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Direct simulations of compressible
wall-bounded turbulence

By J. C. Buell

Several direct numerical simulations of high-speed turbulent Couette flow have
been performed with a new spectral code. Mach numbers up to three and a Reynolds
number of 3000 were used. A new time-integration scheme was developed to handle
Mach numbers above 1.5, which require greater accuracy and stability than lower
Mach numbers. At low Mach number, the large streamwise eddies found by M. J.
Lee in his incompressible Couette flow simulations were reproduced. At higher Mach
numbers these structures still exist, but they become considerably less organized
(although the disorganization may be a function of the spanwise box size). While
the same types of vortical structures seen in the incompressible flow are observed
at higher Mach numbers, a new structure involving the divergence of the velocity
is also observed, This structure is generally associated with low shear areas next
to the walls, but it has not been determined whether it is a cause or an effect of
the low shear. A “nonphysical” simulation was performed to determine by what
mechanism the Mach number affects the flow. It appears that pressure gradient
(acoustic) effects are more important than variable viscosity effects in determining
the wall shear, but the size of vortical structures is determined more by the local
kinematic viscosity. Low-order mean statistics are provided to help quantify these
effects. '

1. Motivation and objectives

Direct numerical simulations of incompressible turbulence have proven to be in-
valuable in describing physical mechanisms and quantifying various statistics that
are essentially impossible to measure experimentally. For compressible flows, ex-
perimental measurements become even more difficult. Skin friction coefficients have
been measured in several experiments with adiabatic walls (early results are sum-
marized in Liepmann & Roshko 1957). These show a monotonic decrease with Mach
number, but the mechanism is still not understood. Since little is known theoreti-
cally, a study was initiated to quantify the effects of compressibility (Mach number)
on turbulent boundary layers. Qur immediate objective is to be able to describe
differences from the incompressible case in the turbulent structures and mean statis-
tics. A longer-term goal is to use this information to improve turbulence models for
- high Mach-number boundary layers.

Couette flow with isothermal walls was chosen since it is one of the simplest flows
in the desired class. The lack of a mean streamwise pressure gradient plus isothermal
walls implies that both horizontal directions can be assumed to be homogeneous
and that the flow can reach a statistically steady state. Together, these features
greatly simplify the calculations and analyses of the results. The scales used for
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nondimensionalizing the problem are the channel half-width (b), half the velocity
difference between the walls (Uy,), average density (pa), wall temperature (T\,), and
the fluid viscosity evaluated at the wall temperature (g, ). In nonconservative form,
the continuity, momentum and energy equations are
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The ideal gas relation pT = yM?*p was used and the Reynolds and Mach numbers
are defined by Re = poUyb/p and M? = UL /yRT,. The Prandtl number Pr =
cpt®/k* and c, are assumed to be constant throughout the flow (an asterisk is used
to distinguish dimensional quantities). Note that in the dissipation term of (3),
M is replaced with M;. A “physical” simulation is obtained when My = M, but
setting My # M allows us to investigate the relative importance of the pressure
gradient term in (2) and the energy dissipation term in (3). The main effect of the
latter is to produce mean viscosity and conductivity profiles across the layer. Thus
the two most important effects of M are acoustic and variable-property effects.

2. Accomplishments

2.1. Numerical method

The numerical method was described in Buell (1990a). Here we present a brief
review of the spatial approximation and a short analysis of the time integration
scheme needed for higher Mach numbers,

A classical Galerkin method is implemented in all three spatial dimensions. Thus
the expansion functions and “test” functions are identical and satisfy all of the
boundary conditions. Since the streamwise and spanwise directions are homoge-
neous, Fourier methods can be easily used. The implementation is similar to the
incompressible direct simulation codes at NASA-Ames in that time advancement
is performed in wave space which allows the Galerkin integrals to be performed
more accurately (i.e., dealiasing is done in physical space). This is unlike nearly
all compressible codes; these typically use collocation methods and do not have
any dealiasing at all. The complexity of the compressible equations prevents full
dealiasing here, but the use of 30 to 50% more collocation points than modes comes
close to eliminating aliasing errors since the strongest nonlinearity is still quadratic.

Because of the small grid size near the wall, an implicit treatment is needed
for both the acoustic and diffusive terms. A straightforward implementation of
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a spectral method requires that all implicit terms be constant-coeflicient linear.
The acoustic and diffusive terms are decomposed into a constant-coeflicient linear
part and a residual, This decomposition is given by Buell (1990a). It amounts to
rewriting equations of the form

i
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where A represents an eigenvalue of a spatial operator that one wants to treat
implicitly. Since A varies in space, a constant numerical parameter Ag is introduced
so that the first term on the RHS above may be treated implicitly while the second
term is treated explicitly. The appropriate value of )¢ is determined by the range
of A and the time-integration scheme. For large |)A|, there is a maximum range
over which A can vary and still maintain stability for a single A¢. This range is
about Amax/Amin = 2.4 for the three-substep scheme described in Spalart et al,
(1990), which is good enough for simulations using Mach numbers up to about
1.5. Motivated by the desire to simulate higher Mach numbers, a new four-substep
scheme was developed. The coeflicients were optimized so that absolute stability
was obtained for Amax/Amin up to at least 4.5, as well as achieving full third-order
accuracy (previous schemes were second order for the implicit part). The new
scheme is also stiffly stable (Gear 1971) for higher Amax/Amin, so that it appears
that the algorithm will be stable for any Mach number. Details of the derivation and
analysis of this scheme are given in Buell (1990b). The problem is that the above
decompositioﬁ yields an increasing inaccurate time integration when Apax/Amin > 5.
A new time integration scheme is still needed for hypersonic Mach numbers that
does not require the implicit operator to be constant-coeflicient linear.

Several different tests were used to check out the code. The best one consists of
using eigenfunctions from a linear stability analysis (Buell 1990a) to verify that the
growth rate can be reproduced by the nonlinear code. Many different 2-D and 3-D
cases have been tried, and the numerical and linear stability results are always within
0.01 to 1% of each other. Even at M = 8, where the time integration is expected to
be inaccurate, the results are very close. However, when random numbers or any
profile other than an eigenfunction is used as an initial condition, the conclusions
are not as clear. After the transient, the numerical growth (or decay) rate is close to
linear theory, but only if the rate is averaged in time, Instantaneously, the growth
rate oscillates around the average and the oscillations die out very slowly, if at all.
We believe this behavior is physical, but do not have an explanation for it as yet.

2.2, Resulls

Shown in Table I are the four cases for which results are presented here. The
Reynolds number is 3000 in all cases. Nx, Ny, and Nz are the number of modes in
the three directions, and Lx and Lz are the periodic lengths in the two horizontal
directions. The M = 0.2 case is marginally resolved, but the statistics compare
very well with the better-resolved simulations of Lee (1990). The fluid is assumed
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TABLE 1

Numerical and physical parameters

case Nx Ny Nz Lx Lz M My

1 60 48 90 12 8 0.2 0.2

2 110 64 60 12 4 1.5 1.5

3 110 64 60 12 4 1.5 0.2

4 90 90 60 10.6 4 3.0 3.0
TABLE II

Statistical properties

case % w K.E. Puw ply=0) T(y=0)
1 11.05 0.0147 1.0058 0.9996 1.6060
2 9.66 0.0130 1.3220 0.9767 1.3399
3 9.50 0.0127 1.0157 0.9974 1.0048
4 9.60 0.0135 2.22908 0.9294 2.3425

to be air with Pr = 0.7, ¥ = 1.4 and g = T"". The wall quantities (subscript
w) are averages over time, the homogeneous directions, and both walls. K. E,
is the average kinetic energy density over all three directions and time. Even at
M = 3, the difference between standard and Favre averaging is negligible. The
M = 3 case is the only one that is linearly unstable (Buell 1990a). Since only a
very narrow range of wavelengths around the most unstable wavelength of 2.649
are unstable, we decided to use a box length that is an integral multiple (4) of
this length. This guarantees that the flow cannot relaminarize. The spanwise box
lengths were chosen based on the incompressible Couette flow results of Lee (1990).
He found that large streamwise eddies form that scale on the channel height. With
cur nondimensionalization, a pair of these would have a width of about four. Since
these structures are so large, it is impractical to use box sizes large enough so
that the correlations become zero, as is usually the practice in direct simulations.
The question of what is the appropriate box size (based on a “preferred” spanwise
wavelength) and how it varies with the Reynolds and Mach numbers remains open.

2.2.1. Instaniancous fields

Shown in Figure 1 are representative contour plots of the streamwise velocity «
at the midplane y = 0 for the three physical cases (M = 0.2, 1.5, 3). In all three
cases, we see large streamwise structures dominating the flow. At M = 0.2, the
flow is extremely close to being incompressible and the structures compare very
well with the corresponding ones in the incompressible Couette flow simulations of
Lee (1990). They are also similar to the structures at late time in homogeneous
shear flow simulations (Lee, private communication). This indicates that walls are
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FiGURE 1. Streamwise velocity at y = 0 for (¢) M = 0.2, () M = 1.5, and (c)
M = 3. The contour interval is 0.1. Dashed lines denote negative values.

not necessary for their development. Higher Mach numbers appear to cause these
structures to become less distinct. The dependence on Mach number appears to be
related to boundary-layer effects, but it may be due to a change in the “preferred”
spanwise wavelength. Also, the reduction in spanwise box size may allow the large
structures to be less organized. This can be tested by performing alow M simulation
with Lz = 4,

Figure 2 shows 2—y cuts of w, through typical shear-layer structures for all four
cases. We see that although the average shear at the wall is only about 13% smaller
for M = 3 than for M = 0.2, the dominant vortical structures are about three times
larger (extending up to 1 — |y| = 0.5 instead of 1 — |y| = 0.15 to 0.2). The vorticity
magnitude in the shear layers and the peak values at the wall are correspondingly
two to three times lower. Together with the qualitative appearance of the flow, this
indicates that the global Reynolds number Re does not characterize the flow in the
core of the channel. If the kinematic viscosity evaluated at the channel centerline
is used instead of yi,/pa, then Re would be half as large for the M = 3 case as for
the M = 0.2 case. This would be consistent with the appearances of the vortical
structures, but not with the wall shear. Using wall variables to construct a Re,
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does not provide a better overall scaling. Thus, it appears that there is no single
definition of a Reynolds number that characterizes the entire flow, Data is given
in Table II that can be used to construct other Reynolds numbers (the overbar
represents a time and horizontal-space average).

We conjecture that the larger boundary-layer structures at M = 3 tend to break
up the jet-like core flow. Increasing the Reynolds number so that the kinematic
viscosity in the core matches that of the M = 0.2 case would verify this. A more
precise comparison is given by the plots in Figure 2 and the data in Table II for
the two M = 1.5 cases. The fact that the wall shear is independent of My indicates
that the wall shear depends only on acoustic effects (M), However, the similarity of
the vortical structures in the M = 1.5, My = 0.2 case to the M = 0.2 case indicates
that these structures depend on the viscosity distribution, which is almost entirely
dependent on M.

Shown in Figure 3 are organized structures of the divergence of velocity on the
lower wall for the M = 3 case. These take the form of streamwise waves. z-y
cuts {not plotted) show that the vertical extent is much smaller than the horizontal
dimensions of each structure. Typically, they extend up to about 1 — |y| = 0.1 with
the core of the channel being nearly incompressible. Also shown are areas of low
wall shear. The very good correlation with the divergence indicates that the two are
related. It may be possible that the “divergence structures” cause the low shear;
this would help explain the dependence of wall shear on M. On the other hand,
they may be more passive, i.¢., a mode that is unstable under certain conditions but
does little to affect the rest of the flow. Further investigation is needed to determine
the cause and effect.

2,.2.2, Statistics

The large length scales in turbulent Couette flow lead to large time scales and
increased difficulty in obtaining converged statistics., The {ime scales are evident
in Figure 4, where the average (in = and z) shear on both walls is plotted over
the time interval in which statistics are gathered. Although the longest time scales
are not well resolved, 300-500 time units is enough for the low-order statistics to
be reliable. In partmular, this is long enough for the total shear to be constant to
within 2% across the channel.

Shown in Figure 5 are the mean profiles for u, p and T for the M = 3 case.
Note that p and T are scaled with K = 1PrM?(y — 1) = 1.26. This makes the
profiles nearly independent of M (except near the walls, where the M = 0.2 case
has slopes about 15% greater). This is especially true for temperature in the core:
(T(y=0)—1)/K = 1.0660 and 1.0656 for the M = 0.2 and M = 3 cases, respectively
(the difference is not statistically significant).

The variance of each of the velocity components is shown in Figure 6 for the M =
0.2 and M = 3 cases. As was noted for the integrated kinetic energy, standard and
Favre averaging yield the same results, at least up to M = 3. The M = 0.2 profiles
are very close to the incompressible results of Lee (1990). In wall variables, the peak
in the streamwise component is v}, = 2.7 and it occurs at y* = 12. There are
two important differences between the two cases. First, the drop in the streamwise
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FIGURE 2. Spanwise vorticity (—w;) through typical shear layer structures for (a)
M=02 (b)) M =15, Mg =1.5,(c) M = 1.5, Mg = 0.2, and (d) M = 3. The
bottom half of the channel —1 < y < 0 and three units along the z-axis is shown in
each case, The contour interval is 2.
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FIGURE 3. Divergence of the velocity at the lower wall for the M = 3 case. Contour
interval is 0.2, Shaded areas denote low wall shear: g: < b.
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FIGURE 4. Horizontal average of g—’; on the lower wall (solid line) and upper wall
(dashed line) for M = 3.
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FIGURE 5. Mean profiles for u (solid), T' (dashes) and p (dots) for M = 3. K =
3 PrM3(y —1).

component from its peak to its value at the channel center is much greater at the
higher Mach number, while the other two components are qualitatively unchanged.
This increased isotropy is apparently related to the break-up of the streamwise jets
in the core. Second, the peak in the intensity occurs at 1 — |y| = 0.162 for M = 3,
but at 1 — |y| = 0.072 for low Mach numbers. Unlike the relatively small differences
in the absolute levels of the turbulence intensities, this difference cannot be scaled
by any reasonable choice of the kinematic viscosity and velocity scale.

3. Future plans

We have presented here some results for compressible turbulent flow in a channel,
but much work remains to be done in order to achieve our objectives. First, a higher
Reynolds number M = 3 simulation should be performed where the kinematic
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FIGURE 6. Profiles of the turbulence intensities for u (solid), v (dashes} and w
(dots) for (a) M = 0.2, and (b) M = 3.

viscogity in the core matches that of the low Mach number simulations. This should
be straightforward since the M = 3 simulation presented here was over-resolved, and
since the temperature and density in the core appear to be easily predicted. Next,
more realistic adiabatic or mixed boundary conditions need to be implemented for
the temperature equation. This increases the implicit-operator bandwidth since the
appropriate basis functions require three Legendre polynomials instead of just two.
The computational cost of this will be minimal since linear algebra accounts for
only about 10% of the run time now. Finally and most importantly, the simulation
of higher Mach-number flows requires a different time integration scheme. The
best way to do this is to generalize the decomposition (4) so that Xg is a low-
order polynomial instead of just a constant. This will very effectively reduce the
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magnitude of (A — Ag)/Ae and thus increase both the accuracy and stability of the
time-integration scheme. The cost will be an increase in the matrix bandwidth by
an amount proportional to the order of this polynomial. Fortunately, it appears
that all of the # and z derivative operators may be treated explicitly, so that this
matrix needs to be inverted only once per substep, at most.
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