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Non-linear interactions in homogeneous
turbulence with and without background rotation

By Fabian Waleffe

1. Motivation and objectives

This project started from a discussion with Dr. Srinivas Veeravalli about the effect
of rotation on turbulence during the CTR, 1990 summer program. There seemed to
be conflicting reports on the effect of rotation. Some expected a Taylor-Proudman
reorganization of the flow at strong rotation rate, but this was refuted by linear
analysis and direct numerical simulations (DNS) owing to the existence of inertial
waves (Speziale et al. 1987). Linear analysis and DNS suggested an isotropization
of the flow, but some experiments (e.g. Hopfinger et al. 1982, Veeravalli 1990) and
analyses (Cambon & Jacquin 1989) showed a tendency towards anisotropy. These
effects appear at small Rossby numbers, and it seemed that a weakly non-linear
analysis could shed some light on the problem.

At the same summer program, Domaradzki et al. (1988, 1990 a,b) continued
their study of triadic transfers. Their conclusions were that turbulent transfers
are dominated by non-local interactions with local energy transfer. This is only
partly consistent with the common wisdom that local interactions with local energy
transfer dominate the inertial cascade. Brasseur et al. (1991 a,b,c) then called on
this predominance of non-local interactions to refute the Kolmogorov assumption of
local isotropy at the small seales. The inertial wave decomposition showed features
observed in the simulations. A deeper analysis was undertaken in search of a better
understanding of triad interactions and of the significance of the numerical results.

2. Accomplishments

The helical (or inertial wave) decomposition of the velocity field clearly identifies
two types of triadic transfers depending on whether the small scale helical modes
have helicities of the same or the opposite sign. Only one type of interaction shows
local transfer when the triads are non-local. In those cases, the local cascade to
higher wavenumber must always be accompanied by a feedback on the large scale.
An instability principle, suggested by the stability characteristics of triad interac-
tions, has been introduced and predicts the direction of the energy transfers. These
predictions agree with DNS and the Test Field Model.

Although the transfer from the medium to the longest leg becomes dominant
in non-local triads, the change in the energies of the long legs is not large. This is
because of a cancellation occurring when summing over several triads. In particular,
one must always consider the two triads involving the large scale and its conjugate.
The net result of the large local transfers is an advection in wave space. The
cascade (or flux) of energy through a given wavenumber is not dominated by the
large local transfers either. This is a consequence of the necessary feedback on the
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large scale. For each large local transfer through a wavenumber, there are many
feedbacks on the large scale. In an infinite inertial range, it can be shown that
the net effect is actually a reverse cascade to the large scales. One must conclude
that ‘non-local interactions with local transfers’ are not dominant in turbulence.
The rejection of the Kolmogorov hypothesis of local isotropy at the small scales is
thus ill-founded, The other type of triad interactions, which do not have the local
transfer character when the triads are non-local, are the interactions responsible for
the inertial cascade to larger wavenumber. Their structure shows strong similarity
with the elliptical instability [Waleffe 1991).

The main effect of background rotation is to restrict triad interactions to resonant
ones. The instability principle still applies and, coupled with the triad resonance
condition, it predicts a transfer of energy towards wavevectors perpendicular to the
rotation axis. That tendency is observed in experiments, DNS, and an EDQNM
model.

2.1, Homogeneous turbulence

2.1.1 Helical decomposition

The flow of an incompressible fluid in a periodic box of side L is conveniently
represented by its Fourier series

(@) =y (k) e

E

where k = (m,n,1)2x /L, with m,n,l = 0,£1,42,.... In Fourier space the con-
tinuity equation requires that k- ﬁ'(g) = 0, and thus there are only two degrees
of freedom per wavevector. Here, the two degrees of freedom are chosen as the
mazimum and minimum helicity modes,

(k) = aph+a_k* (1)

where

h=0xi+ir (2)
The * superscnpt denotes a complex conjugate, & = k / k is the unit vector in the
direction of k and 7 is a unit vector orthogonal to k k- = 0. One can choose, for

instance, ¥ = (#x&)/||Z%&||, where 7 is an a.rbltra,ry vector. The vectors &, h* are
the eigenmodes of the curl operator,

ikxh =k h. (3)

The modal kinetic energy and helicity are given by, respectively:

%a(ié) C(R) = agal 4+ a_a’,

4)
|
2

(k) - &*(k) = k(ayal —a_a*)



Triad inleractions in homogeneous turbulence 33

where & = ik X is the vorticity. It is clear that the + mode corresponds to maxi-
mum helicity and the — mode to minimum helicity (normalized by the energy). It
is said that the two modes have opposite polarities.

The quadratic non-linearity of the Navier-Stokes equations induces interactions
between triads of wavevectors & + 7+ ¢ = 0 only. There are eight fundamental
interactions corresponding to each value of the triplet (sg,s,,s,), where si,3p, 34
are sign coefficients equal to 1 which identify the helical mode involved for k7,6
respectively. The eight possible interactions will be denoted by the integer ¢ =
1,...,8, following a binary ordering: 1 = (+,+,+), 2 = (+,+,-), 3 = (+,—,+),
4=(+,—,~); ..., 8= (—,—,—) Asaresult of these interactions, the modal energy
and helicity evolve according to equations of the form:

8
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The factor 1/2 comes from a symmetrization of the energy transfers, t(")(.’;:., 5hq) =

(%, ¢, 7).

In an inviscid fluid, total energy and helicity must be conserved at all times. A sin-
gle triad of helical modes constitutes a kinematically acceptable initial state which
must conserve energy and helicity at time zero. Therefore, the transfer functions

t(i)(g, 7, ) must satisfy
tOE, 5,0 +tOF, ¢ ) + 1@ k.5 =0

sik tO(E, 5, §) + 5pp OB, &, F) + 500 G K, 5) = 0
which imply that o .
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The full expression for t(*)(E, P, q) is derived in [Waleffe 1991]; it reads:

Dl oo 1
tO(k, 5,8) = 5 (spp ~ 544) stk + 3P + 544] Ef—pq-
X Skpq eiﬁ(a’ua’apasq) +c.c. (8)

where sgpq = 3xSpsq = £1, exp(if) is a phase factor representing the orientation of
the triad with respect to some reference frame, and :

Q@ sinay sina, sina,

2kpg ~  k p g
with Q% = 2&%p? + 2p%¢% + 2¢*k% — k* — p* — ¢* 2 0.
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2.1.2 Energy trensfers and the snatability principle

The three coeflicients s,p—s4q, 3,9~ 1k, sgk—spp sum up to zero, so in general
when k, p, ¢ are distinct, one coeflicient has a sign opposite to the other two. It is
clear that this can never be the coefficient of the longest leg. If ¢ is the longest
leg for instance, then s,p — 3,4 has the sign of —s,q and 8¢ — sik has the sign of
344, thus one of these must necessarily be the coefficient whose sign is opposite to
those of the other two. The relations (7) then show that there are only two types of
triadic energy transfers depending on whether the helical modes associated to the
two longest legs have helicities of the same or of the opposite sign as illustrated in
fig.1.

FIGURE 1. The two types of energy transfer for & < p < ¢: ‘B’ interactions when
Sp = 84, energy flows out of middle wavenumber; ‘E’ interactions when 8p = —8g,
energy flows out of smallest wavenumber,

The (inviscid) equations are reversible and the transfer of energy can occur in
both directions in any particular realization (e.g. when k < p < ¢ the Sp = —84
transfers can be either to or from E) However, it is proposed here that statistically
each triad interaction extracts energy from the mode whose coefficient has a sign
opposite to those of the other two. This says that interactions involving small scale
helical modes of opposite polarities will draw energy out of the large scale, while
interactions where the small scale helical modes have the same polarity draw energy
out of the medium scale. This is called the instability principle. It is inspired by
the stability properties of the elementary triad interactions described below. The
instability principle is consistent with the TFM model and DNS [Waleffe 1991],
Kraichnan (1967) used an equivalent assumption in his analysis of 2D turbulence,
where interactions are of the ‘B’ type only, stating that one intuitively expects
a “statistical spreading of the excitation in wave space”. He also showed that
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assumption to be consistent with the early time development of an initially Gaussian
distribution.

A single helical mode is an exact solution of the Navier-Stokes equation,; this is
a direct consequence of the continuity equation # - E = 0. That solution is unstable
when perturbed by a smaller scale helical mode of the same polarity and a larger
scale mode (of either polarity), such that the three modes form a triad. It is also
unstable if perturbed by smaller scale helical modes of mutually opposite polarities.
These conclusions are deduced from the equations for a single triad interaction.
From (7) they have the form

a5, =(8pp— 349)C a:, a:q
sp = (8¢9 ~ sxk) C aj aj, (9)
= (Skk - S.Pp)casg ap

The evolution of small disturbances sy, s, ON the base flow (ask,a,p,asq) =
(0, A,0), for instance, is determined by the equation

d?a, .
dtzk = (8pp — 349)(srk — spp) CC* AA" a,,

There are exponentially growing solutions if (s,p — s,¢)(sxk — spp) > 0. Hence
the unstable mode is that whose coefficient in (7,9) has a sign opposite to the other
two. Some justification for the instability principle might be that although there are
disturbances both growing and decaying exponentially, the average flow of energy
for the unstable mode is outward because (e?! — e~2t)/2 > 0.

2.1.8 Non-local interactions

A non-local interaction is such that one leg of the triad is much smaller than the
other two, which are then nearly equal. Choose for instance |¢ — k| < p € k = gq,
then from (7)

O F 5 ) L 45 o R
t (k,P,é’)mq_(Sksq)kt (7,4, k)
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When g = —s4 this reduces to
S 0 1, o .
t(')(k,p,ﬂ = t( )(Qa k,ﬁ) =~ —"ét(')(P:Qs k) (10)

and when s, = 34,
OF 70 > 105.6.)
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From (7,8),
(D8, F) & 2(¢% = k) =2 [skpq P g as, s, + .01
s &y 2 2kpq g # Ty Qs

There is no reason to expect the triple correlations < Gs,Ga, a5, > to vary strongly
from one interaction to the other, at least in non-helical turbulence. Thus the
transfer ¢()(5, ¢, k) into the smallest leg should be of about the same magnitude for
all interactions, whether s = s or s; = —s,, and of order O(q — k). However,
(10,11) show that the transfer into the long legs & and ¢ will be strongly dominated
by sx = s; interactions with a large exchange of energy between the long legs.
According to the instability principle, that transfer should be from the medium to
the longest leg. This is also what the DNS suggest. This analysis confirms, for a
single triad, the results of Domaradzki and Rogallo. The important point for the
following is that the large local transfer from the medium leg to the longest must
necessarily be accompanied by o feedback into the small leg (11).

FIGURE 2. The rate of change of mode ¥ comes from two triads involving the
large scale 7.

Although the transfer between the long legs within a single triad is very large, the
net effect on either of the long legs is not necessarily large because of cancellations
occurring when summing over several triads. One other triad which must always be
considered is that involving the complex conjugate of the large scale (fig.2). In the

simplest case where the small scales interact with a single large scale mode U (D),
the equation for #(k) is

(;% + vk (k) = ~i P U (Dn(E = 5) + Un(—Pun(k + 5] (12)

where Prmp = kmPin + knPim with Pry = 81 — kikp /2, Separating the large
scale into its real and imaginary part I = U" + if/* and assuming that @(k + p) =
#(k) & ' V¥ @(k), one derives the equation for the energy of the small scale,

— -

(% + 20k e(k) = 2T E) - Vre(®) + a*. S @ (13)

where e(%) = 1/2 @* @, 8 = [pU + U'p), and VF = 8/0k is the gradient in Fourier
space. One gets the same equation from the linear evolution of disturbances on an
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unbounded shear obtained by expanding the large scale flow in the neighborhood
of f+ & = 0, U(F) ~ 2U" — 2U*f+ # Each term in (13} scales on the strain rate
pU" of the large scale unless the energy distribution is very sharp in Fourier space.
The advection term comes from the difference of two large triadic terms which scale
on the amplitude of the large scale. That term advects energy in the direction of
7 (fig.3). Thus it tends to deplete the energy of the small scales in the direction
perpendicular to §. This conclusion is opposite to that of Brasseur and Yeung
(1991).

Figure 3. The multiple ‘B’ interactions with the large scale 7 tend to advect
energy in the direction of 7, with feedback on the large scale.

FIGURE 4. Partial sum over triads of a given shape shows the necessary cancel-
lations both for the rate of change of a small scale and for the net cascade across
k..

Although there is a cancellation of the large local transfers for the net effect on
a small scale, one might still think that the large transfers represent a strong flux
of energy through a wavenumber k. and are the essence of the energy cascade from
large to small scales. This is not the case because of the feedback of energy into the
large scale associated with the transfer from medium to small scale. The net flux
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of energy across a wavenumber k. is the sum of contributions from many triads.
There is 2 large local contribution but many small non-local feedbacks into the large
scale (fig.3,4). In fact, it can be shown by summing over all triads of a given shape
(somewhat as in fig. 4) that, for an infinite inertial range, the net cascade from
‘B’ interactions which are responsible for the large local transfers is actually from
small to large scales [Waleffe 1991, sect.5]. The two types of triadic transfers (‘E’
for eddy-viscosity, and ‘B’ for backscatter) and their contributions to the energy
cascade are shown in fig.5.

FIGURE 5. The various types of triadic transfers involving a large scale, which
contribute to the cascade through k.. Solid lnes represent transfers in a single
triad.

The significance of the non-local interactions with local transfer is to be found in
the “cusp-up” behavior of eddy-viscosity models near the cut-off wavenumber. This
is clearly illustrated in fig, 5. If wavenumbers above k. are not included, the flux of
energy to small scales from the missing 'E’ interactions can be modeled by an eddy-
viscosity, but there is also a large sink of energy for wavenumbers near the cut-off
which requires a cusp-up in the eddy-viscosity. This energy drain near the cut-off
is linked to a negative contribution to the eddy-viscosity at small wavenumbers.

2.2. Turbulence under strong background rotation

Linear perturbation of a state of solid body rotation can give rise to a spectrum
of inertial waves (Greenspan 1968). These inertial waves have the structure of the
helical modes introduced in section 2.1.1. Indeed the linear inviscid equations in
the presence of uniform background rotation Q read

a - wh — -
o +20x4d = -Vp

which for a Fourier mode @ = h exp(ik - & + iwt), where k-h = 0 for continuity,
becomes

iwh + 2%k = —ikp
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Taking the cross-product of this equation with ik gives
w(ikxh) = 2(E-G) k

which shows that the helical modes ﬁ,, with izxﬁ, = skh, (s = 1), are the
eigenmodes of the linear perturbations of rigid rotation. The dispersion relation for
those helical eigenmodes follows as

w=27-

showing that the two eigenmodes have opposite polarities and opposite eigenfre-
quencies. .

In the presence of background rotation 2 = %, the helical formulation of the
Navier-Stokes equations reads, from (9),

a
(gt‘ - Uy, + sz)ask = Ro Z(Spp - Sqq) Ca:FG:W (14)

The Coriolis force contributes the linear term iw,, a,, , with w,, = sx cos b, cos by =
K-Z,E= k~1k. The symbol S represents a sum over all triads E+7+¢=0and
all interactions (sg,sp,34). The equations have been non-dimensionalized using
(292)~! as the time scale and V and L as the characteristic velocity and length
scales, respectively. The parameter Ro = V/(2QL} is the Rossby number, and
v = v*/(2QL?) is the Ekman number with »* as the dimensional viscosity, Our
interest here is in small Ekman and Rossby numbers (large ), This is a multiple
time scale problem. On the time scale of the rotation, the amplitude a,, behave as

g, = by, e™ret (158)

where the b,, are essentially constant. The rate of change of the b,, is found by
substituting (15) in (14),

(3 + k) boy = Ro Y (opp = 5q0) OB, B, e~ Catomtunt (1)

Clearly the b,, evolve on the slow time scale Rot from non-linear interactions.
Interactions such that w,, 4+ w,, + ws, # 0 will tend to average out over the long
time scale so that the approximate equation for b,, is

0
Qrv)b =R Y Y (p-s0CBE, ()
2p,8q E+ptg=o
way twaptway =0

This equation is identical to that arising in homogeneous turbulence except that
the sum has been restricted to resonant triads. The only acting triads are those

which satisfy:
kcosbi + pcos8, + gcosfy =0

sk cosf + spcosfy + 54 co88; =0
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which requires that

cosfp  cosb, _ cosf,
Spq —8qp  S¢k— kg skp — spk’

(19)

The stability characteristics of a single triad (9) are unchanged, and the instability
principle can be used here as well. For the purpose of the discussion, let again
k < p < ¢ as in fig.1. The instability principle states that interactions where

$p = —s, transfer energy from the small leg k to p and ¢, while interactions where
8p = 84 transfer energy from p to k and ¢. From (19) when s, = —s, one finds
b
cosfl, = _—gm cos O
—{g+p)
k+ (sgsq)p (20)
cosfy = SRR o 0
—{z+p)

These interactions then transfer energy to modes p and ¢ such that |cos8,|, | cos 8,
< |cos @[, because k < p < ¢. Likewise, when s, = 34, (19) gives

q—p
= = G ()
cosl, = (sksq)p — & 0s &
! k—(sksp)q ?

and these interactions transfer energy from p to modes & and g with | cos 8|, | cos 6,
< |cos8p[. Thus all interactions transfer energy towards smaller values of cost?
i.e. towards wavenumbers perpendicular to the rotation axis. However, resonant
interactions can not transfer energy directly to wavenumbers perpendicular to the
rotation axis. If coséy = 0 for instance, then from (19) (sgp — spk) cos g = (syp —
spk)cos 8, = 0, which requires s; = s, and k = p. The resonance condition (19)
then imply that cos 6 = — cos 8,, but the rate of transfer of energy (7) into mode ¢
is proportional to s;k —spp and thus vanishes in this case. This last result has been
obtained by Greenspan (1969) for eigenmodes in a bounded container. Resonant
interactions transfer energy towards smaller values of |cos8] = |k./k| but not to
cos§ = 0. This transfer of energy towards smaller | cos 8| is verified numerically in
the DNS of Mansour (1990). It is also predicted by an EDQNM model of Cambon
and Jacquin (1989). The average over a random distribution of modes with cos 8 ~ 0
shows that 2 < w? > / < u? 4+ v? >~ 2, while this ratio would be equal to 1 in
isotropic turbulence. This tendency is observed in the experiments of Veeravalli
(1991) (fig.10 with v and w interchanged).
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3. Future plans

3.1. Mazimum instability principle

The instability principle described in 2.1.2 determines the sign of the triadic
energy transfers. Its mathematical formulation is that sgpqexpiff < a,,a4,0,, >
+c.c. has the sign of

~(8pp — 849)(5¢q — skk)(sk — spP)(Skk + 8pp + 849)- (22)

This assumption gives qualitatively correct results for the direction of the energy
transfers. In order to obtain quantitative information, it is necessary to strengthen
the assumption. As a first example, consider the mazimum instability principle:

Skpg €XPif < G4, 5,84, >= 0l ||as, | las, ] (23)

where ¢ is the sign of expression (22). With this assumption, each interaction drains
the maximum amount of energy permitted by the respective energy of each mode
from the unstable mode for that particular interaction. This assumption of maxi-
mum correlation is likely to be too strong, but it satisfies all detailed conservation
properties and gives a realizable model. The rate of change of the modal energy
is proportional to the square root of the energy and vanishes when the energy is
zero, so energies should not become negative. In isotropic turbulence, this leads to
a model of the form

(2 + 20k B(E) = Y Copal B(R) B(D)B(0)) .

3.2. Cusp-up behavior of the eddy-viscosity

The cusp-up in eddy-viscosity models is linked to an advection process in wave
space. When a sharp cut-off is introduced, energy can not be advected beyond
the cut-off and needs to be removed by an increased viscosity. Instead it might be
possible to design some “free-outflow” boundary condition at the cut-off. Note that
the ‘3/2-rule’ used for dealiasing spectral computations perhaps acts as a “soft”
boundary condition which does not require a cusp in the eddy-viscosity. In real
space, one needs to study how numerical methods deal with the “squishing” of
structures beyond the grid resolution. If small or narrow eddies can be squished
below the grid size, a cusp is not necessary in the eddy viscosity. The evolution of
a small Fourier component on a large scale stagnation point flow should be a good
test.

3.2. Effect of a wall in rotating turbulence

As shown above, thg instability principle predicts a transfer of energy towards
smaller values of € - k/k, but resonant interactions can not transfer emergy to
wavevectors orthogonal to the rotation axis. Thus there is only a tendency to-
wards two-dimensionality. The experiments of Hopfinger et al. (1982) show a much
more dramatic two-dimensionalization of the flow.
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Preliminary analysis suggests that the presence of walls induce new interactions.
For each wave incident on a wall, there must be a reflected wave in order to sat-
isfy the boundary conditions. This sets up some strong correlations between some
Fourier components independently of the non-linear effects. Also, in the reason-
ing leading to equation (17), the resonance condition should in fact be relaxed to
We, + ws, + ws, = O(Ro). Thus all modes nearly orthogonal to the rotation axis
are essentially ‘resonant’, or in other words, the “phase scrambling” (Mansour et
al., 1991 (b)) due to linear effects does not affect low frequency modes. This re-
laxes the constraints that sy = sy, and ¥ = p when cos§, = 0. The s; = -8y
interactions are now allowed, and those transfer energy to mode g. One antici-
pates that these two effects, correlation between incident and reflected wave and
near-resonance of all modes nearly orthogonal to the rotation axis, will lead to a
stronger two-dimensionalization of the flow.
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