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Vorticity matching in superfluid helium
By David C. Samuels

1. Motivation and objectives

Experiments by Van Sciver (1990) and others (Weisend et al. (1990), Walstrom
et al. (1988)) have rekindled interest in investigating high Reynolds number flows
using superfluid helium (Craig and Pellam (1957)). In a continuing series of ex-
periments, the flow of helium II through various devices (smooth pipes, corrugated
pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) has
been investigated. In all cases, the measured values (typically, mass flow rates and
pressure drops) have been found to be well described by classical relations for high
Reynolds number flows. This is unexpected since helium II consists of two inter-
penetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with
zero viscosity (the superfluid). Only the normal fluid component should directly
obey classical relations.

Since the experiments listed above only measure the external behavior of the flow
(i.e. pressure drops over devices), there is a great deal of room for interpretation
of their results. One possible interpretation is that in turbulent flows the normal
fluid and superfluid velocity fields are somehow “locked” together, presumably by
the mutual friction force between the superfluid vortex filaments and the normal
fluid. We refer to this locking together of the two fluids as “vorticity matching”.

Stronger evidence for this theory is found in experiments by Borner and Schmidt
(1985) which measured the circulation distribution of both the normal fluid and
superfluid in macroscopic vortex rings. They found that the vortex ring circulations
in both fluids are equal even at the closest measurable distance from the orifice of the
vortex ring generator. The Reynolds numbers for the flow inside the ring generator
were 20,060 to 40,000.

The primary objective of the present study is to determine the physics responsible
for vorticity matching in helium II flows. Similarly, since we know that not all types
of helium II flow show vorticity matching, examining the limits of this matching is
also an objective of this study.

We are pursuing this project with numerical simulations of superfluid vortex
filaments. Each filament is modeled as a series of N nodes connecting straight
vortex segments. The meshing of the filaments is automatically adjusted during
the simulation in order to keep an approximately constant ratio of segment lengih
to local radius of curvature, within maximum and minimum curvatures, as the
filament grows or decays through the mutual friction force. Provisions are included
which reconnect the filament mesh whenever a crossing is detected. The self-induced
velocity V; of the filament is calculated by the Biot-Savart law, integrated over all
filaments in the fluid. Boundary conditions are met by the method of images. Since
the Biot-Savart law is a non-local integral, a straightforward implementation, such
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as the one we are using, is an order N? process. This limits us to & maximum N of a
few thousand, running on a Cray Y-MP. A local approximation to the Biot-Savart
law would allow us to use a much larger number of mesh points but would ignore the
nonlocal interactions that are most important when the length of vortex filament
is large. Accordingly, we use the full Biot-Savart law in the simulations reported
here.

The total velocity of a node on the vortex filament (Hall and Vinen (1956)) is

give by
s

2 = Vit Vet a8 x (Vo -V, - ) (1)
where § is the position of the node, 1—/‘, is_the superfluid velocity from sources
other than the superfluid vortex filaments, V,, is the normal fluid velocity field, «
is a temperature dependent mutual friction coefficient, and 3" is the local tangent
vector of the filament. The value of a is well known at all temperatures from
experiment (Barenghi, Donnelly and Vinen (1983)) and is understood theoretically
for temperatures below approximately 1.8 Kelvin (Samuels and Donnelly (1990)).
This equation of motion is solved by a Runge-Kutta-Fehlberg method.

2. Accomplishments

The most general accomplishment of this study has been the determination of
two necessary conditions for vorticity matching. These conditions are:

a) A one dimensional (or higher) region where V,, = V, must initially exist in the
fluid.
b) A source of superfluid vorticity must be present.

The region with V,, = V, must be at least one dimensional so that a superfluid
vortex filament can fit within this region. The normal fluid at the boundary of the
matched velocity region will have some vorticity &,. Superfluid vortex filaments
with a component of vorticity in the same direction as @, are transported by mutual
friction from the superfluid vorticity source to the boundary of the region of matched
velocities. As the filaments accumulate here, the superposition of their velocity fields
extends the matched velocity region to a larger (three dimensional) volume.

A useful example of a flow which satisfies condition (a) is the normal fluid vortex.
Assuming for simplicity that V., is a vortex flow with some core structure and
V, = 0, on the axis of the normal fluid vortex V,, — V, goes to zero, and condition
(2) is met. Superfluid vortex filaments with the same orientation of circulation
as the normal fluid vortex will be attracted to the normal fluid vortex core by
mutual friction, and filaments of the opposite circulation will be repulsed. If some
source of superfluid vorticity (condition (b)) exists, then we would expect normal
fluid vortices to show vorticity matching. This type of flow is important to our
understanding of the vorticity matching of high Reynolds number flows in superfluid
helium since it provides a simple model for the interaction of superfluid vortex
filaments with concentrated vortex structures in the turbulent normal fluid flow.

‘2
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In this case, the superfluid vorticity source is provided by the instability of vortex
filaments in a background shear. Aref and Flinchem (1984) observed this instabil-
ity in simulations of vortex solitons with an applied velocity shear but did not
correctly identify the cause. Later, Pierrehumbert (1986) identified this behavior as
an instability of infinitesimal sinusoidal vortex waves in a background shear. With
straightforward modifications to include mutual friction, this instability is appli-
cable to superfluid vortex filaments with external superfluid and normal fluid flow
fields. We consider the case where the normal fluid flow is a vortex flow

Vg = (2)

where N, is the ratio of the normal fluid circulation to the superfluid circulation
quantum x. We also impose an external superfluid vortex flow field

N,
2nr

Voo =

(3)

where N, is the number of circulation quantums of the field. This external superfluid
flow is included to represent the velocity field of any superfluid vortex filaments
trapped at the center of the normal fluid vortex. With these external fields, the
frequency of sinusoidal waves on a superfluid vortex parallel to the normal fluid
vortex is

, 28(N, — N,) a? 2N,
wl = ira W_l} :i:2ﬂ((1—“z')+m
Q¥ (No = N2 a2(Nn— N\ 32
T (rk)iG? (rk)2G ) )

where T is the wave period at absolute zero temperature, k is the wavenumber,
s == +1 is the sign of the filament circulation, and G = In(1/ka,) where the filament
core size g, is approximately one Angstrom. Since the situation considered here
is slightly different than that treated by Pierrehumbert (1986}, we provide the
derivation of equation (4) in the appendix.

For a pure normal fluid vortex (N, = 0), with positive circulation, waves on
superfluid vortex filaments with negative circulation are damped at all distances,
while waves on positive vortex filaments are unstable within a critical distance r,

given by
1
Te Nn 2
X (271'3(?) (5)

where A = 2m/k. The instability of these waves triggers a process of exponential
growth of the superfluid vortex filament.

This exponential growth process is illustrated by the simulation results shown in
figures 1 and 2. This simulation was run with a normal fluid vortex of strength
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FIGURE 1.  Vortex filament length vs. time. (A) denotes the total length of
superfluid vortex filament. (+) denotes the length of superfluid vortex filament
present inside the normal fluid vortex core.

Nn = 1000 along the Z axis. The core size of the normal fluid vortex was set at
Resre = .01 H, where H is the height of the computational box, and the interior of
the normal fluid vortex core was modeled as solid body rotation. The temperature
was T' = 1.6K, where o = .16. The initial conditions were two superfluid vortex
filaments, one with positive circulation relative to the normal fluid vortex and the
other with negative circulation (figure 2a). Each vortex filament carried a sinusojdal
wave with wavelength A = H/4. In order to decrease the computational time, the
initial amplitude of the waves was sizeable, A = .09). Each filament was placed on
opposite sides of the normal fluid vortex at a distance r = .47H from the origin,
within the critical radius r, = .54 H. The positive circulation filament is attracted to
the normal fluid vortex, and its wave grows in amplitude. The negative circulation
filament is slowly repulsed from the normal fluid vortex, and its wave decreases in
amplitude. Simulations conducted with the negative vortex filament initially closer
to the origin show the same decrease in wave amplitude, confirming that the wave
instability is due to the circulation sign and not the closer approach of the positive
filament to the normal fluid vortex.

The increase in length of superfluid vortex filament is characterized by three
stages, easily seen in figure 1. The first stage is simply the exponential growth of
the wave amplitude. This stage ends when the amplitude becomes equal to half the
wavelength (figure 2b). In the second stage, the behavior is best described as the
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FIGURE 2A. Evolution of the superfluid vortex filaments. ¢ = .02m.8. The positive
filament is on the left.
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FIGURE 2B. ¢ =.24mS.
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FIGURE 2E. ¢ = .40mS.

growth of a series of rings (figure 2c). The growth rate is increased greatly in this
stage. During this stage, the rings grow large enough to reconnect, forming new
vortex filaments which span the length of the computational volume (figure 2d).
The vortex lines continue to “bud” vortex rings, ultimately forming a dense region
of interacting superfluid vortex filaments (figure 2¢). The third stage is defined
by another large increase in the growth rate and by a significant accumulation of
vortex filaments inside the normal fluid vortex core (figure 2e and figure 1}. The
process responsible for this accelerated growth is unknown. It is important for
us to understand the time scales for the growth of the superfluid vortex filament
since these time scales must be short in comparison to the lifetimes of concentrated
vortices in the normal fluid turbulence if there is to be any vorticity matching in a
turbulent flow,

It should be emphasized that this vorticity cluster (figure 2e) is quite different
from the vortex tangles that develop in simulations of counterflow (Schwarz (1988))
since this vorticity is highly ordered on the large scale, consisting mainly of distorted
rings oriented parallel to the normal fluid flow. The degree of order of the vorticity
can be quantified in the following manner. The direction of a section of curved
vortex filament can be defined by the “binormal” unit vector

b= g x & ()

where 5 is the position vector of the filament and a prime denotes a derivative by
arclength. The binormal vector points in the direction of the velocity due to the local
curvature of the vortex filament (Arms and Hama (1965), and thus provides a good
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FIGURE 3A. Correlation of binormal vector with normal fluid velocity averaged
over all vortex filaments outside the normal fluid core.
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FIGURE 3B. Correlation of binormal vector with normal fluid velocity averaged
separately over positive circulation filaments (solid line) and negative (dotted line).
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indicator of how the curvature of the vortex filament is reacting to an externally
applied velocity field. Take a line integral

_ Jb.9d§

! fa§

(7)

where ¥ is some reference unit vector. This integral measures the correlation of the
binormal and the reference vector. For the geometry of this simulation, we take the
reference vector to be the azimuthal unit vector, which is the direction vector of the
normal fluid flow. Since the vortex filaments inside the normal fluid vortex core are
extremely straight, their binormals are undefined (they have no “direction”). With
this in mind, the line integral is restricted to filaments outside the core radius. In
figure 3a, we show the results of this calculation. The vortex filaments, initially
uncorrelated with the normal fluid flow, become very highly correlated, reaching
a maximum correlation of .8 averaged over all the filaments. When positive and
negative circulation vortex segments (defined by the sign of the Z component of the
tangent vector of each segment) are considered separately, both signs of vorticity
show some correlation, with the positive circulation correlation significantly higher
than that for the negative circulation (figure 3b).

The end of the first stage gives us a limitation on the minimum strength N, of
the normal fluid vortex which can follow the procedure described above. In order
for the wave amplitude to reach A/2, the distance of the superfluid vortex filament
from the core of the normal fluid vortex must be greater than A/2. Inside the core
of the normal fluid vortex, the superfluid vortex wave is damped, and the superfluid
vortex filament quickly straightens. If we write the critical radius ». as

A
Fe > ‘“2““ + Rcore (8)

we can derive a minimum N, from equation (5).

1 R
2 2 core
Nn>-2‘irG(z-{-————A ) (9)
Since G is a very slowly changing logarithmic function, we can approximate it by
G = 151 5 over many orders of magnitude in A. By also assuming that A > R.ore,

we can write equation (9) as
N, >75+25 (10)

This number should be considered only a lower limit on the actual smallest unstable

Ny

3. Future plans

(1) Determine the role of the normal fluid vortex core in the matching process.
This may be an important part of the rapid growth phase. -
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(2) Attempt to follow the vorticity matching process to completion. We cannot do
this directly, but with a greater understanding of the behavior of superfluid vortex
filaments inside the normal fluid vortex core, we may be able to form a simple model
of their effect on the superfluid vorticity outside the core.

{3) Closely examine the ring budding behavior seen in figure 2d. We must estab-
lish that this process is not a numerical artifact.

(4) Determine the time scales of the superfluid filament growth and compare them
to the time scales of the normal fluid turbulence.

(5) Consider the reaction of the normal fluid to the superfluid vortices. In all
simulations of superfluid vortices, the normal fluid velocity field is considered to be
an input to the program. We cannot calculate in detail the response of the normal
fluid, but we may be able to include the energy transfer between the fluids in some
average Imanner, ‘

(6) Examine the motion of matched superfluid - normal fluid vortices. Will motion
of the matched vortices cause some decoupling of the vorticities?

(7) Simulate the vorticity matching process in the presence of external V,, and
V,. Will external flows interfere with the vorticity matching?

Appendix

Consider a straight vortex filament perturbed by a sinusoidal disturbance,

T T ] .
y|=|wl|+ g eflke—wt) (A1)
z Zg

To conform with the notation of Pierrehumbert (1986), we write the equation of
motion (equation (1)) as

&S L
“[:’,? =V,+U (A2)
where we have defined
U=V, +ab x(V, -V, — V). (43)

In the low amplitude limit, the self induced velocity of a sinusoidal vortex wave is
, g\,
V= 82% —F ez(kz——w-wt) (A4)

where s = +1 defines the sign of the vortex circulation and T is the period of the
undisturbed wave. Applying equation (A2) to equation (A1) yields

dxo /dt Bl ooy itka—wt) _ 2T | F ] ike—wt) | g7
[dyo/dt]+[37J( ) B B U 45)

LJ
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We are only considering the case where the Z component of U is zero. In this case,
the Z component of equation (A2) is trivially dzo/df = 0 and is dropped for the
rest of this analysis. Now we linearize . We choose to define the X and Y axes so
that the gradient of 7 is along the Y axis.

- - 40| .
U~ U+ @ gf(bz—wt) (48)
Yo
For compactness, define
v 'U',}
. = . A?)
v (
dy‘ yo -0
Using the linearized I/ in equation (AB) yields
dwg /dt N
[dyo/dt] = Uy (A8)
and ; 0 ; o
E|,. L -
- (zw):s—[ -]-}-[ ”]y. (A9)
u T - Uy
From equation (A9), we solve for w.
1
2 2
= LUl + ( 2"(.-:~—7£ +UL)—1 U;,g) (A10)

For the case where the velocity fields V,, and V, are vortex flows (equations (2) and
(3)), we have

N,k
' a
* 7 gt (411)
and (No—N.) 0
s( N, s )K T
Uy = (_‘z‘;?— - ?) (412)

Using equation (A11), equation (A12) and T' = 8#%/kk®@ in equation (A10) yields
equation (4).
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