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Local isotropy in buoyancy-generated turbulence
By Jeffrey R. Chasnov

1. Motivation and objectives

Batchelor et al. (1992) recently considered the turbulent motion generated by
buoyancy forces acting on random fluctuations in the density of an infinite fluid.
This homogeneous buoyancy-generated flow field with zero mean density gradient
was conceived as an idealized system which, like isotropic turbulence, may be useful
as a vehicle for the general study of turbulence.

The Batchelor et al. study focused on large-scale density and velocity fluctuations
and yielded power-law forms for the asymptotic decay of their mean-square values.
An interesting discovered feature of the buoyancy-generated flow field was that
no matter how small the initial buoyancy force, the fluid motion always becomes
turbulent with an increasing Reynolds number at large times, in contrast to isotropic
turbulence, where the Reynolds number decreases asymptotically.

An increasing Reynolds number of the flow at large times implies an active small-
scale turbulence, Although buoyancy-generated turbulence is not isotropic but is
axisymmetric at the largest scales where buoyancy forces are strongest, it may
become isotropic at the smallest scales due to a local Kolmogorov-like cascade of
energy and density-variance from large to small scales. The buoyancy-generated
flow field thus presents to us a simple physical flow in which it is possible to study
the turbulence cascade from anisotropic large scales to isotropic small scales. The
question as to whether large-scale anisotropy may induce anisotropy in the small-
scales even in high Reynolds number flows is a matter of current controversy (Yeung
& Brasseur 1991; Waleffe 1992).

The Batchelor et al. study relied partly on theoretical analysis and partly on
direct and large-eddy numerical simulations of the flow field. To this mix, we add
here a two-point closure study based on the eddy-damped quasi-normal Markovian
(EDQNM) closure model applied to axisymmetric furbulence. The EDQNM model
has been shown to yield reasonably accurate quantitative results for a variety of
problems in homogeneous turbulence (Lesieur 1987). The main advantage here in
applying EDQNM to the buoyancy-driven flow field is the wide range of wavenum-
bers over which a solution of the EDQNM equations may be solved. Whereas a
typical large-eddy simulation using 128 grid points has a wavenumber range of
only 60, the EDQNM calculation can be easily run with a wavenumber range of
several decades. Because of the growth in length scales in the buoyancy-driven flow
field, this large wavenumber range allows for a solution of the flow field well into its
asymptotic regime., Recent comparisons between large-eddy simulations and closure
theory (Herring 1990) indicate that a time longer than that attainable by current
large-eddy simulations is required to reach flow asymptotics and that conclusions
based on large-eddy simulation results may be based only on an intermediate tran-
sient state,
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In this research brief, we will briefly introduce the EDQNM equations for the
buoyancy-generated flow field. We then present a Kolmogorov-like theoretical ar-
gument on the scaling of the small-scale spectra. This scaling is then confirmed
by numerical solution of the EDQNM equations. We briefly conclude with possible
future research directions.

2. Accomplishments

2.1. Spectral equations

The EDQNM approximation for homogeneous buoyancy-generated turbulence
applied to a velocity field u and a buoyancy field ¢ results in time-evolution equa-
tions for four spectra of arguments k and 7, where k is the magnitude of wavevector
k and n = k,/k, where k; is the vertical component of the wavevector.

The four spectra F, F?, F?, and F* are most easily defined as the scalar func-
tions which specify the velocity and buoyancy correlation tensors in Fourier space:

< ui(k)uj(k') >=4nk® [F'(k, ne)ej (k)e; (k) + F2(k, ne)ed(k)e] (k)] 6k + k'), (1)

< ui(k)g(k') >= ank? F3(k, i )e? (k)6 (k + k'), (2)

< ¢(k)g(k'} >= 4mk? F*(k, i )6(k + k'), 3)

where the three vectors el(k), e?(k), and k/¥, form an orthonormal basis which
span the wavespace, and e!(k) and e*(k) are given by

. 1
= = g el (4

where j is the unit vector in the direction of the gravitational field.
The exact unclosed equations governing the time-evolution of the-homogeneous
buoyancy-generated turbulence spectra are

OF (k, 1)

ot + ZszFl(k$ nk) = Tl(k:nk): (5)

OF*(k A/
fat:nk) + 2Uk2F2(k,7]k) — Tz(k,nk) —2¢4/1 - ?]%F:‘(k,"?k), (6)

an(ka Tfk)

5+ v+ DRk me) = Tk me) — gy /1= miF (k) (7)

3F4(k>nk)

T 2DEXFH (k) = Tk, mi), (8)
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where v and D are the molecular transport coefficients associated with the velocity
and buoyancy fields, g is the gravitational constant, and the T’s are the spectra of
the non-linear transfers. Note that with our deﬁmt:on of the axisymmetric energy
spectra F! and F?, the buoyancy force appears explicitly only in the time-evolution
equation for F*?,

The EDQNM approximation provides a means to express the transfer spectra
solely as functionals of the F’s. Although a derivation of the EDQNM forms for
the transfer spectra is too long to present here, we note that the transfer spectra
require evaluation of triple integrals over wavenumber magnitudes p and ¢ (such
that p+ q = k) and the azimuthal angle of q. Furthermore, the integrands contain
products of the various F’s as functions of (k,7), (p,7,), and (g,7¢). In addition,
they contain two phenomenological rates associated with the velocity and buoyancy
fields, which have been fixed so as to recover the reasonable values ag = 1.8 and
ag = 0.7 for the inertial and inertial-convective subrange constants, respectively,
in isotropic turbulence.

2.2. Small-scale spectra

In this section, we apply Kolmogorov-like arguments — assuming such arguments
to be valid — to the small-scale spectra of buoyancy-generated turbulence . We
begin by defining spectra E(k), H(k), and G(k), of wavenumber magnitude only, by

B(k) =5 [ dn [Pk ) + P2k, )], )

H(K) = — ] dniey/(1 = n2)F* (ky ), (10)
1

G(k) = / dneFA (ko). (11)

For an isotropic turbulence, E(k) is the usual energy spectrum, G(k) is the spectrum
of a passive scalar field, while H(k), the spectrum of < u3¢ >, vanishes identically.

Original arguments by Kolmogorov and by Corrsin and Obukhov (Monin & Ya-
glom 1975} state that universal small-scale spectra for E(k) and G(k) may be
constructed from the energy cascade rate ¢, the kinematic viscosity v, and the
scalar-variance cascade rate e5. We assume here that the Prandtl number (Schmidt
number) o = /D is unity so that we need not consider small and large Prandt]
number effects. By dimensional arguments, universal small-scale spectra £ and &
are defined by

- y5 1/4.\.\
B(k) = (%) E(k), G&):@(§) Gh), (12)

where

k:(ig”m (13)
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defines a dissipation wavenumber kg = (¢/v%)'/4, which separates the inertial sub-
range from the viscous subrange. .

It is unclear what form the non-dimensional buoyancy-flux spectrum H(k) should
take, since an additional dimensional parameter, namely g, may enter into its spec-
ification, Nevertheless, we proceed by non-dimensionalizing H(k) without use of g,
call the resulting non-dimensional spectrum fa(l?:),

H(E) = &'/ (K;.) lléﬁ(ié), (14)

and hope for some further guidance from the equations of motion for the non-
dimensional spectra.
These equations are determined from Egs. (5)-(8) to be

BE(’“) +2R2E(k) = T(h) + Bh(E), (15)
.‘?.%itf.l + 21 kehk) = Fuch) + BEG(R), (16)
af;t ) 4 2160 = Ta(h), (7)

where ¢t = #,/v/e defines the non-dimensional time (we neglect here the time-
dependence of ¢), the T’s are the non-dimensional transfer spectra, £ = 2/3 if
the scalar field is isotropic at wavenumber & , and B is a non-dimensional number,

defined by

EoV

B=1 (18)

The number B may also be expressed as a ratio of a buoyancy wavenumber to the
dissipation wavenumber

c

B = (ks/ka)*’*, (19)

where

6.3\ 1/4
ky = (2-;;2) . (20)

For  of order unity and B < 1, buoyancy effects on the flow become small and we
expect the last term of Eq. (15) to be negligible, yielding an energy spectrum free
from the effects of buoyancy. However, the last term of Eq.(16) cannot be neglected
because without it the isotropic equations are recovered and the non-dimensional
buoyancy-flux would vanish identically, This suggests the scaling f;(k) = BH (.’?:) 50
that a universal function for the buoyancy-flux should be defined by :
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7 174
1) =geo( %) H(B), (21)
which yields the following equations for the universal small-scale spectra:
6@5“ B2 E(k) = Ts(k) + B2H(R), (22)
HE) | 1400050 0 sie . was
SRR 4 LTk = Tuh) + £G(h) (23)
ac;g ) + = sz(k) T (k). (24)

For B < 1, the energy spectrum E(k) and buoyancy spectrum G(k) reduce to
their isotropic form, whereas a new universal spectrum of the buoyancy-flux H (!?:)
is defined.

The scaling of the three spectra in the inertial subrange may be obtained by
requiring E(k), G(k), and H(k) to satisfy power-law behaviors such that viscosity
v cancels explicitly. In this way, we find the usual Kolmogorov and Corrsin-Obukhov
spectra

Ek) = aEe2/3k-5/3, G(k) = aG696-1/3k-—5/3 (25)

and an additional inertial buoyancy-flux spectrum

H(k) = apggege ?3k~"/3 (26)

seen to be directly proportional to g. The buoyancy-flux spectrum H(k) is observed
to decrease faster than /E(k)G(k) with increasing k as is reasonable for a return-
to-isotropy of the small scales. We note here that a k~7/% spectrum for H( k) has
been previously predicted for a stably stratified flow (Lumley 1964) and also for the
spectrum of the cross-correlation < uv > in homogenous-shear turbulence (Leslie
1972).

2.3. The turbulence cascade

- An interesting consequence of the non-zero inertial buoyancy-flux spectrum, Eq.
(26), is its effect on the inertial cascade of energy from large to small scales. For
wavenumbers in the inertial range, the buoyancy force continually adds energy to
the cascade and an equation for the variation of the cascade rate with wavenumber
may be determined to be

De(k)
Bk

Following Lumley’s (1964) work on stably-stratified flows, we assume that the
cascade rate € which enters into the scaling of the universal spectra may be taken to
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be €(k), in contrast to isotropic turbulence, where it is independent of k. (However,
in our buoyancy-generated flow, the density-variance cascade rate e which enters
into the scaling of the universal spectra is, in fact, independent of % in the inertial

subrange.)
Substituting Eq. (26) for H(k) into Eq. (27), we find

o 4/373/8
(k) = €oo [1—57” (%) } , (28)

where €5, = ¢(00) is the energy dissipation rate and ks is the buoyancy wavenumber
defined in Eq. (20) with ¢ replaced by €x. It is clear from Eq. (28) that the
cascade rate increases with increasing k and converges asymptotically to the energy
dissipation rate. It is also clear that the concept of an inertial cascade must break
down at k ~ ki, so that inertial range behavior may only be expected for ky < &k <
kq. From Eq. (19), this implies the existence of an inertial subrange only for B < 1.
Corrected inertial subrange scaling due to buoyancy may now be determined by use
of e(k), Eq. (28), for € in Egs. (25) and (26).

2.4. EDQNM small-scale spectra

The ideas just developed have been tested by numerical solution of Eqs. (5)-
(8) using EDQNM forms for the transfer spectra. Initial conditions are such that
F*(k, ) is taken to be independent of n with spectra proportional to k? at small
wavenumbers. The spectra F!, FZ, F? are assumed to be initially zero. Physically,
this corresponds to a fluid initially at rest with a given homogeneous buoyancy
field containing large-scale fluctuations. Other initial conditions have also been run
(F* ~ k* at small wavenumbers; F! and F? with given non-zero spectra, etc.), and
for time-evolutions well into the asymptotic regime, it is observed that the scaling
of the small scales becomes independent of the initial conditions.

The approach of the small-scale turbulence to isotropy can be observed in Fig, 1
where we have plotted F'(k,n). = 0), F'(k,ng = 1) and F2(k,q; = 0), F2(k,me = 1)
at a time well into the asymptotic regime. Small-scale isotropy occurs if, at large
. wavenumbers, the spectra become independent of 7 and F! = F?, as is indeed
observed. The large-scale anisotropy of the flow is also clearly evident where these
four spectra diverge at low wavenumbers. In fact, it is easy to show that the
behaviors of F! and F?* as & — 0 are very different in that F! ~ k* whereas
F? ~ k2, the former due to non-linear transfer, while the latter due to the direct
effects of the buoyancy force.

We have tested the scaling laws given by Eqs. (12) and (21). Unscaled spectra
E(k), G(k), and H(k) at two different times in the asymptotic regime are shown
in Fig. 2, whereas the scaled spectra E(£), G(k), and H(E) are shown in Fig. 3.
A near-perfect collapse of the small-scale spectra at the two times is evident, in
agreement with our earlier analysis. Also in Fig, 3, we show power-law behaviors
corresponding to k~5/3 and k~7/%, The slight deviations of the EDQNM spectra
from these predicted power laws need to be understood, although they may only be
due to numerical errors.
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velocity spectra

FIGURE 1. Approach of small-scale turbulence to isotropy.
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unscaled spectra

FIGURE 2. Unscaled spectra at two different times.

3. Future plans

It is of interest to apply some of the ideas developed for homogeneous buoyancy-
generated turbulence to homogeneous stratified flows, The stably stratified case is
perhaps the most relevant to mixing in the oceans and the atmosphere. It is easy
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scaled specira

FIGURE 3. Scaled spectra at two different times.

to modify the EDQNM equations for this problem, and some interesting analytical
and numerical results (which include large-eddy numerical simulations) have already
been obtained for the case of negligible buoyancy (Chasnov 1992). When both
buoyancy and mean-stratification are important, the complications arising from the
generation of gravity waves must be considered.

Some of the ideas developed for homogeneous buoyancy-generated turbulence
may also be applicable to homogeneous shear-flow. (For example, both of these
flows have four defining spectra, an increasing Reynolds number at large-times, and
possibly a small-scale k~7/* behavior for the co-spectra). It will be of interest to
see how far possible analogies between these two types of flows may be exploited.
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