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Scaling analysis of energy
transfer in the inertial range

By Ye Zhou

1. Motivation and objectives

The classical Kolmogorov phenomenology of energy transfer still remains an im-
portant element in turbulence theory (Monin and Yaglom, 1975; Tennekes and Lum-
ley, 1972). Since all turbulence theories and models rely on assumptions about the
energy transfer process, attempts are being made to verify the underlying assump-
tions. Recently, direct numerical simulation (DNS) measurements (Domaradzki
and Rogallo, 1990; Yeung and Brasseur, 1991) have suggested that energy is largely
transferred downscale locally, supporting a basic concept of the Kolmogorov phe-
nomenology that leads to the universal inertial subrange. However, these authors
concluded that the local energy transfer results from triad interactions that are
nonlocal in the spectral k space.

The claim that local energy transfer results from nonlocal triadic interactions has
important consequences for turbulence theory. Indeed, it questions the validity of
the assumption of the statistical independence of the large- and small-scale motions
in the Kolmogorov universal theory of turbulence (Ohkitani and Kida, 1991). In a
low Reynolds number DNS, Yeung and Brasseur (1991) observed that anisotropy
is induced in the small scales by forcing in the large scale. Moreover, they argued
that such interactions will persist at high Reynolds numbers. The consequences of
their argument are clearly at variance with the classical hypothesis of a universal
isotropic structure at the small scales independent of the large-scale structure. In a
computation with an extended period of forcing, Yeung et al. (1991) recently found
that the small scale anisotropy eventually decreases at later time.

While we have no disagreement with these studies concerning the actual mea-
surement of the raw interaction statistics— the triad nonlinear transfer T'(k,p, ¢)—
we believe that T'(k,p,¢) is not the appropriate quantity one should use to deter-
mine whether the nonlinear interactions are local or not. Rather, we argue that
these raw interaction statistics should be viewed only as a mathematical building
block in the energy transfer process, and their physical interpretation requires fur-
ther summation, during which much cancellation occurs. Following a suggestion by
Kraichnan (1971), we have summed the measured raw band-band transfer interac-
tions in a way that directly indicates the scale disparity of contributions to the net
energy flux across the spectrum. We found that the net flux results primarily from
interactions in which the ratio of largest to smallest scale is less than 10. Similar
results have been found from the analysis of the net energy transfer. As a result, we
conclude that DNS measurements, in fact, lend support to the classical Kolmogorov
phenomenology of local interactions and local transfer in an inertial range.
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2, Accomplishments

2.1. Preliminary

We restrict our attention to the velocity field ua(k,t) that is a solution of the
incompressible Navier-Stokes equation

[g{ + Vokzlua(h t) = —% gy (k) f djup(j, t)uy(k — j, t) + fa(k, 1), (1)

where Pogy(k) = kgDay(k)+kyDap(k), Dap(k) = Sag — kaks/k?, f is the external
force (f = 0 for the decaying case), and v is the molecular viscosity.
The energy equation E(k) = 1|u(k)|? is formulated as

(2 + 2wk E(K) = T(k) + F(k), )

where F(k) is the forcing spectrum and T(k) is the the energy transfer function. The
contribution to T'(k) resulting from nonlinear interactions between wavenumbers in
band k and wavenumbers in bands p and ¢ is denoted by T'(k, p,q). The iriad energy
transfer function T'(k,p,q) is given by

T(k,p,0) = 5 3 Imlut () Pag (o (pYun (@)l (3)

where the asterisk denotes a complex conjugate and ), denotes a summation over
shells in k, p, q subject to the triangle constraint. In turn, the triad energy transfer
function T'(k,p, q) is related to T(k) as:

T(k) = Y T(k,p,q). (4)

P

Another important measurement for the energy transfer process is the energy flux

(k) = /; " j; dpdqT(k', p, ). (5)

In order to separate the local and nonlocal interactions, we introduce the param-
eter

maz(k', p, q)

" min(¥,p,9) ©
which indicates directly the disparity of the interacting scales. This parameter has
been used to classify the interactions as local (s < 2) and nonlocal (s > 2) by
Lesieur (1987). Kraichnan (1971) introduced a different set of parameters (v, w)
where v (v < 1) is the ratio of the shortest to the middle leg and w is defined as
k'/p (1 < w < 1+v). The pair (v, w) completely determines a unique triangle shape.
Using the test field model, Kraichnan (1971) calculated the energy transfer locality
function that gives the fraction of energy transfer due to triangles whose smallest
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leg is larger than v times the middle leg. Analysis of this function indicates that
65% of the transfer involves wavenumber triads in which the smallest wavenumber
is less than one-half of the middle wavenumber.

The work of Kraichnan (1971) provided a theoretical framework in which one
can determine whether the nonlinear interactions are local or nonlocal. For a given
scale k, he argued that all raw interaction statistics must be summed such that
physical quantities contain only one parameter which indicates the scale disparity
of the interaction.

2.2. Analysis of the energy transfer function

We measure the individual contributions to T'(k), characterized by the shape
parameter s

T(k) = E Tk, ), (Ta)
where

T(k,s) = Z T(k!p! ‘I) (7b)

p:ﬂll

is the partial sum of T'(k,p, ¢), over all (p,q) at constant s. The key point here
is that the summation covers all interaction scales, subject to the triangle con-
straint, leaving only the dependence on scale disparity., This follows in spirit the
procedure described in Kraichnan (1971). This measure has several properties that
aid in its interpretation. First, as can be seen in Fig. 2, the contributions for
all s are of the same sign; there is no further cancellation in the sum (7a). Sec-
ond, [ dkT'(k,s) = 0; this follows immediately from the detailed energy balance of
T(k,p,q) and the invariance of s(k, ¢, p) under permutation of its arguments. Note
that [ dkT(k,p,q) # 0. Fig. 1A shows the contributions T'(k, s) of each octave of s
to the total energy transfer T'(k) for a simulated inertial range. The database was
generated by a large—eddy simulation (LES) with an eddy viscosity derived from
a stochastic equation that is consistent with EDQNM (Chasnov, 1990). Energy is
dissipated at high k by the eddy viscosity, and the numerically resolved transfer
T(k) is non-zero there as a result of this artifact, The energy is injected with a
forcing spectrum F(k) peaked about a wavenumber k¢ % 2, and a stationary state
above k = 8 is maintained in the Kolmogorov inertial range. Note that the energy
is removed from the energy containing region primarily by nonlocal interactions

(s > 4).

The 30 < k < 65 region of Fig. 1A is enlarged in Fig. 1B to determine whether
local or nonlocal interactions are responsible for the increase of T'(k) at a large k.
The major contributions to T(k) are those of local interactions (s < 4), consistent
with classical phenomenology. The nonlocal interactions become nonzero at about
k = 55, eventually exceeding the local interactions at a very high k. This is an
artifact of the sharp numerical spectral truncation.
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FIGURE 1a. The numerically resolved transfer spectrum. The contributions
to total transfer from various interaction disparities are indicated. total,
—m—-1<8<2,——2<C3<4, —-—4 <3<, e s> 8.
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FIGURE 1B. The same as figure 1A but enlarged for 30 < k < 65.

Recall that T'(k, p, ¢) is a very smooth curve with a pair of positive and negative
peaks (Domaradzki and Rogallo, 1990). The results of our summing procedure
contain some statistical noise because of the high degree of cancelation among the
raw interaction statistics. The noise is most pronounced at small wave number
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Ik, s)

FiIGURE 2. The numerically resolved flux spectrum, The contributions to total
flux from various interaction disparities are indicated. total, ~~--1 <3 <2,
_._2<3<4,___4<3<8, ........ 8> 8. :

where the statistical sample is relatively small,

2.8. Analysis of the energy fluz function

It is desirable to measure the relative contribution of local and nonlocal inter-
actions to the energy flux as a function of k. Following (5), this is equivalent to
rewriting (7) in terms of the shape parameter s as:

(k) = Y I(k,s). (N

In the classical Kolmogorov inertial range, where injection is absent and dissipa-
tion is negligible, energy conservation implies that the energy flux is a constant.

Fig. 2 displays the energy flux and the contributions II{k, s) of the various scale
disparities. While the Kolmogorov phenomenology implies a constant energy flux
in the inertial range, our computed energy flux decreases at high values of k because
we included only the numerically resolved-scales and omitted the flux due to the
subgrid-eddy viscosity. It is clear that the first and second octaves of s play a much
more important role than the higher octaves.

Fig. 3 illustrates that the normalized energy flux II(k, s)/II(k) is dominated by
local interactions (small shape parameter 8) for all scales k. This closely resembles
the classical picture of the energy transfer process described in detail by Tennekes
and Lumley (1971). Moreover, the dependence upon the shape parameter is the
same for all inertial range scales, that is, beyond the forced scales, the normalized
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FIGURE 3. Dependence of energy flux upon the scale disparity of contributing
interactions, The various curves are for k = 15,20, ...,50. The statistical noise is
associated with the lower wavenumbers.

individual energy flux contributions II(k,s)/II(k) are essentially independent of &
as would be expected in a scale-similar inertial range.

Using the detailed conservation property of T(k,p,q), the energy flux through
scale k can be divided into two parts:

(k) = I°(k) + I (k) (9)
where
oo k k
II°(k) m/‘k dk"/; dp[j qu(k’7P$Q)9 (10)
and

e (k) = 2 /; ~ /0 " i fk ” dqT(k,p, q). (11)

It should noted that II*(k) and II°(k) correspond to II*(k) and —II~(k), respec-
tively, in Kraichnan (1971).

There are two types of non-local contributions to the energy flux resulting from
distinct physical mechanisms: (1) when one of the wave vectors [say p] in II*(k) is
at very low wavenumber while the other [say g] ~ k, II*(k) is closely related to the
classical energy transfer closure model proposed by Obukhov (Monin and Yaglom,
1975; Batchelor, 1953) where the strain due to the large scales causes local energy
transfer among the small scales, (2) when k' is very small while p,q > &, IIe(k) is
closely related to the classical eddy viscosity closure model proposed by Heisenberg
(Monin and Yaglom, 1975; Batchelor, 1953). We calculate I1*(k, s), I*(k,s) by
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n*(k, s)

FIGURE 4A. The energy flux of the straining interactions. total, -—--1 <
32, ——2< s <4 ——4 s <G, s> 8.
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FIGURE 4B.  The energy flux of the eddy-viscosity interactions. total,

-l <2,——2<8<4 ——4<s<B, s> 8.

partial summation of (10} and (11) in the same manner as before. From Figs. 4A
and 4B, we see that for both terms in (9), the local interactions are more important
than the nonlocal ones. This is in agreement with the classical phenomenology of
the inertial subrange and our T'(k, s) measurements.
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FIGURE 5. Comparison of the straining and eddy viscosity types of interactions.
straining type, -+~ eddy viscosity type.

The relative importance of the straining and eddy-viscosity interactions is com-
pared in Fig. 5. While the two types of interactions are of similar magnitude at
low wavenumbers, the straining interactions dominate at high wavenumber. The
recursive renormalization group analysis (Zhou et al., 1988; 1989), and numerical
measurements (Zhou, 1991) identified these interactions as the source of the cusp
in the spectral eddy viscosity in Kraichnan’s (1976) formulation, However, we must
stress that the dominance of the straining interactions at high k is an artifact of
the sharp spectral-cutoff that is used analytically in RNG and numerically in our
present measurement. Indeed, one would expect that the relative physical contri-
butions of the eddy-viscosity and straining interactions in an inertial range would
be invariant with k, as we found for the disparity contributions (see Fig. 3).

2.4. Summary

This work addresses a fundamental question regarding the energy transfer process.
At issue is the appropriate choice of a statistical quantity to indicate the nature of
energy transfer across the spectrum. Basically the problem is that the system is
conservative, with T(k) < 0 for small k and T'(k) > 0 for large k, but since we
cannot “tag” energy, we can not follow its “flow”. Our investigation indicates that
although the quantity measured by cited papers is a mathematical building block in
the energy transfer process, it is not the appropriate physical quantity one should
use to determine whether the nonlinear interactions are local or nonlocal. With
the use of an existing DNS flow database, we have clarified these issues by making
measurements of quantities that directly reflect the actual scale disparity of the
interactions contributing to the energy transfer process. We found that the net flux
results primarily from interactions in which the ratio of largest to smallest scale is

s
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less than 10.

3. Future plans
3.1 DNS analysis of the scaling and statistics

We now have a fairly good indication that local energy transfer results from rela-
tively local interactions. The next step would be to refine the analysis using larger
interaction samples (256° or larger flow fields). We also will use the interaction
count, which we have already computed, to account for the loss of interacting triads
near the sharp spectral cutoff. We believe that this would aid in understanding the
energy transfer process by reducing the statistical noise and increasing the range
of scales. We would like to also use the larger fields for other measurements of
turbulence statistics. ‘

3.2 Numerical RNG procedure

The RNG theory results from an attempt to solve the forced Navier-Stokes equa-
tions in frequency-wavenumber space by an analytical iterative scheme. Due to the
analytical complexity, the iteration process is carried out for only one step, and
some terms that arise are discarded. The goal of this part of the plan is to attempt
to use a numerical rather than an analytic evaluation of the convolution integrals,
thus retaining all of the terms, and to evaluate the errors in the analytical theory.
This is an ambitious project because it discards the advantage of time marching
and treats the time dimension in frequency space in a manner analogous to the
previous treatment of the spatial dimensions in wavenumber space, This has the
obvious disadvantage of requiring an additional dimension of storage and forces us
to use relatively coarse meshes, but offers the compensating advantage of provid-
ing the entire time history for post-processing. To our knowledge, the explicit use
of frequency space in fluid dynamics simulations has never been attempted before.
This work will not only extend our current DNS of the Navier-Stokes equation into a
new dimension but also make a careful test of the RNG theory (Yakhot and Orszag,
1986; Zhou et al., 1989) possible.
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