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Near-wall turbulence modeling for
boundary layers with separation

By S. H. Ko

1. Motivation and objectives

As a turbulent boundary layer undergoes a strong adverse pressure gradient, the
flow may separate from the wall, and the use of empirical wall functions is inap-
propriate. The turbulence transport equations as well as the momentum equations
must be solved through the laminar sublayer to the wall. The laminar sublayer
encompasses a region where viscous effects become increasingly important. For the
past two decades, many proposals for near-wall turbulence models of k-¢ type have
been presented for calculating near-wall flows, A thorough review and a systematic
evaluation of these models was given by Patel, Rodi, and Scheuerer (1985): they
found that some of the models tested failed to reproduce even the simple flat-plate
boundary layer flow. Overall, the authors concluded that the near-wall turbulence
models needed further refinement if they were to be used with confidence to calcu-
late near-wall flows.

Recently, the use of a direct numerical simulation (DNS) data base has provided
new insight and data for development and testing of near-wall turbulence models.
Mansour, Kim, and Moin (1989) computed the budgets for the turbulence kinetic
energy and its dissipation rate using DNS data of a channel flow (Kim, Moin,
and Moser, 1987). These computed budgets were used to test existing near-wall
turbulence models. They also analyzed the dependence of the eddy-viscosity damp-
ing function f, on y* and the Reynolds number using DNS data for a flat-plate
boundary layer (Spalart, 1988). Durbin (1991) proposed the k-e-v model. By using
normal fluctuation v? as a velocity scale instead of turbulence kinetic energy k in
the eddy-viscosity relation, the k-e-v model eliminated the need for damping func-
tions f, . The model retained a modeled equation for »? in addition to the & and
¢ equations. This model was implemented into a parabolic program and showed
satisfactory agreement with the DNS data of the channel and boundary layer flows
(see article by Durbin in this volume).

The objectives of the present study are : (&) to implement the k-¢-v model into
a computer program which embodies the complete elliptic form of the 2-D, incom-
pressible Navier Stokes equations for steady-state turbulent flows, (b) to make an
assessment of the k-e-v model by comparing predictions with DNS data as well as
experimental measurements for various turbulent flows, (¢} to make improvements
and extensions of the modeling, if warranted, and {d) to provide the application
of the k-e-v model for predicting separated boundary layer flows. At the present
state of the research, the implementation has been completed and the assessment
is in progress. In this report, a brief summary of numerical methods is presented,
followed by results of testing of the numerical methods. The implementation of the
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k-e-v has been confirmed by comparing predictions with the DNS data of the chan-
nel flow at Re, = 180. In order to assess the new model, a series of computations
will be compared with measurements of popular test cases covering several types of
turbulent flow.

2. Accomplishments

The accuracy of a numerical prediction rests on the excellence of the turbulence
model! as well as on the accuracy of the numerical methods used to solved the
modeled equations. For simple turbulent flows, most of the difficulties associated
with numerical predictions are the lack of physical understanding and consequent
inadequacies in the various turbulence models used. On the other hand, for complex
turbulent flows, not only the turbulence models but also the numerical methods are
in question. As the first step of the study, the accuracy of the numerical methods
was investigated.

2.1 Numerical methods

2.1.1 Governing equations

The govermng equations for conservation of mass, momentum, and transport of
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where vy is the eddy viscosity
vy = C#;)-ET, (7)
T is the time-scale for the evolution of ¢
T = maz(k/e, Cr(v/e)'/?), (8)

P is the production of turbulence kinetic energy
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____0U;
P = —-u.-ujé—:;;, (9)

P, is a source term which combines the effects of pressure-velocity correlation and
anisotropic dissipation

Paz = k foz, (10)
and the length scale L is expressed as

L = Cy, maz(k3/2 e, Co(*/€)Y). (11)

Detailed discussion of the k-e-v model and its boundary conditions can be found
in the report by Durbin (1991).

2.1.2 Numerical procedure

The k-e-v model was implemented into a finite difference computer code developed
for solving the 2-D, incompressible, steady-state turbulent flows. This program
is based on previous finite difference procedures used in the TEACH computer
program of Gosman and Pun (1974).

The governing equations (1) through (5) may be expressed in the general form

2 7] a d¢ 0 0o,
EE(U#”) + 5;("45) - 5(%5&;) - '5;(%‘55 = 5% (12)

where ¢ represents any of the dependent variables, v, is the effective viscosity, and
the source Sy contains any remaining terms. The primitive variables are solved on
a system of staggered grids. This discretization is based in all cases on the control
volume approach which ensures that the conservation principle embodied in the
continuum equations is preserved in the numerical analog, Following this approach,
the governing equations are formally integrated over the appropriate control volume
by applying the Gauss theorem.

The result is 96 56
{U(ﬁ - UeEE}GAc - {UQS - Vea}wAw

a 13}
+{V¢mu35§}nAn— {V¢~ve-5§}sAs = 54V, (13)

where the A’s represent the areas of the cell faces in four compass-point directions
(n,e,5,w) located mid-way between the grid points, and V, represents the volume of
the cell, _
The next step in formulating a finite differencing equation is the assumption of
the ¢ profiles between any two grid points, The diffusion terms are formulated
using a central differencing scheme; since this is common practice, nothing further
need be said about them. Attention is directed to the convection terms, for it is
the approximations that are used for these terms that can lead to the generation of
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artificial viscosity. The schemes that are used to approximate the convective terms
only refer to the differencing of convected quantity ¢; the convecting velocity is
discretized using the central differencing scheme. In the present computer code, the
QUICK (Quadratic Upstream-weighted Interpolation for Convection Kinematics)
differencing scheme of Leonard (1979) was used in order to reduce the error due to
the artificial viscosity,

Upon collecting terms in the finite difference equations, the generic differential
equation can be put into the discretized form

Bi¢p = ZB;?qs,- + 8, (14)
]

where

Bf =) B! -Sp. (15)
i

Here the subscript j denotes the neighbor grid points of the point P. The B’s are
coefficients consisting of contributions from diffusion and convection, and the S's
are the linearized source terms. Obviously, the B’s and S’s are uniquely formulated
for each differencing scheme,

The direct methods for solving the above finite difference equations require ex-
cessive storage and computer time. Therefore, an iterative method for solving the
algebraic equations is employed. The computation sequence starts with guesses for
the velocity field and related quantities. For the first step, the SIMPLER (Semi-
Implicit Method for Pressure Linked Equations, Revised ) algorithm of Patankar
(1980) is used for obtaining the pressure field from the pressure equation which is
derived from the continuity and momentum equations. Next, the axial and radial
momentum equations are solved for U and V' velocity components, respectively.
Then, in order to conserve mass locally, a correction of velocity is completed via
a with the pressure-correction equation, which is also derived from the continuity
and momentum equations. Finally, the turbulence transport equations are solved,
and the effective viscosity is updated accordingly. The newly obtained flowfield is
treated as an improved guess and the process returns to the first step. This iterative
procedure continues until convergence,

The discretization equations are linear and are solved line-by-line using the Tri-
Diagonal-Matrix Algorithm ( TDMA ) applied in an ADI (Alternating Direction
Implicit) manner.

2.2 Testing of numerical techniques

2.2.1 Laminer flow in a driven cavity

A driven cavity problem has been an ideal non-linear problem for testing new
numerical schemes and as a benchmark solution for making comparisons among
various schemes using different methods of problem formulation, discretization, it-
eration, and approximation. The geometry and the boundary conditions for the
flow are the same as those of the Kim & Moin’s (1985) computation.

Wi
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FIGURE 1. Streamlines and contours of constant vorticity for a driven cavity

After grid independence testing, final predictions were made with two different
uniform grids: a 50 x 50 grid for flows with Re < 1000 and a 100 x 100 grid for
flows with Re > 1000, Three differencing schemes (QUICK, central, hybrid) were
tested for this problem with Reynolds numbers up to 5000. However, a converged
solution could not be obtained for Re = 5000 with the central differencing scheme.

Predictions are compared with those by Kim & Moin (1985) and by Ghia et
al.(1982). Figure 1 shows the predicted streamlines and contours of constant vor-
ticity for three different Reynolds numbers. At Re = 1, the streamlines are sym-
metric because the convection terms are negligible. At Re = 400, these convection
terms have begun to dominate the flow, producing a core of nearly uniform vortic-
ity. Note that the vortex center shifts in the direction of the boundary velocity. At
Re = 2000, the core of the primary vortex becomes almost inviscid and shows a
symmetric structure about the center of the circle. As observed by Kim & Moin,
a secondary vortex starts to develop at the upper-left corner of the cavity at this
Reynolds number.

Figure 2 shows the distribution of the streamwise velocity at the middle plane of
the cavity for Re = 400. The present solution shows close agreement with the solu-
tion by Kim and Moin (1985). Since the non-linear effect of the convection is small,
the QUICK, the central, and the hybrid schemes show little difference. However,
as shown in Fig. 3, these schemes show a significant difference when the Reynolds
number is high. It is obvious that the hybrid scheme suffers from artificial viscos-
ity. Overall, it is found that the QUICK scheme is stable and accurate, the central
differencing scheme is accurate but unstable, and the hybrid differencing scheme
is stable but inaccurate. Figures 4 and 5 show the predicted stream-function and
vorticity at the center of the primary vortex, respectively. As observed previously,
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FIGURE 2. Streamwise velocity at the midplane of the cavity for Re = 400
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FIGURE 3. Streamwise velocity at the midplane of the cavity for Re = 5000

the QUICK scheme provides the most reliable solutions.

2.2.2 Leminar flow over a backward-facing step

For the second test problem, the laminar flow over a backward-facing step has
been chosen. The detailed description of the problem can be found in the work
of Kim and Moin (1985). A 100 x 100 uniformly-spaced grid was used for the
computations.

Figure 6 shows predicted reattachment lengths in comparison with the experimen-
tal and the computational results of Armaly et al. (1983) and the numerical results
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FIGURE 4. Stream-function at the center of the primary vortices for different
Reynolds numbers
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FIGURE 5. Vorticity at the center of the primary vortices for different Reynolds
numbers

of Kim and Moin (1985). Using the central differencing scheme, converged solu-
tions were obtained for flows with Reynolds numbers up to 600. It should be noted
that Armaly et al. (1983) used an upwind differencing scheme for the convective
terms. That might explain why his computations show such a poor performance.
The QUICK scheme shows its ability in predicting the reattachment length fairly
well.

The length of the secondary bubble on the flat upper wall is a good indication
for the performance of the numerical schemes. Figure 7 shows a comparison of the
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FIGURE 6. Reattachment length as a function of Reynolds number

bubble lengths predicted by two different numerical methods: the present TEACH
type program and the Kim & Moin's program. The predicted bubble lengths by the
present program, using the QUICK scheme, show excellent agreement with those
by Kim & Moin’s program.

A Driven Cavity

®  Kim A Moin
QUICK

0

100 200 300 400 500 600 700 800 900 1000

Re

FIGURE 7. Secondary bubble length as a function of Reynolds number

Re, = 180 was selected as the first test case. As expected, the predicted profiles

2.3 Testing of the k-e-v model

The k-e-v model was implemented into the program described in Sec. 2.1.2. In
order to confirm the correct implementation of the k-e-v model, the channel flow at
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of the streamwise velocity and the turbulence quantities were almost identical to
those reported by Durbin (1991).

Testing of the present implementation of the k-e-v model is continuing. The zero
pressure gradient boundary layer is being computed and compared with measure-
ments by Wieghardt and Tillmann (1951). This boundary layer is the simplest case
of wall turbulent flows, yet it is of great practical importance. It provides a starting
point for the computation of separated boundary layers.

Separated boundary layers are quite different from zero pressure gradient bound-
ary layers in many ways: (a) they are elliptic, i.e. the pressure distribution upstream
of separation is influenced by the flow downstream of separation, (b) the Prandtl’s
boundary layer assumptions are no longer valid due to the rapid increase of the
boundary layer thickness, and (c¢) the curvature of the streamlines near the separa-
tion has a strong influence on the degree of anisotropy between the normal Reynolds
stresses (Bradshaw, 1973). All these facts make the separated boundary layers hard
to predict correctly.

3. Future plans

The main objective of the research is to develop a near-wall turbulence model
which simulates a large variety of types of flow without ad hoc adjustment. Also,
the model has to be easy to use. Therefore, the main difficulties of the model
development is to select a universal set of differential equations and then to provide
the required closure constants, In this point of view, the equations of the k-e-
v model, originally developed by Durbin (1991), will be carefully extended and
improved for two dimensional elliptic problems,

In order to account for the anisotropy of the turbulence stresses, the possibility
of using the tensorial form of the eddy viscosity will be studied, z.e.

vi; = CuuyugT. (16)

Furthermore, the effects of streamline curvature will be incorporated in the model-
ing. This incorporation can be achieved either by modifying the e equation (Laun-
der et al., 1977) or by modifying the expression of the eddy viscosity v; (Bradshaw,
1973). These new features of the modeling will, of course, make the modeling more
complicated, which is not always desirable.

To evaluate the practical application of the improved k-e-v model, a study of the
momentum and thermal details of separated boundary layers with heat transfer will
be undertaken. As the first attempt, a specified normal velocity distribution along
the free stream boundary will be given in an effort to match a selected experimental
pressure distribution along the wall. This matching may require an iterative pro-
cedure, Solutions by the improved k-e-v model will be compared with solutions by
DNS (Moin, 1991) which is in progress. Prescribed wall temperature distribution
and/or wall heat flux distribution will be added later.
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