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Analyses and modeling of evolving turbulent flow
By P. A. Durbin

Work done during this year includes: an asymptotic analysis of adverse pressure
gradient boundary layers (Durbin and Belcher 1991); a rapid-distortion analysis of
homogeneous, compressed turbulence and formulation of a new pressure-dilatation
model therefrom (Durbin and Zeman 1991); and refinement of the k—¢ —v near-wall
model (Durbin 1990), with extension to calculations of heat transfer.

1. Motivation and objectives

The ultimate motivation for this work is the development of analytical models
for turbulence statistics, The approach which I have adopted is to attempt to use
theoretical results as guidance for model development. For example, in last year’s
report (Durbin 1990), I described a near wall model which was motivated by analyses
of kinematic blocking; in section 4 of the present report I will describe further
computations with that model. These consist of calculations of the turbulent flat-
plate boundary layer, including heat transfer, and of heat transfer calculations for
channel flow. The calculations are compared to experimental and DNS data. This
work on near-wall turbulence modeling is still in progress; Dr. S. Ko is incorporating
the model into an elliptic code, so that more complex flows can be computed (see
Ko's article in this volume).

In anticipation of future computational work and modeling of more complex
boundary-layer type flows, an asymptotic analysis was done of the structure of
strongly adverse pressure gradient (APG) turbulent boundary layers. This was mo-
tivated by previous asymptotic analyses of zero pressure gradient (ZPG) boundary
layers (Mellor 1973) and the semi-empirical observation (Townsend 1976) that the
adverse pressure gradient boundary layer has a y /2 region, where y is distance from
the surface. At the outset, it was supposed that the two region (wall and wake)
ZPG scaling could be modified so that a y'/?-law would replace the logarithmic
overlap law. However, the half-power law did not permit a proper overlap of wall
and wake regions; a third, intermediate region seems to be required (see fig. 1).
The results of this investigation are summarized in section 2 and in Belcher’s article
in this volume.

As a result of discussions with Gary Coleman and Otto Zeman, I felt that a rapid-
distortion analysis of homogeneously compressed turbulence might help to gain an
understanding of some effects that occur in compressible flows. In particular, of
the pressure-dilatation term in the turbulent kinetic energy equation, which would
seem to be important in flows with shock waves or in compression corners or pistons
(Zeman 1991). A rapid distortion analysis for the small turbulent Mach number
limit is described in section 3. It is shown how the magnitude of pressure-dilatation
correlation depends on the symmetry of the compression, vanishing for spherical
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symmetry and increasing with asymmetry. The RDT analysis and invariant clo-
sure modeling suggest a model for pressure-dilatation; that model will be discussed
briefly.

2. Asyniptotic scaling of adverse pressure-gradient boundary layers

Because of the summary nature of the present report, the reader is referred to
Durbin and Belcher (1991) for details. We consider a uniform density, incompress-
ible turbulent boundary layer subject to a strong adverse pressure gradient (APG).
The free-stream mean velocity is Uso(z). The kinematic pressure-gradient, denoted
by a, a streamwise length scale L, and viscous pressure-gradient velocity u, are
defined by

a E ~UnUsy; L=ULJa; up = (va)'/?. (1)

The definition of u, reflects the fact that the relevant dimensional parameters near
the wall are v and a. The small parameter in the present analysis is

¢ = up/Uo = (va/UL)* = RF'? @)

where Ry, is the Reynolds number based on L. § denotes a scale for the boundary
layer thickness. It is sufficient (although not necessary) to let §/L ~ ¢; this gives the
appropriate leading order balance between pressure gradient and turbulent shear-
stress gradient in the middle and outer regions. Given this ordering, one can define §
such that this latter relation is an equality. In most of the analysis, it is appropriate
to think of 6/L as the small parameter. The middle and outer regions are inviscid
to lowest order, so it would be misleading to associate the small parameter with
Reynolds number in these regions; perhaps (2) should be expressed as Ry, = ¢~3.

The three asymptotic regions of an APG turbulent boundary layer reflect three
velocity scales which exist in such a flow. They are: the viscous, pressure-gradient
velocity, up; the free-stream velocity, Us; and vab. The first is used to non-
dimensionalize the mean velocity in the wall region, the second nondimensionalizes
the wake region, and the last nondimensionalizes the middle region. Another ve-
locity scale is the friction velocity, u,. In the present analysis this is taken to be of
the same order as up. The three regions and their scaling are shown schematically
by figure 1.

Scaling of the regions

The thickness of the inner region is v/up, or €2L. Here the leading order balance
is between pressure gradient, viscous, and turbulent stresses, The mean momentum
equation, in non-dimensional form, becomes

(1 +20)05), =1+ 0(e*) (3)

where U = Ufuy, #, = v/v is the turbulent eddy viscosity, and § = yu,/v.
In the middle region, the leading order balance is between pressure gradient and
turbulent stress. The precise scaling depends on how the turbulent stress is modeled.
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FIGURE 1. Schematic of structure of APG boundary layers. The experimental
data is from Bradshaw and Ferris (Coles and Hirst 1968).
In general, the thickness of the middle region is O(e"L) where 1 < n < 2. If the
eddy viscosity is constant in the outer region, then n = 4/3, which is the case
described here. The mean momentum equation simplifies to
(5e05), = 1+0(H). @)

where U = U/Uxe*/?, and b = v4/Uccfe.
The outer region balance is between pressure gradient, turbulent stress, and in-

ertia. The mean momentum equation becomes

007 + V05— 00,2 - 0% +1= (30 )
in the outer, wake region. Here U = U/Uq, 7 = 4/6, V = V/Uxe€, i = v1/Usobe
and df = dz/L. V is determined by the continuity equation, which can be written
ffﬁﬁg—r}—%"’gﬁ:o. (6)

In (5) and (6) an & dependence of U, and § has been allowed; this dependence is

required in the self-similar solution cited below.
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The half-power law describes the overlap layer between the inner and middle
regions. It exists because of the linear variation of shear stress in a strong APG
boundary layer: 7 = ay+u2. The half power can be derived when y >> u2/a from
a mixing length argument (Townsend 1976). However, because of its relevance to
closure modeling, I will note here that the standard k — ¢ model has the solution

A

U= Auy'/? (7

with

At = 4oy — 3C,,0.)(ok — 3C.,0.)
v Cn"'zaf(Csa - c“!1)2

in a linear stress layer. With the commonly used values,
Ce, =144; C,, =1.92; C, =0.09; 0 =1.0; 6. = 1.3

this gives 4, = 7.65.
Self-similar solution

The problem posed by (3)-(6) must be solved subject to U = 0 at y = 0 and
U — Uy a8 y <+ 0o. In an asymptotic framework, such a solution requires formal
matching between the regions. With the present eddy-viscosity representation for
the turbulent shear stress, it also requires a prescription for vy. Omitting details,
which can be found in Durbin and Belcher (1991), the analysis reduces to solving
(5) and (6), with the Clauser viscosity # = C.é., subject to the conditions

T(0) = eCy, U,(0) = &3C, + eul /(ulin), V(0) = C, (8)

and 7 — 1 as 4 — o0, C‘u, C. and C, are constants determined by the inner and
middle region solutions. They are given by equation (4.26) of Durbin and Belcher
(1991) for the eddy viscosity formulation adopted in that paper.

For a self-similar boundary layer, the pressure gradient enters through the pa-

rameter &5 iU
A= mUm-d_ / § dz

T

which appears in the self-similar version of (5). For the power law Uy, & ™% and a
linearly growing boundary layer thickness, # = 1/a. Figure 2 shows a computation
of normalized friction velocity, #./u, versus 8. This figure shows an interesting
property of the analysis: the skin friction is a double valued function of pressure
gradient. In figure 2, this occurs in a small range near § = 4.8. Thus, for a given
pressure gradient, two self-similar boundary layers exist: one with small skin frie-
tion, for which the downstream increase of the momentum thickness is largely bal-
anced by pressure gradient; and one with larger skin friction, for which the growth
of momentum thickness is largely balanced by skin friction. These double valued
boundary layers have been observed experimentally by Clauser (1954). Further
results of the analysis can be found in Belcher’s article.
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FIGURE 2. Friction velocity versus pressure gradient parameter for self-similar
APG boundary layer.

3. Rapid distortion theory for compressed homogeneous turbulence

An RDT analysis of compressed homogeneous turbulence was undertaken in con-
junction with research in progress at CTR on simulation and modeling of com-
pressible homogeneous turbulence (Coleman and Mansour 1991, Zeman 1991). The
method of analysis is not novel; the motivation was to gain an understanding of
and to model the pressure-dilatation term in the turbulent kinetic energy equation.

Analysis

RDT analysis is based on the assumption that the time-scale for distortion by
mean strain is short compared to that for self-distortion of the turbulent eddies
(Hunt 1973). Linearized equations are solved for the evolution of the turbulence
from an initially isotropic state.

The requirement for homogeneity is that the mean pressure, density, and velocity
gradient be uniform in space. Thus, the mean velocity is of the form U = x - §(¢).
An irrotational mean flow is considered. In a principle-axes coordinate system, the
mean momentum equation requires S to have the time dependence

al/(l + a;t) 0 0
S = 0 a2/(1 + aqt) 0 (9)
0 0 (13/(1 + a3t)

where the a;’s are arbitrary constants. To facilitate this discussion of the RDT
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solution, we introduce the matrix of material line distortions

1/(1 + a1t) 0 0
J= ( 0 1/(1 + ast) 0 ) . (10)
0 0 1/(1 + aat)

Given that p is spatially uniform and that DU/Dt = 0 and Dp/Dt = —pV - U,
the linearized, inviscid fluctuating momentum, continuity, and entropy equations
can be written (Goldstein 1978)

o(Dv' /Dt 4+ ' - VU) = -Vp'
D(# 5Dt =~V - (11)
Dé' /Dt =0,

An important relation between pressure-dilatation and pressure variance follows
from (11):

e 1 d p'2
Vo =P |
PY=—la (("fP)"’) (12)

where 7 is the ratio of specific heats. Our primary results and new developments on
closure modeling derive from (12). Although the equation for entropy fluctuations is
included in (11), because the mean pressure is uniform, vortical fluctuations cannot
be produced from entropy fluctuations in homogeneous turbulence,

In general, the solution to (11) is facilitated by Goldstein’s {1978) decomposition
of the fluctuating velocity into irrotational and vortical parts. However, for the spe-
cial case of homogeneous turbulence, the Helmholtz decomposition into irrotational
and solenoidal parts can be used. We first introduce a Fourier representation (Hunt
1973):

oo
u = f ﬁeik(t)-x d3k0
in which k(t) = ko - J. Then the Helmholtz decomposition can be written

kk-iig-J

= [ﬁo-J— T

] +ikg (13)

where the bracketed term is the solenoidal component—that is, it is orthogonal to
k. {ip is the initial solenoidal velocity. In consequence of (11), ¢ satisfies

d, _,d d( 3dk-Gig-J
5 2;§)+Iklz¢=——za(c 225“"'""—‘1:‘[32 ) (14)

¢ is the only quantity for which an equation has to be solved.

The details of the analysis can be found in Durbin and Zeman (1991). Here,
we simply note that when the fluctuating Mach number is small, the right side of
(14) can be neglected to lowest order of approximation. Then the solenoidal and
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FIGURE 3. Solenoidal contribution to pressure variance and pressure dilatation
for axisymmetric compression with J; = 2 and Jz = J;. Solid line is p'? dashed line
is p'V - u,

irrotational (acoustic) components decouple. Correspondingly, the pressure can be

separated into an acoustic component and a solenoidal component. The solution
for the solenoidal pressure works out to be

Ty S .
P =" o Jo (e-J2-e)?

(e S-e)e-§-3%.e) (e-S5-e)(e-J*-e)
e-J2.e (e-J2.e)?

[(e .8%.e)-2 ] sin 8d8d4

(15)
where e = (cos 8, sin 8 sin ¢, sin 8 cos §) and ¢ and Lo are initial velocity and length
scales, and in which § = J- 8. J. After evaluation of (15), the pressure-dilatation
is determined by (12). For axisymmetric compression, the integrals in (15) can be
found in closed form.

Figure 3 shows results for the solenoidal component in an axi-symmetric com-
pression. The J;’s denote the diagonal components of J in equation (10). When
Jo = J3 = 2, the compression is spherically symmetric and the pressure variance
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vanishes. The pressure-dilatation increases monotonically as J; decreases toward
1; hence, pressure-dilatation increases with increased asymmetry of the compres-
sion. DNS by Coleman and Mansour (1991 and Coleman private communication)
show that pressure dilatation is very much larger for one-dimensional compression
(Jz = 1) than for spherically symmetric compression (J; = 2). Hence, the RDT
results are in accord with DNS,

Modeling

The success of the RDT analysis suggests that (12) might be made the basis
of a closure model; all that is required is an expression to substitute for p'? on
the right side. Of course, this equation is only complete when the distortion is
rapid; more generally, non-linear terms cannot be ignored. However, the pressure-
dilatation term in the turbulent kinetic energy equation is only important when
the turbulence is subject to a rapid change—produced, e. 9., by a shock wave or
by compression inside a cylinder—hence, the linearized formula, might cover many
practical cases.

Attention is again restricted to low fluctuation Mach number so that the solen-
oidal and acoustic contributions can be decoupled. Zeman (1991) has proposed an
equation for the acoustic contribution to p? which was adopted here. The solenoidal
contribution can be modeled by making use of standard invariance and symmetry
constraints (Lumley 1978). If the solenoidal pressure is expanded about isotropy,
keeping only the first order terms in anisotropy, one finds that

PF = (pgL)? [CYTx(S2) + Cybi 2, | +O(IBI) (16)

where b;; = %;w;/q% — §;; is the anisotropy tensor; ¢ = Wu;/3 is the turbulent
intensity; L is a length scale; and S*:'j = 8 —6i;Tr(8)/3 is the trace-free part of S.
Equations (12) and (16) were incorporated into a mode} described in Zeman (1991).
That model contains an equation for I which accounts for the effect of compression
on the length scale. Values for the constants C; and C, in (16) were obtained by
requiring (16) to agree with the RDT solution at short times, This gives € = 6/5
and Cp = 18/7,

Figure 4 shows a model computation compared to data provided by Gary Cole-
man. The compression is one-dimensional, and the horizontal axis, 7, is a nondi-
mensional time, related to compression ratio by J; = 1/(1 — 7). The curve labelled
—Il4 is the pressure-dilatation. The rate of encrgy dissipation is not shown because
it is extremely small in this computation of raid compression; the dominant balance
in the turbulent kinetic energy equation is between production, pressure-dilatation,
and rate of growth. The agreement between model and data is satisfactory and sug-
gests that (12) and (16) are a viable approach. The effects of non-homogeneity and,
at higher turbulent Mach number, the coupling between acoustic and solenojdal
components would have to be included in a more general model.

4. The k — ¢ ~ v model for boundary layer flow and heat transfer

The k — ¢ — v near-wall turbulence model was described in last year’s report
(Durbin 1990). Progress on further development and application of the model has
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FIGURE 4. Comparison of model (lines) to DNS data (symbols) for rapid one-
dimensional compression (case cldb of Coleman and Mansour 1991). 7 is a non-
dimensional time. :

been a bit slower that expected. Here I will present results for flat plate boundary
layers and for heat transfer in channel flow.

Refinements for boundary layer computation

The ‘refinements’ referred to in this subsection heading are small adjustments in
the model constants, no alterations to the equations were made. The model was
originally developed by making use of channel flow DNS data. Because this is a
very simple flow, the model constants could be set fairly coarsely. In the boundary
layer, the need to predict the growth rate of the thickness requires more refined
values of the constants. | have also tried to bring the constants into line with
values used by other modelers. For example, the e-equation constants C,, and C,,
were previously set to the round numbers 1.5 and 2. They have now been set o
more conventional values of 1.44 and 1.9, (It should be noted that an important
quantity is the difference between these constants; also, my ¢-equation contains a
‘local anisotropy’ term (Durbin 1990), so that C., has a slightly non-conventional
meaning.) I have also changed C,, from 0.2 to 0.23; Launder (1989) uses 0.22.

The channel flow was recomputed and the agreement to DNS data was unchanged
(see figures in Durbin 1990), with one caveat. The ‘Prandtl numbers’ o} and o,
were left at their previous values of 1.3 and 1.6 (Durbin 1991). These values were
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FIGURE 5. Model (lines) and DNS (symbols; Kim and Moin 1989) temperature
profiles for turbulent channel flow at three molecular Prandtl numbers: R, = 180.
A, Pr=20,x, Pr=0.71,s, Pr=0.1.

obtained by requiring the centerline turbulent intensity to agree with the DNS data
(at Re, = 395). Because a boundary layer has a free-stream interface across which
irrotational fluid is entrained, the transport of kinetic energy to the edge of the
boundary layer is greater than in a channel flow; hence, the above Prandt] numbers
had to be lower for the boundary layer computation—oi = 0.9 and o, = 1.3 were
used, which are in line with values widely used for Bows with a free stream (Launder,
1989, uses 1.0 and 1.3). The fact that different values of o4 and o, are required
for enclosed and unbounded flows indicates that an aspect of the fluid mechanics
(the irrotational-rotational interface) is not being represented by the differential
equations of the model, and must be incorporated through the constants. This
statement applies to other models, such as k ~ ¢, and is not a peculiarity of the
present model.
The mean temperature equation

U.-VO = -3,(v8 — 0d,0) (17)

was included in the model to compute heat transfer. In most computations, —v’
was represented by the eddy diffusion formula @;8,0, with turbulent diffusivity

determined by .
Priay = vy = Cv?T (18)

where Pr; is the turbulent Prandtl number for heat transport. Temperature profiles
for channel flow were also computed with a v@ differential equation.
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FIGURE 6. Friction coefficient versus momentum thickness Reynolds number.

Solid line, present model. A, Purtell et al. (1981), x, Weighardt and Tillman
(Coles and Hirst 1968), o, Bell (Coles and Hirst 1968).

Figure 5 shows model computations and DNS data of Kim and Moin (1989) for
temperature profiles in channel flow with a heat source. The Reynolds number based
on friction velocity and channel half-height is 180. The computations were done at
molecular Prandt] numbers of 2.0, 0.71, and 0.1, as indicated. These computations
were done with a v@ equation, but virtually identical results were obtained by
setting Pry = 1.0 and using equation (18). These figures illustrate my previous
statement that the refinements to model constants did not deteriorate the results
for channel flow.

Flow in flat-plate boundery layer

A boundary layer code was written to solve the model equations in Von-Mises
coordinates (¥ — z), with an expanding grid to allow for boundary layer growth.
With the exception of o and o, as discussed above, the model was identical to
that used for the channel flow computations. The computation was initialized
with profiles of U, k, ¢, and v? taken from Spalart’s DNS data base (Kim private
communication); Spalart’s profiles for Ry = 670 were used, although similar results
were obtained using his Rs = 300 profiles. For heat transfer computations, the
initial mean temperature profile was given the same shape as the mean velocity
profile.

In figure 6, a curve of skin friction versus momentum thickness Reynolds number
is compared to experimental data. The agreement is very encouraging. A more de-
tailed comparison is given by figure 7, which shows mean velocity profiles compared
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FIGURE 7. Mean velocity profiles in the range 1400 < Ry < 11000. Variables are
plotted in wall (4) units, Experimental data is from Coles and Hirst (1968).

to experimental data at several Rg’s in the range covered by figure 6. Again, the
agreement is good. Thus, a good prediction of ¢ 7 correlates with a good prediction
of the entire mean velocity profile (a similar correspondence does not prove true for
the heat transfer results presented below)., Although the profiles with the lower Re’s
are somewhat compacted in figure 7, expanded plots would show that the agree-
ment to the data is as good as at higher Ry; thus, the experimental dependence
of the mean velocity on Reynolds number is reflected in the solution to the model
equations. BEven further detailed comparison is given by figure 8, which contains
data for k and v? transcribed from a figure in Klebanoff (1955, these data are also
shown in Townsend 1976). In this case too, the agreement is satisfactory.

One objective of the near-wall model was to predict non-equilibrium boundary
layers. A preliminary result in this direction is included in figure 9. This shows a
computation of a boundary layer developing into an increasingly adverse pressure
gradient; the pressure distribution imposed on the boundary layer is that provided
in table 1 of Samuel and Joubert (1974). The primary purpose for their experiment
was to provide non-equilibrium boundary layer data for model testing. An initial
condition was required for the computation: this was obtained by starting with a
zero pressure gradient boundary layer slightly upstream of the first measurement
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FIGURE 8. Turbulent kinetic energy (upper) and v% compared to data transcribed
from Klebanoff (1955; circles and dashed lines): Ry = 7150. y is normalized by
8 995 and turbulent intensities by uZ.

location, then subjecting it to the initial pressure gradient reported by Samuel
and Joubert. The upstream distance at which the pressure gradient was imposed
was determined as follows: at the first measurement location, Ry = 4,992, while
Cs, = 2.79 x 1073, a ZPG boundary layer at this Ry would have Cy = 3.0 X
103, It was found that the correct initial friction coefficient could be obtained
by applying the pressure gradient to a ZPG boundary layer with Rg = 3,200 and
allowing it to develop downstream to the position where Ry = 4,992, so this is
how the computation was initialized. Figure 9 shows that quite good agreement
is obtained with the experimental skin friction data. The abscissa is downstream
distance in meters because this is how Samuel and Joubert report their data; for the
computations, the reported value of unit Reynolds number dRe/dz = 1.7 x 10%m ™!
was used to nondimensionalize both distance and the C} gradient reported in Samuel
and Joubert’s table 1. They also define Cy, as the friction coefficient based on an
upstream reference velocity. The results in figure 9 are particularly pleasing because
Rodi and Scheurer (1986) showed that the k — ¢ model with an eddy viscosity
‘damping function’ was unable to predict this flow: it gave friction coefficients which
were considerably too high. The present model also shows qualitative agreement
with data on the evolution the k and v? profiles and quantitative agreement with
their magnitude; for brevity those results are not shown here.

Heat transfer in boundary layer

Heat transfer computations are compared to experimental data of Reynolds et
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FIGURE 9. Skin friction versus downstream distance for boundary layer developing
in adverse pressure gradient. Data from Samuel and Joubert (1974, table 1); solid
line, present model.

al. (1958); Moffat and Kays (1984) describe these data as representative of those
obtained at Stanford over the course of 25 years. Figure 10 shows Stanton number
versus momentum thickness Reynolds number. The molecular Prandtl number is
0.71, corresponding to air. The calculations were done with Pr, = 0.9, shown by
the solid curve, and with Pr, given by the formula

= =7 (19)
"~ 1+ 0.4Pe; +0.08(e=5/Pec —1)Pe?

Prt

as shown by the dashed curve. In (19) Pe, is the turbulent Peclet number vy
Formula (19) is the Prandt] number-Peclet number relation given in Moffat and
Kays (1984; eq. 53--after correction of a typographical error). This formula has
the property of rising steeply near the wall, reaching 1.7 at y = 0, and tends to
0.85 far from the wall. A steep rise of Pry is seen experimentally when ¥+ < 15
(Moffat and Kays). Both of the curves in figure 10 are within the data scatter:
the constant Prandtl number curve (solid) would seem to be in slightly better
agreement, although the two curves are within 10% of each other.

Figure 11 shows measured and computed temperature profiles at two values of R,.
There is a clear discrepancy between the model and data. Formula {(19) was intended
to improve the agreement between model and experimental temperature profiles.
One sees that at the higher Reynolds number it does produce some improvement.

e
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FIGURE 10. Stanton number versus momentum thickness Reynolds number. Data
from Reynolds et al. {(1958). Model results for two prescriptions of the turbulent
Prandtl number are shown: solid line Pr; = 0.9; dashed line eq. (19).

5. Future plans

The work on near wall turbulence modeling will continue into the future. Model
computations of more complex boundary-layer flows will be carried out in collabo-
ration with Dr, Ko. The application to heat transfer will be pursued further. The
present type of modeling proceeds through formulation of differential equations for
turbulence statistics; in the k—£—v model I have tried to introduce empiricism only
through model constants, while the spatial distribution of the statistics is obtained
by solving equations. The use of (19) is somewhat out of keeping with the spirit
of this approach. I hope to replace such a prescribed Prandtl number relation by a
v8-equation whose solution would produce the same effect. At present, however, it
is not clear how the correct near-wall behavior of v8 should be obtained.

As I have mentioned, the work on compressed homogeneous turbulence was moti-
vated by the work of others at CTR. I would hope to pursue some of the issues raised
by this material with them. For instance, when the turbulence is not homogeneous
(as near a shock wave), the kinetic energy equation contains the term

—wiOip' = p'V - u — Giu;p' . (20)

The first term on the right side of (20) was modeled here by (12). The second
term is often referred to by the seemingly inappropriate name ‘pressure diffusion’.
(I know of no analysis which leads to a Markovian representation for this term;
indeed, it is hard to see how pressure forces become diffusive). This term is not
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FIGURE 11. Temperature profiles compared to data from Reynolds et al. (1958)
at Ry =1763 (e) and 4432 (x). Temperature is normalized by the temperature
difference across the boundary layer, and y is in + units.

peculiar to compressible turbulence, as is the first. In many flows it is negligible,
but near to shocks it requires some form of modeling. It would also be desirable
to extend the RDT solution to higher turbulent Mach number, where acoustic and
solenoidal fluctuations interact strongly. )
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