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Modeling turbulent boundary
layers in adverse pressure gradients

By S. E. Belcher

1. Motivation and objectives

The phenomenon of separation of a turbulent boundary layer has important im-
plications in practical applications but remains little understood. The overall aims
of this research are to gain theoretical understanding of the physical processes that
are important in governing the separation and thence to develop closure models to
predict these flows.

The model problem that is considered is an incompressible turbulent boundary
layer on a flat plate that is subjected to a prescribed, external, pressure gradient.

The structure of attached turbulent boundary layers is more complex than that
of laminar layers. The zero-pressure-gradient (hereafter ZPG) turbulent boundary
layer has a well known two layer structure with a logarithmic velocity profile at the
common overlap. Many of the existing turbulence models that are used for boundary
layer calculations were conceived and calibrated using data from the ZPG boundary
layer. However, the application of an adverse pressure gradient (hereafter APG) to
a turbulent boundary layer leads to a very different structure because the adverse
pressure gradient alters both the mean flow and turbulent transport properties.
In order to develop improved models for boundary layers, it is, therefore, natural
to start by examining the fundamental differences between the APG and ZPG
turbulent boundary layers.

When taken with reasonable physical assumptions, asymptotic methods provide a
systematic framework that can contribute to our understanding of turbulent bound-
ary layers. Hence much of the effort to date has been in using asymptotic methods
to study the structure of a turbulent boundary layer that is approaching a separa-
tion point, thereby leading to some conception of the important length and velocity
scales that determine the nature of the separation.

2. Accomplishments

The asymptotic structure of a turbulent boundary layer that is subjected to a
strong APG has been investigated in the context of eddy viscosity closure. The
results, which are described briefly in §2.1, show that the APG turbulent boundary
layer is very different from the classical, ZPG boundary layer structure.

The mean point of separation of a turbulent boundary layer may by defined
as the point where the boundary layer approximation of the Reynolds averaged
~ momentum equations ceases to apply. The asymptotic theory has been extended
to consider whether or not the separation point coincides with the point of zero
skin friction. The results, described in §2.2, suggest that no singularity occurs in
the boundary layer equations at the point of zero skin friction. This is in strong
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contrast to the laminar APG case, where the classical square root singularity of
Goldstein terminates the validity of the boundary layer approximation at zero skin
friction.

The findings of this study lead to conclusions that are rather different than the
results of two other recent investigations. In §2.3, an attempt is made to reconcile
these differences and to highlight the areas of conflict.

2.1 The scaling of edverse pressure gradient turbulent boundary layers

A brief overview of the asymptotic scaling of an APG turbulent boundary layer
is now given. Full details may be found in Durbin & Belcher (1991). The reader is
also referred to the article by Durbin in this volume.

The free stream velocity is Uso(z) and « is the prescribed, kinematic pressure
gradient ((1/p)(dP/dz)). The streamwise length scale is then L = U2 /a. If § is
a measure of the boundary layer thickness, then one small parameter is 6/L. The
second is the reciprocal of the Reynolds number, Rezl = v/UsoL, and it emerges

that the small parameter in the wall region is € = Rezlf 3. For the purposes of the
formal asymptotic ordering it is sufficient to let §/L ~ ¢, This ordering implies
that the flow is slowly varying, i.e. the eddy turnover time scale § Ju' (where u' is a
measure of the fluctuating velocity) is of the same order as the mean flow advection
time scale, L/Uss. The APG turbulent boundary layer is then composed of three
distinguishable asymptotic regions.

In the outer region, the nondimensional variables are distinguished by a tilde:

F=y/6, di=de/l, U=U/Us, bip= vr/(Uos6®/L). (1)

Here vt is the eddy viscosity. It is observed experimentally that the velocity deficit
across the outer region is large so that the flow is governed by the full nonlinear
boundary layer equations (¢f. the ZPG boundary layer where the velocity deficit in
the wake region is small and the equations can be linearized).

In the middle region, the turbulent transport processes make a transition from
their near wall behavior (where the mixing length ideas are expected to be valid)
to the outer region behavior (where the Clauser, constant eddy viscosity model is
adopted). The nondimensional variables are denoted with an overbar:

y= y/(&}')a U= U/V aby, br= ”T/(UOO62/L)' (2)

The velocity scale is determined by the pressure gradient and the boundary layer
thickness—not the free stream velocity. Matching to the constant eddy viscosity
that is adopted in the outer region determines that v = (§/L)!/3. With these
scalings, the z-momentum equation reduces to a balance between the Reynolds
stress and the pressure gradients.

In the wall region, care must be exercised in defining the velocity scale. The
appropriate choice is the viscous, pressure gradient velocity, defined by

Uy = (O‘V)lla’ (3)
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FIGURE 1A. Comparison of computaﬁions with experimental data on self-similar
APG boundary layers. Data tabulated in Coles & Hirst (1968): circles Bradshaw
& Ferris; squares Stratford.

where v is the molecular viscosity. It is inappropriate to use the local friction
velocity, us, because we are concerned with flows that include those near separa-
tion, when the friction velocity approaches zero. Similarly, the classical, ‘wall-layer’
length-scale based on the friction velocity, v/us, becomes infinite at zero wall shear
stress and so is clearly inappropriate. The appropriate choice is v/u,, which is
well-behaved when the wall stress is zero. The nondimensional variables, which are
denoted by a hat, then become

§=yupfv, U=Ulup, ir=vr/r. (4)

The mean z-momentum then expresses a balance between the gradients of viscous
and turbulent stress and the pressure gradient.

The middle region is required formally because the wall and outer regions do
not have a common overlap. Hence it is not possible to adapt Millikan’s overlap
argument and deduce the skin friction relation. Instead, the skin friction law for
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FIGURE 1B.  Comparison of model with experimental data of Driver (1991).
(The experimental data sets are from different z-stations measured in mm from a
reference point. )

the APG boundary layer is obtained by solving for the nonlinear flow in the outer
region, with boundary conditions imposed by matching through the middle and wall
regions.

In this preliminary part of the study, self-similar flows were considered explic-
itly, In the outer region, where the Clauser eddy-viscosity model is used, the z-
momentum equation becomes the Falkner-Skan equation. The boundary conditions
were determined from the matching of the wall and middle layers with the outer
region. Figures 1a¢ and 15 show profiles of the self-similar velocity computed using
the present model and comparisons with experimental data.

2.2 On the singularity at separation

The asymptotic analysis of Durbin & Belcher (1991) has been extended to inves-
tigate how a turbulent boundary layer behaves at a point of zero skin friction, This
analysis is now briefly described.
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Physically, the separation of a boundary layer is marked by mean streamlines
moving abruptly away from the bounding surface. Hence separation is associated
with a mean velocity component normal to the wall that is comparable with the
streamwise velocity component. This signifies that the boundary layer approxi-
mation has broken down and the full, elliptic, Navier-Stokes equations govern the
flow., Mathematically, a singularity occurs in the boundary layer equations, The
separation point is, therefore, defined as the point at which the boundary layer
approximation ceases to be valid, It is important to make this definition precise,
because it is not clear ¢ priori that this definition of the separation point coincides
with the point of zero skin friction, Indeed the present results indicate that the
boundary layer approximation holds at, and slightly beyond, the zero skin friction
point.

In the laminar flow, the classical analysis of Goldstein (1948) shows that the
boundary layer equations have a singularity at x,, where the wall shear stress varies
as Ty o \/Ts — &, which does coincide with the point of zero skin friction. The
scaling described in §2.1 is now extended to examine any singularity in the turbulent
boundary layer equations.

The possibility of a singularity at separation is made apparent by an argument
due to Terrill (1960). Consider the z-momentum equation in the boundary layer
approximation (z is the streamwise direction measured such that & = 0 is the point
of zeto skin friction). Then, taking 8%/8y? of this equation and setting y = 0 shows

that
d (1, Ik ou
z (@) = [aa o+ ), (5a)
Nag+aet-- (5b)

Where the a; are the coefficients of a Taylor expansion in 2 of the right hand side of
(5a). Integration of (5b) over « shows that the wall shear stress varies approximately

as
ro 5 VB T (6)

Hence there is a singularity in the boundary layer equations if a5 is non-zero.

In equation (5a), the term d/dz(r2/2) arises from the nonlinear, advection term,
UQU/8z. The key role played by the nonlinear term in producing the singularity
is to be expected since only nonlinear differential equations have solutions with
moveable singularities.

2.2.1 Asymplotic arguments

With the wall-region asymptotic scaling of §2.1, the z-momentum equation be-
comes

.(% ({1 + 97 %g.-) = a+0() )

so that, according to the asymptotic theory, the advection terms in the wall region
are of O(e?). The heuristic argument for the origin of the singularity presented
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above makes it clear that, in order for the singularity to occur in the wall region,
the nonlinear inertial term, U8U/8z, must become of the order of a. This can
occur only if the streamwise velocity varies on a short length scale & = 2w, ie,
8U /8% = O(1). We shall demonstrate that there is no such rapid variation of U.

On the & length scale, the pressure gradient, which by definition varies on the
z = O(1) length scale, is constant so that, in this study, it is sufficient to consider
a constant APG, i.e. & = constant.

The solution from Durbin & Belcher (1991) for the leading order contribution to
the streamwise velocity in the wall region may be written

R ﬁﬁ+u2/u§ .

For an adverse pressure gradient of constant strength (where up is constant), the
numerical results described below show that the wall shear stress varies approxi-
mately linearly. Hence, differentiation of equation (8) shows that, in order for the
velocity in the wall region to vary by order one on the 3 length scale,

dir
0%

= 0(1). (9)

According to the reasoning of §2.1, the key velocity and length scales in the wall
region are u, and v/uy. Hence the eddy viscosity might be expected to depend on
these parameters. Furthermore, it is reasonable that ir depends on u2. However,
provided the functional dependence of the eddy viscosity on these parameters re-
mains analytic as u — 0 (as it does for the mixing length and k — ¢ models), none
of these terms leads to a singular behavior in 807/ as uZ — 0. If, however, the
eddy viscosity is erroneously modeled in terms of u, {(as in, for example, the Van
Driest damping function), then a singularity does occur. As described above, v/u,
becomes infinite at the zero skin friction point so that the use of uy as a velocity
scale is unphysical.

Equation (9) can be rewritten in terms of dimensional variables using the defi-
nition € = Re}'/ ?, the ordering ¢ ~ § /L, and equation (4), The condition (9) then
requires that in the wall region

BVT Uooé

Whilst the experimental data is not entirely conclusive, it does suggest that, near
the wall, the eddy viscosity varies only slowly close to the point of zero skin friction
(Driver, 1991; Simpson et al. 1981). None of the data show a variation of the
magnitude needed to satisfy equation (10). We recognize, however, that the ‘elliptic
effects’, which must become significant at separation in the real flow, may cause the
eddy viscosity to adjust more smoothly than it would in a strict boundary layer
approximation,
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This argument suggests that, in the wall region, the advection terms remain small
at the point of zero skin friction. Similarly, they are expected to remain small in the
middle region. By contrast, in the outer region, the nonlinear terms are of leading
order. The boundary conditions at the lower limit of the outer region flow are

2

1 .

UNEZISU‘” U’NE%F, VNE‘/M asgjw(), (11)’
p o0

where the ‘slip velocities’, U, and V,, are determined by the wall and middle region
solutions. Melnik (1989) showed, by a similar argument as that leading to equation
(6), that a singularity can occur when U, = 0. The analysis leading to (11) indicates
no reason for U, and u? to vanish simultaneously. The precise form of the variation
of U, depends sensitively on the model used for the viscous sublayer. Experimental
data (Driver, 1991; Simpson et al. 1981) shows that, very close to the surface, the
mean shear at the zero-skin-friction point is large and that the mean velocity, just
above the viscous sublayer, is non-zero. Hence the experimental evidence strongly-
suggests that the slip velocity is non-zero as u2 — 0.

The conclusion is that, according to the asymptotic theory, a turbulent bound-
ary layer might pass through a point of zero skin friction without the boundary
layer approximation breaking down. This implies two possibilities: (i) the separa-
tion can remain confined to a small separation bubble without the boundary layer
approximation breaking down; or (i), if large scale separation occurs, the mean
streamlines break away from the surface some small distance downstream of the
zero skin friction point,

2.2.8 Numerical solution

The full nonlinear boundary layer equations have been integrated numerically
using an algebraic eddy viscosity model developed from the asymptotic scaling in
order to check the deductions from the asymptotic analysis.

The eddy viscosity is given by

v = vl (1 —exp {—/v:, (ay +ul)}). (12)

When y/6 ~ 1, this becomes the Clauser viscosity voo = Co(6/L)Usbx, and when
yup/v ~ 1, vp ~ €4/uZ + ay, the mixing length formula. The mixing length, £, is
damped on the v/u, length scale near the surface:

£ = ky(1 — exp(—yu,/26v)). : (13)

In order to have confidence that the numerical solution would capture any sin-
gularity, it was important to keep the errors associated with the numerical solution
procedure to a minimum. An error analysis, based on the assumption that a sin-
gularity did occur, was performed on numerical scheme; the streamwise step length
was then adjusted to keep this error fixed. The smallest step length was of the order
€2/10. ‘
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FIGURE 2.  Variation of skin friction with downstream distance for a boundary
layer in a constant adverse pressure gradient: (a) turbulent layer (& = 1, Rey, = 10°
so that ¢ = 1072); (b) laminar layer (a = 0.01, Rey, = 10%).
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The streamwise development of the skin friction in a boundary layer that is
subjected to a constant adverse pressure gradient is shown in figure (2¢). For com-
parison, a corresponding laminar case is also shown in figure (2b). (Note the differ-
ent values of the pressure gradient between the turbulent and laminar cases—-with
the same pressure gradient, the model does predict that a laminar layer separates
earlier than a turbulent layer!). In the turbulent case, 7, — 0 linearly with no
indication of a y/z/L behavior; by contrast the laminar flow shows clear evidence
of 7y ~ y/x/L. Other quantities were also monitored, but none showed a singular
behavior at 7, = 0 for the turbulent boundary layer. The numerical results then
concur with the findings from the asymptotic study, namely that, in the turbulent
flow, the skin friction has no singularity when 7, — 0.

2.8 Comparison with other asymptotic theories

Recently, there have been proposed two other theories for the asymptotic struc-
ture of a separating turbulent boundary layer. These analyses differ in fundamental
ways from the scaling developed by Durbin & Belcher (1991); therefore, an attempt
is briefly made here to reconcile these different viewpoints and to suggest the reasons
for the different results of these analyses.

Melnik {1989, 1991) developed an analysis based on a simple two layer eddy
viscosity model (see Cebeci & Smith, 1974), The outer part of the eddy viscosity
is of the constant, Clauser form. Melnik found asymptotic solutions in the double
limit of C' — 0 (where C is the multiplier in the Clauser eddy viscosity model) and
the Reynolds number Re — co. The solution then develops a three layer structure.
The outer region, which extends over the outermost bulk of the boundary layer, is
equivalent to the outer region described in §2.1, when the parameter C of Melnik’s
analysis is identified with §/L in the present scaling. In his middle layer, Melnik
suggests that solutions may be found as linear perturbations to the ‘slip velocity’,
U, (the velocity at the bottom of the outer region). If his middle region solutions
are put into dimensional form, it is found that this approach is valid only when
U, > (6/L)}. Hence Melnik’s analysis is appropriate only to the initial development
of a boundary layer in an adverse pressure gradient. The condition U, ~ (6/L)} is
just that necessary for the Durbin & Belcher scaling to become valid. There is also
a significant difference between Melnik’s treatment of the wall layer and the scaling
of §2.1. Melnik assumes that the logarithmic law of the wall holds very close to the
wall, Since the middle and wall regions are linear, the slip velocity is then linearly
related to the friction velocity (by a slightly modified form of the ZPG logarithmic
overlap). Melnik’s analysis then implies that the slip velocity is zero at the same
point that the wall shear stress is zero. This is entirely a consequence of using
the ZPG drag law across the wall region. Hence Melnik’s equation of the point
of singularity to the zero-skin-friction point is not necessarily valid; it seems to be
more of an assumption than a deduetion. It has been shown in §2.2 that, if the
middle region is treated as in the Durbin & Belcher scaling, then the slip velocity
need not vanish at the point of zero skin friction. There is then no correspondence
between the singularity and the zero-skin-friction point.

Neish & Smith (1991) have also analyzed the effect of a pressure gradient on
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a turbulent boundary layer using asymptotic methods. Like Melnik (1989, 1991),
they also adopt the ‘Cebeci-Smith’ turbulence model, The main difference between
this analysis and the theories of Melnik and Durbin & Belcher is in the treatment
of the outer region. Neish & Smith treat the Clauser constant (C in the above
notation) as an order one constant. The outer region is then inviscid at leading
order. An analysis of the magnitude of the terms in the boundary layer equation
using the data of Driver (1991) shows that this is not an appropriate approximation:
the shear stress gradient is not negligible in the outer region. Furthermore, Neish &
Smith assume a logarithmic overlap between the wall and outer regions, which leads
to the logarithmic friction law holding asymptotically close to the separation point.
This overlap law has no theoretical justification, and the experimental data shows
that the skin friction in an APG boundary layer falls more rapidly than predicted
by the logarithmic friction law (see data in Coles & Hirst, 1968). Hence we can
have little confidence in the development suggested by Neish & Smith (1991).

3. Future plans

The asymptotic studies described in this report are being used to develop closure
models for separated turbulent boundary layers.

The investigation of the nature of the singularity in the boundary layer equations
near a point of zero skin friction suggests that it is important to model correctly the
Reynolds stresses in the wall layer. A model that addresses this issue but without
using ‘damping functions’ has been developed by Durbin (1991). This model uses
an eddy viscosity hypothesis, together with a transport equation for vZ and the
standard k and ¢ equations. This model is currently being generalized to a full
Reynolds stress closure. In order to do gain theoretical insight into how this might
be done, the rapid distortion calculations of Hunt & Graham (1978) are being
extended to the case of initially axisymmetric turbulence, thereby showing how the
kinematic blocking effect is affected by anisotropy in the initial turbulence. The
Reynolds stress model will be used to compute separated turbulent flows.

The k —¢—v? turbulence model of Durbin (1991) is also being used to investigate
the flow in a channel that is subjected to spanwise rotation. Below a critical value
of the rotation rate, the mean flow is two- dimensional, and I have shown that the
main features are captured by the & — & — v? model. Experimental measurements
(Johnston et al, 1972) show that when the rotation rate increases beyond a critical
value the mean flow becomes three-dimensional, with vortical rolls appearing in the
streamwise direction. The full Reynolds stress version of the model will be used to
study the bifurcation to the three dimensional flow.
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