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Derivation of the « - ¢ model equations
using the renormalization group method

By L. M. Smith!

1. Motivation and objectives

We have made a critical study of the renormalization group (RNG) theory of
turbulence proposed by Yakhot and Orszag (YO, 1986). The results of that study
were reported in CTR Annual Research Briefs - 1990 and in full detail elsewhere
(Smith and Reynolds (SR}, 1991). Our independent study led to confirmation of
YO’s basic theory of the Navier-Stokes equations, but errors were found in their
derivations of the velocity-derivative skewness and the model transport equation for
the mean dissipation rate of energy £. The most consequential changes over what
was reported by YO were in the £ model equation. As will be explained, our efforts
have led to a reformulation by Yakhot and Smith (YS, 1991) of the RNG method
for derivation of model transport equations.

2. Review of the basic theory

The RNG model is isotropic turbulence in an unbounded domain, driven by a
Gaussian random force f,

% +v; Vi = fi — Vip+ v,V (1)
where the velocity v is divergence-free (V; = 8/8z;), v, is the molecular viscosity,
and the constant density p has been absorbed into the pressure p. The force f must
satisfy incompressibility, homogeneity in space and time, and isotropy in space. It
is designed to produce a scale-invariant field with energy spectrum given by power-
law decay in wavenumber space. If fis further assumed to be white-noise in time,
the most general form of its two-point correlation function in time is (Leslie, 1973)

< FR)f() >= 2D,y kP Ak + K], AL <k<A,  (2)

where k = (k,w) is the wavevector-frequency vector and the dimension d = 3.
Herein square brackets {...] are used to denote the arguments of a function or
variable. The delta function guarantees homogeneity and the projection operator
P;;[k] = 8;; — kik;/k* guarantees isotropy and incompressibility. The wavenumber
A, is an ultraviolet cutoff above which the viscosity is the molecular viscosity v,,
and Ap —+ 0 is the low-wavenumber end of the scaling regime. The exponent y =3
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leads to a Kolmogorov inertial-range energy spectrum E(k) = £~%/% (YO). The
amplitude D, has units of k¥~?~%w®. One sees that for y = 3, D, has the dimen-
sions of the mean dissipation rate of energy £, and thus in this case, the parameters
of (2) are k and £. Dannevik, Yakhot and Orszag (1987) found the relation between
D, and £ when y = 3 by requiring overall energy conservation of the renormalized
Navier-Stokes equation after removal of all scales above k in the inertial range (see
(4) and (6) with A = k),

-DoSd
(2m)?
where Sy is the area of a unit sphere in d-dimensions.

The RNG procedure to eliminate small scales from the equations of motion (1)
has been described in many papers in the literature, for example, Forster, Nelson,
and Stephen (1977), De Dominicis and Martin (1979), Fournier and Frisch (1983)
and YO (1986), and will not be repeated here for brevity. SR also provides a
detailed discussion of the scale removal procedure and the approximations involved.
The removal procedure is carried out in wavenumber space and uses a perturbation
series for the velocity modes in a thin shell of high wavenumbers in powers of the
local Reynolds number. Substitution of the perturbation solution for the velocity at
high wavenumbers, into the equation for the velocity at low wavenumbers, leads to
a modified equation for the velocity at low wavenumbers. Among the modifications
is a correction to the viscosity. The corrections aceumulate as more thin shells are
removed.

After iterative removal of many thin wavenumber shells, the local Reynolds num-
ber, based on the modified viscosity, was shown (YO) to be proportional to /2
where ¢ = 4 +y — d. Thus for ¢ — 0, the solution for the high-wavenumber modes
is given by the lowest-order term in the series expansion, and in this case, the only
modifications to the equations for the low wavenumbers and low frequencies (in the
limit k — Ap — 0 and w — 0) are the modified viscosity and an induced force F.
Taking inverse transforms, the equations for the long times and large scales are

Ov;
a—"i + Vv = fi 4 F: — Vip + vp[A] V20 (4)

where vp[A] is the effective viscosity acting at large scales after removal of wavenum-
bers A < k < A,. To lowest order in an expansion in powers of ¢,

: 3\ /2D,85,\/°
A= = 2 oMe —€/3
= (i) () ®
The induced force F is Gaussian at lowest order in ¢ (Forster et al., 1977) and
given by its two-point correlation function

= 1,59 (3)

< Bk Bk >= 2D,D'(2m)*+ 1 k2 Py k)6 [k -+ K') (6)

where the amplitude D' is also found at lowest order in €. The “backscatter” force
F, with correlation function proportional to k2, is negligible compared to the bare
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force f in Ay < k& < A,. However, it is important in 0 < k£ < Ay and leads to
an induced energy spectrum E[k]  k? in 0 < k < Ay (Forster et al., 1977). The
induced energy spectrum is important for the RNG derivation of the £ transport
equation (section 3.4).

The Yakhot-Orszag theory of turbulence is the evaluation of the results (4)-(6)
at lowest order in an expansion in powers of € with ¢ = 4, which gives Kolmogorov
scaling. Using relation (3), the effective viscosity becomes

vr[A] = 0.49813A4/3, (7)

3. Accomplishments

We shall now describe the evolution of the RNG derivation of the model £ equa-
tion. The exact transport equation and “standard” model transport equation are
first reviewed to remind the reader of what might be expected from the RNG anal-
ysis.

3.1 The exact transport equation for £

We consider the velocity field u; of incompressible flow with constant viscosity
v,. The total velocity «; may be written u; = U; + v;, where U; =< u; > and v; is
the zero-averaged fluctuations from the mean.

The dissipation rate of the kinetic energy of the fluctuations in homogeneous
turbulence is £ = v, < (V;v;)? >. The Navier-Stokes equations may be used to
derive an equation for the time rate of change of £ in homogeneous flow,

Ty T3

% = +1—2V3 < (V_,-vaif >}?+T{—2VijUm < (V,-v,-)(va,-) >§

Ty T

+ T 200Vl < (V;00(V50m) >3+ 1200 < (Vo) (V;0m)(Vmwd) 51 (8)

Intuitive scaling analysis (Tennekes and Lumley, 1972) shows that the dominant

balance is between T; and T; and that these terms scale as O[R}”z], where the
turbulence Reynolds number Rt = K2?/(v,E).

3.2 The “standard” model equation for £

The time rate of change of £ is usually modeled by the sum of O[1} terms, which
assumes the exact cancelation at leading order of 17 and T;. There has been no
solid theoretical justification for this exact cancelation, and the only “proof” has
been model performance. The most widely used model is

o€ £ £?

i Ces L Cezf (9)
where P = —V;U; < v;vj > is the production of K. The Reynolds stress is usually
modeled by
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< vy >= 2“(:36"’. — 205y (10a)
1
Sij = -2~(VjU,' + V.U;) (100)

where v, is an eddy viscosity and S;; is the rate of strain tensor. The model
coefficients Cgy and Cgy are dimensionless. These coefficients are independent of
Ry at high R, and typical values are C¢y = 1.4 and C¢y = 1.9 (Patel, Rodi and
Scheurer, 1985).

3.8 The € model equation found using the original YO method

The starting point for the RNG derivation of the model £ equation is the transport
equation for the instantaneous quantity ¢ = v,(V;v;)?. Taking the time derivative
of ¢ followed by substitution of the (unforced) Navier Stokes equations leads to

T
d¢ o )
a0 = —v;V;id 4+ xoViV;é - 2V0(V1Vm'ui)
Ty
~20,[V 0i)(V; Vip) + {~206(V ) (V 0, ) (Vi) } (11)

where x, = v,. The terms labeled Ty; and T3, are the instantaneous forms of T
and T3 in equation (8).

Following the RNG scale elimination procedure, the small scales are systemati-
cally removed from the equation for £ = limg_,, gﬁ(l}) (see SR), where ¢(k) is the
four-dimensional Fourier transform of ¢, and the limit k — 0 means & — Ay —0
and w ~+ 0.

In the original YO derivation of the £ equation, the O[R,IT/ ?] contributions from
Ty and T> were assumed to cancel. The O[1] contributions from 7} and T, were
calculated in 0 < k < Ay after removal of A; < k < A,.

We showed (SR) that the final form of YO’s model £-equation is in error and we
provided the “correct” model found following YO's original procedure. In the limit
of high Reynolds numbers, a consistent application of that procedure leads to the
model

a€ £? .

B = -U;V;€ + VixrV;€ — 5'65f +1I (12)
where x7 = avr, a = 0.77 and vy = 0.085K*/£, and these values are exactly
as given by YO. The decay rate for isotropic flow 5.65 is in poor agreement with
observations and X — £ models in current use. YO had previously reported the
decay rate 1.7, which agrees well with observations and current models.

The term HO* (initially thought responsible for the production of £ in anisotropic
flow) is O[V®v?] and cannot have the form Vv? as reported by YO, Thus the model
(12) does not have the form of the production term Px£/K used in current models.
YO have now confirmed our results.



RNG derivation of the K — £ equations 173

8.4 Reformulation of the procedure to derive model transport equations

Applying the RNG scale removal procedure to (11), we found cancelations be-
tween terms describing the effect of the small scales on the large scales. For example,
terms from T} of the form (Vv)? exactly cancel. Reviewing the SR work, V. Yakhot
noticed that these cancelations were among O[R;!z] terms but that some O[R}!lz]
contributions remained when the RNG scale removal procedure was applied to (11).
Subsequently, YS considered the transport equation for ¢ derived by taking the time
derivative and substituting the forced Navier-Stokes equations.

Since the force f is assumed to be the result in Az < k& < A, of all turbulence
production mechanisms, using the forced Navier Stokes equations is the only proce-
dure consistent with the basic theory reviewed in Section 2. They also introduced
a mean flow, and thus they started with the equation

Py T;")

9 - X . P
—gi = _2uo(Vj‘Ui)(iji) "Q}jVj¢ + XijVjQS - 2U0(Vjvm'v£)2

Ty
“2V0(Vj'vi)(VjV,rp) + r{—2Vo(Vjv;)(Vjvm)(va;)}?
+ (=20 VU (V50 ) (V1)) + (=20 VUV 59, )(V j0m ) } (13)

where f is given by (2). Notice the inclusion of the instantaneous terms Ty; and Ty;
as well as the random-force contribution to £-production Py.

The RNG scale removal procedure may be applied to remove wavenumbers Ay <
k < A, from (13), thereby deriving the equation for £ = limy_,, #(k). One finds
that all O{R,}./ 2] terms cancel at low orders in the e-expansion. Thus RNG provides
theoretical support for expressing the equation for € in terms of O[1] inertial-range
parameters. At low order in the e¢-expansion the equation for £ has a similar form
to the equation for ¢ but with modified transport coeflicients,

T
%—f— = —U;V;E + x7[AL}V;V;E “’2VT[AL] < (ViVmry) >
‘1:5,
+{~20r(AL)V ;U < (V05)(Tmos) >}
CI::
+{~20r[ALlVml; < (Vo5 )(VioS) >} (14)

where vp[Ag] is given by (7) and xr[Ar] = avp[AL] with & = 0.77 as before.
The fluctuations v< are the fluctuations in 0 < # < /A and for ¢t — oo.

The terms T3, T3 and Ty in (14) must be closed in terms of €, K, and U, and to
do this, Y8 first rewrite (14) in terms of the energy spectrum tensor E;;[k] of the
wavenumbers below Ap,
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2

= ~U;V;€ 4+ xr[AL]V;V;E

T;

.

Ag o
— dur[As) f K E(k)dk
0

Ty

"

y -
+{-2vr[AL]V;Un [  kik;E[k]dk}
0

Ty

-

Ap A
+ {—2vp[AL]VU; szij[k]dk.} . (15)
L1

r

YS use the form of the RNG induced spectrum E;;[k] o< k2. YS assume that the
value of £ is determined by the large scales and that the expression for £ is invariant
in the inertial range up to &k = Ap,

£ =2, / k2 E[k)dk
0

Ap

A
— 2ur(A] /D K Elkldk = 2rlhs] [ K EIRdE (16)

They also assume that the production of kinetic energy P = —V;U; < vv; > is
determined by the large scales,

Ag
P=—v,U; f Ey;j[Kjdk. (17)
0

The last equality in (16) allows YS to close T} in terms of £, and (17) allows YS to
close T in terms of P. Using E;;[k] o« k? as suggested by the RNG analysis of the
Navier Stokes equations, they find

o€
5= ~U;V;E+ x7[AL]V;V;E
Ts
£? £ As ’
—1.68f + 1.44PE e {—ZVT[AL]VJ'Um k;kjE[k}dk} (18)
(1]

where T3 remains unclosed. We note that only the form of E;; is used to derive
(18), and not its emplitude. Furthermore, isotropy of the large scales, imposed by
P;; in (6), has been relaxed. Note also that K which appears in (18) is the kinetic
energy under the inertial range and not the full kinetic energy.
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It is not apparent how to close the term arising from T3, which we shall denote R,
within the framework of RNG. However, analysis shows that R is small in weakly
strained turbulence and large in the rapid distortion limit  — oo, where n = SK/€
and § = (S,-jS,-J-)l/ % is the rms mean rate of strain. The nondimensional parameter
7 is the ratio of the turbulence time scale K /€ and the time scale of the mean 1/,

Yakhot, Orszag, Thangam, Gatski, and Speziale (1991) have proposed a closure
for R, which is an approximation to its infinite series in powers of . The ap-
proximation is a partial sum to all orders in 7 rather than a finite truncation and is
constructed to satisfy certain consistency conditions. For example, the approximate
expression for R approaches zero faster than Ty = 1.44PK /£ in the limit of weak
strain n — 0.

4. Future plans

The new aspects of the YS procedure are as follows:

1. the transport equation for any instantaneous turbulence quantity (the mean of
which is the desired result of RNG) must be derived using the forced Navier Stokes
equations;

2. the dynamical terms coupling the mean velocity to the fluctuations must be
retained.

The first rule insures that production at the small scales is properly accounted for,

and the second rule insures that production af the large scales is properly accounted

for.

The YS method can be used to derive turbulence models at any level of com-
plexity, for example, a full Reynolds stress model. The RNG model for the fast
pressure strain term in the transport equation for the Reynolds stress is currently
being explored.

All the terms in the Launder, Reece, and Rodi (1975) model for the fast pressure
strain are predicted, as well as some new terms, analogous to the case of the £-
transport equation. It is expected that some of these new terms should be closed
by approximation to all orders of their power series in 7, following the method of
Yakhot et al., (1991).

RNG may also be used to derive models which include important, more compli-
cated physics such as rotation and compressibility. Flows which include such effects
are described by several dimensionless parameters and are not easy to model us-
ing heuristic methods. RNG provides a systematic procedure to derive models for
complex flow systems. The testing of such models may help to improve the theory
itself.
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