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The role of pressure-dilatation
correlation in rapidly compressed
turbulence and in boundary layers

By O. Zeman

1. Motivations and objectives

This work is a result of the continuing effort to advance our understanding of
the compressibility effects on turbulence and to develop new, and improve the old,
models for compressible turbulent flows. A specific goal reported here has been
the investigation of the role of pressure-dilatation correlation in rapidly compressed
turbulence and in boundary layers in general. The rapid compression process is
present in flows of practical importance such as in internal combustion engines and
in boundary layer/shock interactions.

2. Accomplishments

The basis for the investigation of the rapid compression effect on turbulence has
been the results of the direct numerical simulations (DNS) of compression of homo-
geneous turbulence (Coleman and Mansour 1991). The study led to a development
of new turbulence closure models which represent the physics of rapid compression.
The study of the DNS of compressed turbulence yielded the following important
findings: it was established that when nearly incompressible turbulence (with small
r.m.s. Mach number M, << 1) is rapidly compressed in one direction (1D), unex-
pectedly high levels of negative pressure-dilatation correlation are generated. The
pressure-dilatation term (pf) appears in the turbulence kinetic energy, and its mag-
nitude during the 1D compression can become an order of magnitude larger then
the total dissipation (¢;); hence, pf can lead to a significant loss of turbulent kinetic
energy to pressure fluctuations. The striking aspect of this rapid compression mech-
anistn is that it is most effective when M; << 1 and that it is inefficient when the
compression is more isotropic, i.e.; acting in all three directions. All these aspects
have been included in the new model for pressure dilatation described in Section
2.1. Section 2.2 describes an application of the new rapid pressure-dilatation model
in modeling the turbulence response to passing through a shock. In Section 2.3,
an inhomogeneous contribution to pressure-dilatation in adiabatic boundary layers
is suggested. This contribution is shown to be instrumental in mitigating the dis-
crepancy between turbulence closure models and the Van Driest Law of the Wall.
Finally, in Section 2.4 model predictions are compared with experimental data in
supersonic boundary layers over an insulated plate.

2.1. Rapid compression of homogeneous turbulence

The basic energy-governing equations describing compression of homogenous tur-
bulence are
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where ¢* = iju; denotes twice Favre-averaged turbulence kinetic energy, ¢, is the
total dissipation rate, b;; is the departure-from-isotropy tensor, and p? is the fluc-
tuating pressure variance. The pressure-dilatation correlation pf appears in Eqs
(1)-(3); @ stands for fluctuating dilatation, i.e. = u; ;. The mean divergence V.U
follows the time dependence dictated by the homogeneity constraint
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where — A, is the initial divergence. The last term on the right side of (1) represents
the nonisotropic contribution to turbulence energy production; here, S}; is the trace-
free mean deformation tensor defined as

.1 2
8 = E(U;,,- +Uji — 3V Usy;). (6)

Note that for spherical (isotropic) compression, SY; is identically zero. The condition
of rapid distortion requires that

q2

€4

In this case, the dissipation €, can be neglected, and the major closure problem in
the equation set (1)-(5) consists in approximating pf. In the previous work, Zeman
(1991a,b) has suggested the following model for the pressure correlation term (also
Zeman and Blaisdell 1991)

P = (m)-l{i’-’f-;}ﬁ@ + casnp?V-U) (8)

where p? oc 52 M} is the equilibrium value of the pressure variance p? and Ty is the
(acoustic) relaxation time scale defined as 74 = 0.27M,. Here, M; = ¢/a is the r.m.s.
Mach number and 7 = ¢?/e, is the turbulence time scale (based on the solenoidal
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part ¢, of the total dissipation €;). In (8), the first term represents a nonlinear
relaxation to equilibrium, and the second term can be considered as a rapid contri-
bution. From the modified theory of Sabelnikov (1975), it was possible to determine
the rapid compression constant ¢q;, in (8) as cgiy = (5 — 37)/12 (see Zeman 1991¢,
Durbin and Zeman 1991). The pressure-dilatation model in (8) has been shown
to represent the principal physics associated with the initial transient and subse-
quent evolution of unforced and shear-driven turbulence {where V.U = (). When
compared with the direct numerical simulations (hereafter DNS) of rapidly com-
pressed turbulence (Coleman and Mansour 1991), the model reproduced fairly well
the spherical compression case (Zeman 1991c). However, the model was incapable
of reproducing the DNS results of the one-dimensional (1D) rapid compression. The
peculiarities of the turbulence behavior under the spherical vs 1D compression led
to interesting findings concerning the importance of the pressure dilatation in the
rapid compression of nearly incompressible turbulence and, ultimately, to the for-
mulation of a new rapid model for pf. The latter work has been described in detail
in Zeman (1991c). Later, Durbin and Zeman (1991) developed the rapid distortion
theory and suggested a new model for the pressure dilatation, intended for the rapid
compression of low M; turbulence.

To explain the effect of the directionality of compression on turbulence, it is
illuminating to realize that the rapid contribution to instantaneous pressure p(x, 1)
for M; << 1 involves an integral

p(x,1) « U,-,,-fuj,;(x',t)G(x,x')dx' (9)

where G is the appropriate Green’s function. For the spherical rapid compression,
the contributions to p(x,t) consist of V.U#(x',1) (recall # = u;;). In the incom-
pressible limit M, — 0, the rapid pressure is negligible since § ~ 0. However, in 1D
compression (say, V.U = Uy ;), the contributions to the right side of (9) involve
terms V.Uwu; ; which are finite even when turbulence is solenoidal. Now, rewriting
(3) in a different form:
T o
2 li g2

we can appreciate that solenoidal pressure contributions to E can lead to a finite
value of p8; the only requirement is that the rate of change of p? is sufficiently rapid.
An insight into the formulation of a modeling expression for p8 that would distin-
guish the directionality of compression can be obtained from a suitably arranged
equation for p#:

Dy

3 I —
57 = (5 +7)V-Upb — 158" — 2517555 + H.O.T. (11)

Here, the higher order terms H.O.T. can be discarded if the rapid condition (7)
is satisfied. The last rapid term in (11) involves the pressure-strain correlation
as it also appears in incompressible Reynolds stress equations. The leading order
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contribution to this term is known to be F;; = b‘qz{%S‘!’j + Fi;(S,b)} where Fy; is
a tensor bilinear in S7; and b;; (see, e.g. Zeman 1990). The final form of the rapid
directional part of p#f is

— @) e . oo
(PO)D = carp~ 5" r{(S})) + cazbir Si; 8} (12)
i

pM
where cg1 = 0.0004 and c43 = 2. The form of the model in (12) without the higher
order terms in b;; was first suggested by Zeman (1891c); inclusion of the anisotropic

contribution has improved the model performance at larger total strains (when
A, > 0.5).
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FIGURE 1. Evolution of the pressure-dilatation/dissipation ratio in rapidly com-
pressed turbulence; the initial M, = 0.024.

To contrast the effect of the compression directionality, we present in Fig. 1 the
model-DNS comparison of the quantity p8/(pe;) for spherical (3D) and 1D com-
pressions with the same initial values of M; = 0.024 and of the rapid parameter
Ao7 = 47. The closure for pf is as that in (8) plus the directional contribution
in (12). It is evident that the model replicates the fundamental physics of the
directional compression effect: in 3D compression pd is negligibly small even in
comparison with the dissipation; in 1D compression, on the other hand, the pres-
sure dilatation term can be by an order of magnitude larger than dissipation and,
therefore, important for the turbulence energetics. As discussed in detail in Zeman
(1991c), the principal effect of the pressure-dilatation term is to mediate energy
exchange between the kinetic to the pressure fluctuation (potential) modes. Dur-
ing the 1D rapid compression, pf is negative, and hence, according to (1) and (3),
the kinetic energy ¢* is converted into the potential energy. This leads to a lower
growth rate of ¢? than that predicted, for example, by incompressible k — ¢ models,
where the pf-term is absent. In conclusion, during a directional rapid compression,
the kinetic-to-potential energy conversion can be significant even when turbulence
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FIGURE 2. Decaying turbulence response to a shock: Model-DNS comparison.

is virtually incompressible and the reduced growth of ¢* (if detected) should not
be attributed to viscous dissipation. As discussed next, the described mechanism
is clearly relevant to flows of practical interest where turbulence passes through a
shock.

2.2. Pressure dilatation in turbulence passing through a shock

The model for the pressure dilatation has been tested against the DNS data of
isotropic (decaying) turbulence passing through a normal shock (Lee 1991). With
the z; axis aligned with the direction normal to the shock, the relevant kinetic
energy equation in the Favre-average setting can be written as

1 - 1 _ 1
U 5(‘12),1 = —ujlUy; — .Eﬁ,ﬂl — (e — p8/p) — ﬁ(r‘iﬂ + 2pu1) (13)

where T}j; = puju;uy are nonzero third moment fluxes in the z; direction, and
the fluctuation velocity average is by definition %; = —p'u;/p, which is nonzero,
To simplify the model computation, the mean shock flow quantities U (1), (1),
and pressure () are prescribed from the Rankine-Hugeniot relations. In order to
close (13), apart from the closure for II4, it is also necessary to model ¢ and the
inhomogeneous terms: the pressure flux puy, mass flux p'u;, and T;;1. The modeling
approach is described in detail in Zeman (1991c). Here, it should be noted that the
so-called acceleration term associated with the mean pressure gradient P, is very
sensitive to modeling the mass flux p'u; o ~%;. Application of the Strong Reynolds
Analogy (SRA) of Morkovin to estimate the mass flux leads to a wrong sign of the
acceleration term (p'u; > 0), ultimately overestimating the energy amplification
through the shock,

Although the turbulence/shock interaction flow in question is inhomogeneous, the
homogeneous (rapid) part of the pressure-dilatation term must play an important
role in the dynamies since the compression is one dimensional and very rapid. The
DNS and model results are compared in terms of the kinetic energy ¢? in Fig. 2.
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Here, the decaying turbulence passes through a shock located at the normalized
distance z1k; = 12.5, where k; is the wavenumber associated with the peak of the
initial energy spectrum at z; = 0. In the model, &, is related to the initial dissi-
pation length scale, namely (k1 )moa o (€;/¢%)o. The upstream mean Mach number
is My = 1.18, so that the shock density ratio is C' = 5,/p, = 1.31; immediately
in the front of the shock, the r.m.s. Mach number is M; = 0.13. The sharp peak
in the DNS results (solid circles) at the shock location is caused by the unsteady
movement of the shock, and it is not relevant to the overall (effective) turbulence
response to the shock. The solid line represents the model prediction with the
complete pressure-dilatation model in (8) and (12); the dotted line represents the
model results with the directional rapid part (pf)p in (12) excluded (note that
(85)* = 3(U1,1)?). It is evident that the model-predicted shock amplification ratio
A = ¢%/q} is strongly dependent on the rapid part (p8)p. There appear to be no
other means to bring the model prediction into agreement with the DNS results.
Here, we should point out that the (effective) DNS computed amplification A = 1.15
is significantly below the linear rapid estimate

c? 2
A=30+ Gam

3 ) ~ 1.37.

Similar discrepancy has been observed by Jacquin, Blin, and Geffroy (1991) in the
wind tunnel experiment: with C=1.5, they measured very little amplification of q
through shock, although the linear estimate is about 4 = 1.4,

2.3. Pressure-dilatation in adiabatic supersonic boundary layer

This section concerns a modification in Reynolds stress closure models (RSC)
and k-¢ models intended to recover the Van Driest compressible law of the wall in
supersonic turbulent boundary over an adiabatic wall.

As shown by Huang, Bradshaw, and Coakley (1991), the current standard k — ¢
models are not capable of recovering the Van Driest compressible law of the wall
(hereafter Van Driest Law). According to this law, the Van Driest transformed
mean velocity U, should follow the incompressible logarithmic law of the wall (in
the limit of zero free stream Mach number M — 0). The van Driest transformation
is defined as

U
ve= [ (Lyra (14)
0 Pw
and the log law is then
1
e —ut = Lingy*) +5.
- U, l.ct'n(y )+ 5.2, (15)

where
Us = v/ Tw/pw (16)

is the friction velocity and y* = yu. /vy, and & = 0.41 is the von Karman constant.
The subscript w denotes properties at the wall, i.e. 7, is the wall shear stress;
otherwise, the notation is standard.
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In the following it is shown that in the current models, the kinetic energy equation
is not complete; the missing physics and corresponding term have to do with the
pressure-dilatation correlation generated by the (vertical) density gradient.

2.8.1 Pressure-dilatation correlation in a boundary layer

Following the same reasoning as in Zeman (1991a), the inclusion of the density
gradient term in the expression for pd is fairly straightforward. The equation for
fluctuating density reads

.DP' _ i — ]
Dy = Ui — (p'us) s —wip,; — p'V UL (17)

and with the adiabatic relation p/p = p'/p, one obtains the equation for p?

1DpP o, =
5Hr = —pbyP — o"p ;pu; — yp*V- U+ H.O.T. (18)

The pressure flux pii; can be expressed as

__puy Ty —_

pu; = (i 4 =—=2) o azp'ujfp(Mt), (19)
p T

where f, is a function which must satisfy certain limiting behavior to be discussed

later. Since in the thin layer approximation the advection term is small compared

with the right side of (18) and the mean dilatation V.U = 0, (18) reduces to the

principal balance between the pressure dilatation and density gradient terms,
i Zf_'ﬁtj
P ox a2 (M), (20)

In analogy with the closure equation for heat flux 7"u;, one can form an equation
for the mass flux bp'u; (see Zeman 1991c for details). In the flat plate boundary

layer, the latter equation reduces to a gradient model plu; = -—Tu%ﬁ'z where T is
a mass-flux relaxation time scale made proportional to the turbulence time scale,
T cc 7. An expected dependence of T on M; is absorbed in the function f,. Hence,
the final closure expression for the density contribution to pf of (20) is

. o~ 2
P8 = Cof o M)l (ﬁ,z)zf;—, (21)

where C, is a free constant. Concerning the desired behavior of the function f,,
we argue as follows: if the turbulent fluctuations were quasi-adiabatic, then f, ~ 1.
Such an approximation would be permissible if the boundary layer flow is adiabatic
(with no surface heat flux). On the other hand, if the boundary layer is nearly
incompressible (and with arbitrary surface heat flux), we would expect [pu;| —
Pg*u.; hence, f,(M;) should approach zero as M7.
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The new density-gradient contribution to pressure dilatation formulated in (21)
is positive and reflects the process of conversion of the potential (o p?) to kinetic
energy. The pressure fluctuations are produced by the action of turbulence on the
density gradient; in turn, this density gradient is produced by turbulent dissipative
heating. In principle, this new term should be combined with other contributions as
described earlier in this report. However, in zero-pressure-gradient (ZPG) boundary
layer, the latter contributions were found to be negligible. Considering now the
incompressible limit of boundary layer flow, it is imperative that the new term
approaches zero as M; — 0 in such a manner that the ratio mpg = p8/(pe) — 0. In
the adiabatic boundary layer, this condition is satisfied since npa — foM?*/M, and
My « M. In boundary layers where the density gradient is due to a difference AT
between free stream and wall temperatures, (21) yields

AT -
Tpd X (“‘,f‘,_)zprt 2

The quantity in the parentheses in the above expression is typically of order 10!
or less, thus the relative contribution of pf in the ¢* equation is indeed small as
long as f, approaches zero as M, ™ with n > 2. As previously discussed, n = 2 is
consistent with the required behavior of u;. In the computational examples that
follow, we have chosen » = 3 so that m,, approaches zero as M,. This requirement
guarantees no (spurious) contributions from p# when M; =~ 0. At this point, it is
appropriate to mention that Rubesin (1990) arrived, from quite different premises,
at a pressure dilatation model expression which is similar to (21). However, the
Rubesin model would be unphysical in a non-adiabatic boundary layer in the small
M; limit since it yields w4 — M, 2. Such behavior is inadmissible and would lead
to spurious turbulence energy production in regions where density gradient is finite
but M; << 1. This could occur in any type of boundary layer flow (for example, in
the separation bubble of a supersonic compression corner flow).

The prelimirary computations of a ZPG boundary layer over an insulated wall,
with a modified RSC model (Zeman 1990; 1991b) which includes the pressure di-
latation term in (21} are shown in Figs 3 and 4. For the best results, the free
constant in (21) was set at C, = 0.002; referring to the previous discussion, the
function f, was chosen as

fo(My) =1 — exp{—(15M,)%}. (22)

so that f, = 1 for M; > 0.1, and f, - M} as M; — 0 as required. It should be
pointed out that the model results are insensitive to the exact form of fp although
(22) is the most convenient form to satisfy the required function limits. Fig. 3 de-
picts the Van Driest velocity profiles U} (y™) for different freestream Mach numbers
(M) with pé from (21) and (22). It is seen that the profiles collapse reasonably well;
for the measure of improvement, one profile is shown (with M = 7) with the pressure
dilatation set at zero. Fig. 4 depicts the scaled profiles of dissipation exy(p/ry)?/?
(labelled 1) as functions of y* for different Mach numbers. According to the Van
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FIGURE 3. Boundary layer velocity profiles in Van Driest coordinates for different
Mach numbers: model] simulations.
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FIGURE 4. Normalized dissipation ¢t = my(-;_%—)af %; otherwise same as Fig. 3.

Driest scaling, the depicted profiles should collapse to unity in the log region (con-
stant stress layer) which is evidently the case. Asin Fig 3. the included dissipation
profile with the pressure dilatation absent indicates the model improvement. It is
to be added that pg? is not constant in the constant stress region; however, this is
not contradictory to the Van Driest Law.

In conclusion, there exists corroborative evidence for the proposed pressure-
dilatation model in (21) from the so-called two-scale DIA theory of Yoshizawa.
To demonstrate this, we note first that the quantity —Wﬁ,j in (20) represents
the rate of production of density fluctuations which, in turn, is proportional to
the density fluctuation decay, say, p'2/7,. Here, 7, is a decay time scale controlled
primarily by the (molecular) decay time scale of temperature fluctuations. Hence,
the pressure-dilatation term in (21) is related to the density fluctuation variance
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pr? = o2 in the following way
o
Tp_— = Cpfp""—‘:g'. (23)

Now, Yoshizawa (1990) inferred from his two-scale DIA theory the following expres-
sion for the subgrid-scale eddy viscosity (denoted vr) in compressible turbulence:

o?
vr = vro(1 + const _n—;)
P

Thus, the basic (Smagorinsky) viscosity vr, is augmented by a term containing
the density fluctuation variance o2. Evidently, the presence of density fluctuations
increases the subgrid-scale viscosity via the increase in kinetic energy. It can be
easily shown that the p#-contribution (23) in the kinetic energy equation would
lead to a similar form of the subgrid-scale viscosity as in the Yoshizawa expression
above.

2.4. Comparison with boundary layer ezperiments

As an indication of the overall performance of the boundary layer model, we
have chosen to compare the model predictions of mean velocity and temperature
with the experimental data of Coles tabulated in Fernholz and Finley (1977) as
Case 53011302. The comparisons are shown in Figures 5 and 6. Here, the ZPG
boundary layer is adiabatic with the freestream Mach number M = 4.544, and
the momentum thickness Reynolds number Ry = 5,500. To demonstrate the effect
of the new pf-contribution in (21) on the model predictions, the dashed curves in
Figures 5 and 6 represent model computations without pf. The contribution of the
new pf term to the improvement of the model predictions appears to be small, The
degree of improvement would be more clearly evident if the profiles are presented in
the van Driest coordinates. In terms of the velocity gradient and friction coefficient
values, the new pf term represent about 15% improvement.

According to (23), the new pressure-dilatation term depends mainly on the den-
sity fluctuation variance cr;‘; which, in turn, is proportional to the temperature fluc-

tuation variance o2 = T2 according to the relation
T

a a
'_—_EOCT.
£

T

The temperature fluctuations are accessible to measurements, and the temperature

variance % is a byproduct of the model computations of the heat flux T'uy and T'.

In Figure 7, the model-computed values of o/ T are compared with the experimen-
tal data of Kistler (1959). The Kistler measurements were made in an adiabatic
boundary layer for three different freestream Mach numbers M = 1.72, 3.56, 4.67
and are also tabulated in Fernholz and Finley (1977). It is evident that the model
predicts a correct tendency of the or-levels with M.
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FIGURE 5. Mean velocity profiles in a boundary layer over an insulated wall:
model-experiment comparison; y = § is the boundary layer depth where U = 0.997..

5 T 1 T i 1 v T

* Exp.(Coles)

1] 02 0.4 0.6 0B 1 12
w/é

FIGURE 6. Mean temperature profiles, otherwise same as in Figure 5.

3. Future plans

The focus of current and future work is investigation of the rapid compression
and distortion processes taking place when turbulence passes through a shock or a
succession of shocks in the compression corner flow. A numerical scheme has been
developed which is capable of simulating the mean and turbulence flow field of a
nonseparating boundary layer negotiating a compression corner. The scheme uti-
lizes the von Mises’ coordinate transformation as in Zeman (1990), and the pressure
gradient is calculated with the aid of the method of characteristics using the actual
velocity profile as the upstream conditions. Preliminary comparison with experi-
mental data for Reynolds stresses by Smits and Muck (1987) is encouraging. The
model results indicate that the rapid directional compression mechanism discussed
above has considerable influence on the response of turbulence to the compression
corner-induced distortion of the mean flow.
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FIGURE 7. Profiles of temperature fluctuations in an adiabatic boundary layer:
model comparison with the Kistler (1959) experiment.
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