FIGURE 11. Amplitude of Temperature Disturbances in Flat Plate Boundary
Layer. Moo = 4.5, Pr = .7, Res+ = 8000.



Methods for direct simulation of transition in hypersonic boundary layers

323

3z T T T T Y T T T v T Y T T T

300 |

275

Phasel
8

8
o

175

150 |-

125 N i M i . L N i
6"

FIGURE 12. Phase of Velocity Disturbances in Flat Plate Boundary Layer.
4.5, Pr = .7, Res+ = 8000.

1

a.8

o
o

Amplitudell
2

02

6*

FicureE 13. Amplitude of Velocity Disturbances in Flat Plate Boundary Layer.

Mo, = 4.5, Pr = .7, Res = 8000.




324 J. J. W. van der Vegt & J. H, Ferziger

60 M Ll T ] M T v ¥ v T v L T M F. v L] v ¥
iterotion;
50 | 1 i
2.
=
40 | -

Error

2 -

350 400 450 500 550

Index

FicurE 14. Local Error in Flat Plate Calculations at Different Grid Points,
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physical processes. This removed oscillations between the critical layer and the top
wall, although some small oscillations are still visible in the temperature phase angle
at the top wall, Fig. [10].

Figures [10] to {13] show the amplitudes and phases of the disturbances of tem-
perature and velocity at several time steps. The initial disturbances are the eigen-
functions obtained from the linear stability code, with amplitude 2% of the free
steam velocity. The number of grid points for this calculation was 128x500, with
grid stretching outside the boundary layer. The results do not show strong numeri-
cal oscillations. The phase angle shows that the flow field is changing, although not
clearly visible, the amplitudes also grow.

Unfortunately, problems remain. One is that it takes a long time for the distur-
bances to start growing. This can be attributed to small numerical errors in the
eigenfunctions obtained from the linear stability code; they slightly differ from the
eigenfunctions of the most unstable mode. Lack of resolution in some parts of the
flow field also contributes to a slower growth through numerical diffusion. In order
to improve the accuracy, it was decided to implement an adaptive grid method.
For a general review of these methods, see Thompson (1985). The adaptive grid
scheme tries to generate a grid which has a uniform error in computational space;
the control parameters are the gradient and radius of curvature. Figure {14] shows
that three iterations greatly reduce the error and make it more uniform. The orig-
inal grid did not have enough points, especially in the temperature critical layer,
which becomes clear comparing the original grid and the modified one in Figure
[15]. For transition calculations, this region is dominant because the temperature
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FIGURE 15. Grid for Flat Plate Calculations. M, = 4.5, Pr =.7, Reze = 8000.

fluctuations are the largest in the flow field. The simulations are currently being
repeated using the adaptive grid scheme. Improvements in the linear stability code
are also being pursued.

3. Work to be done

o Continue simulations of temporal stability of second mode for a flat plate with
different temperature boundary conditions.

¢ Improvement of non-reflecting boundary conditions to be able to study spatial
stability on a flat plate and a wedge.

¢ Continue activities to transform code to solve three-dimensional flows.

¢ Study of stability of a shock layer perturbed by sound waves.
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