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On dynamic models for large eddy simulation

By T. S. Lund

1. Motivation and objectives

1.1 Background

The restriction to low Reynolds numbers is a well known limitation of the direct
numerical simulation technique. It is easy to show ( e.g. Leonard 1973 ) that the
number of grid points required to resolve all the scales of motion increases with
the 9/4 power of the Reynolds number. It is clear that direct simulation of high
Reynolds flows number found in engineering applications will continue to exceed
computer hardware limitations for the foreseeable future.

Fortunately, the inability to simulate all the scales of motion that appear at high
Reynolds number can be circumvented by solving a suitably averaged form of the
Navier-Stokes equations. The large eddy simulation technique proceeds in this direc-
tion by averaging the equations locally over small regions of space, This operation
results in a separation of scales into a resolved (large eddy) field and an unresolved
(subgrid-scale) field, Much like the familiar Reynolds averaged technique, the large
eddy approach leads to a set of governing equations for the resolved field, with the
effect of the unresolved scales appearing as an unknown transport term. Unlike the
Reynolds averaged technique, this unknown transport term accounts only for the
smallest scales of motion. It is generally believed that the smallest scales exhibit a
higher degree of isotropy and are more universal in structure that the largest scales
of motion. This feature should make the effect of subgrid scales easier to model as
opposed to the full range of motions required by the Reynolds averaged approach.

Large eddy simulation in connection with very simple subgrid-scale models has
enjoyed a considerable degree of success in modeling high Reynolds number tur-
bulent flows, By far the most popular subgrid-scale model is that of Smagorinsky
(1963). This model (as well as a host of variants} is based on a gradient transport
hypothesis that leads to an algebraic eddy viscosity formulation. A single model
constant is employed, and estimates for its value have been proposed analytically
by Lilly (1966), by matching with experimental data (e.g. Deardorff 1971, Kwak
et al. 1975), and by matching with direct simulation data (e.g. Clark et al. 1979).
These various estimates are reasonably consistent for the same type of flow, but
considerable variation is evident in dissimilar flows. Bardina et al. (1983) showed
that the model constant is very sensitive to the level of mean strain rate. The
Smagorinsky model apparently does not live up to the ideal of universality; the
model constant must be tuned for each type of flow. This drawback limits the util-
ity of large eddy simulation since calibration of the model is a difficult procedure
that can be done only if experimental or numerical data exists for the type of flow
under consideration.
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1.2 Dynemic model of Germano et al.

Recently Germano et al. 1991 developed a procedure that overcomes the need
to calibrate the Smagorinsky model. In this procedure, information contained in
the resolved field is used to determine the value of the Smagorinsky coefficient,
This is done, in principal, for each point in the flow at every time step. Aside
from removing the tunable constant from the Smagorinsky model, the dynamic
procedure has several other advantages: (1) correct behavior is obtained near solid
boundaries without the use of ad hoc wall damping functions; (2) the subgrid-scale
stresses vanish in laminar flow, making transitional calculations possible; and (3)
energy transfer from subgrid scales to large scales is possible (i.e. backscatter). The
dynamic model has been successful in simulating transitional and fully developed
channel flow (Germano et al. 1991), as well as decaying compressible homogeneous,
isotropic turbulence (Moin et al. 1991).

Although the dynamic model has demonstrated its advantage over the pure
Smagorinsky model, there is one unsettling detail that limits its utility. It turns
out that the dynamic procedure yields a model coefficient that has a tremendous
veriation from point to point in the flow; the rms variation is at least an order of
magnitude larger than the spatially averaged mean. Negative values of the model
coeflicient are just as likely as positive ones, indicating widespread transfer of energy
from the subgrid scales to the resolved motions. Isolated occurrences of negative
coefficients two to three orders of magnitude greater than the mean have been ob-
served. Large negative coeflicients lead to solutions that diverge exponentially, and
current numerical methods are not able to handle this behavior. This issue has been
circumvented in the aforementioned simulations by averaging the model coefficient
over homogeneous directions in the flow. This operation leads to a model coeffi-
cient that is almost always positive and of the same order of magnitude as the fixed
constants used with the pure Smagorinsky model. As a drawback, the averaging
procedure removes the ability of the model to adjust the subgrid-scale stresses to
reflect the local behavior of the flow. Furthermore, it is not clear what to do in the
case of a flow void of at least one homogeneous direction. Most importantly, the
averaging process obscures the issue of whether large negative values of the model
coefficient are physically realistic or just an artifact of some inconsistency in the
dynamic procedure.

1.8 Objectives

The main objective of this work is to improve the dynamic model of Germano et
al. so that the local values of the model constant can be used. This objective will
be carried out in the following stepas:

1. Use direct numerical simulation data to determine to what extent large negative
values of the model coefficient are realistic.

2. Determine which elements of the dynamic procedure lead to non-physical model
coefficients.

3. Modify the existing model to correct for any exposed defects.

Test the modified model against direct numerical simulation data to confirm that

the non-physical behavior has been eliminated.

e~
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5. Test the modified model in large eddy simulations to evaluate it for accuracy and
numerical stability when the local value of the model coefficients are used.

2. Accomplishments

Direct numerical simulation data of turbulent channel flow has been used to
isolate problem areas of the dynamic model and to evaluate improvements to the
model. The simulation data is that of Kim et al. (1987) at Reynolds number
of 3300 based on centerline velocity and channel half-width. The grid used in
their study contained 128 x 129 x 128 points in the streamwise, normal, and
spanwise directions respectively. A synthetic large eddy solution was obtained by
interpolating the direct simulation velocity field onto a 64 x 129 x 64 grid using a
sharp cutoff filter in Fourier space. The companion subgrid-scale velocity field was
formed by subtracting the large eddy field from the direct simulation field. With the
subgrid-scale field known, the subgrid-scale stresses could be computed exactly and
the results compared with models that operated only on the large eddy component
of the velocity field.

Model accuracy was evaluated in terms of the associated dissipation rate. There
are two compelling advantages to analyzing the results in this way: (1) dissipation
rate is a scalar quantity and thus is easier to interpret than the six components of
the subgrid-scale stress tensor; and (2) the most important role of the subgrid-scale
model is to dissipate the correct amount of energy from the resolved field. The
subgrid-scale dissipation rate is defined as

€ = TmnSmn- (1)

Comparisons between exact and modeled dissipation rate were made in terms of
scatter plots and in terms of the correlation coefficient, defined as

_ < €ebm >
V<& >\ /< e >
where €. and e, are the exact and model values of the dissipation rate, and <>

denotes an average over a plane horizontal to the channel walls. Plane-averaged
dissipation rates (< €y >) were also compared with the corresponding exact values,

K

(2)

2.1 Evaluation of the dynamic model of Germano et al.

Dissipation rates predicted by the dynamic model of Germano et al. are compared
with exact values in Figures 1-3.

For reference, predictions of a pure Smagorinsky model ( identical to that used
by Moin and Kim (1982) with (S;;— < Si; >) replaced by S;; and v} = 0)
accompany the results of the Germano model. Figure 1 is in the form of a scatter
plot where the exact dissipation rate is plotted as function of the modeled dissipation
rate. A perfect model would yield a plot where all the points lie on a 45° degree
line passing through the origin. Data are displayed for a single horizontal plane,
chosen to be the one where the exact dissipation rate is maximized. Figure la
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FIGURE 1.  Scatter plots of exact versus modeled dissipation rates for (a) the

dynamic model of Germano et al.

and (b) the Smagorinsky model. Note the

difference in scale between plots (a) and (b).
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indicates that the dissipation rate predicted by the dynamic model correlates poorly
with the exact values. The most striking feature of this plot is that the data lie
in a narrow horizontal band, indicating that the model substantially overpredicts
the magnitude of the dissipation rate for most points in the flow. The evident
symmetry with respect to both the model and exact axes implies that positive
dissipation (backscatter) is just as likely as negative dissipation for both the exact
and model values, Data for the Smagorinsky model displayed in Figure 1b are
remarkably different. The data are aligned in a vertical pattern, indicating that the
Smagorinsky model usually underpredicts the magnitude of the dissipation rate.
Asymmetry with respect fo the model axis is evident, as the Smagorinsky model
is constrained to yield only negative dissipation rate. In comparing Figures la
and 1b, note that the scale in Figure la is 5 times larger than that in Figure 1b.
This fact, coupled with the different distribution shapes, implies that the dynamic
model predicts a span of dissipation rates that is roughly 30 times greater than the
Smagorinsky model. More importantly, about half of the dynamic model dissipation
rates are positive, indicating energy transfer from the subgrid scales to the large
scales. The overprediction of these positive dissipation rates is likely to lead to
numerical instability when the dynamic model is installed in a simulation code.
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FIGURE 2.  Plane averaged correlation coefficient between exact and modeled

dissipation rate.

Figure 2 shows the correlation coeflicient between the modeled and exact dissi-
pation rate for both the dynamic and Smagorinsky models. The correlations are
formed in planes parallel to the channel walls, and the resulting values are plotted
as a function of the normal coordinate, with —1 corresponding to the lower channel
wall and 0 corresponding to the channel centerline. The correlation is poor for both
models except in the near-wall region (where both the modeled and exact subgrid-
scale dissipation rate vanish with decreasing distance to the wall). The dynamic
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model yields roughly a 10% correlation over most of the channel, which is about half
the roughly 20% produced by the Smagorinsky model. The correlation coefficient
for the dynamic model is seen to be negative at a few locations, which indicates

that the model predicts dissipation of the wrong sign for a significant number of
points within these planes.
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FIGURE 3. Plane averaged dissipation rate.

Dissipation rates averaged over planes parallel to the channel walls are displayed
in Figure 3. It is evident that both the dynamic and Smagorinsky models are in fair
agreement with the exact values. The dynamic model is much noisier, probably as
a result of the wider range of values within each plane. In view of the results shown
in the scatter plots of Figure 1, it is remarkable that both models yield reasonabie
average values of dissipation rate. In the case of the dynamic model, the abundance
of both large positive and negative values evidently cancel, leaving a small negative
residual. In the case of the Smagorinsky model, the distribution is very tightly
packed about a small negative value. Since the model constant was properly tuned
by Moin and Kim, the distribution is also centered about the correct value. Notice
when comparing Figures 1 and 3 that the average value of dissipation rate is of

order 1, while the range of exact values is of order 100, and the range predicted by
the dynamic model is of order 1000.

2.2 Comments on the dynemic model of Germano et al.

It has been shown that the dynamic model locally overpredicts magnitude of the
dissipation rate and is very weakly correlated with the exact values. At the same
time, however, the model predicts the average dissipation rate with acceptable ac-
curacy. These results are consistent with the calculations of Germano et al. (1991)
and Moin et al (1991) where accurate results were obtained using averaged values of
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the model and where numerical instabilities prevented performing calculations us-
ing local values of the model coefficient. It is hypothesized here that the numerical
difficulties experienced in the aforementioned investigations was due to both local
areas of non-physically large values of positive dissipation and prediction of positive
dissipation rate when it should be negative. Positive dissipation rates lead to ex-
ponential growth in the velocity field, and the solution will increase without bound
until the dissipation rate reverses sign. The propensity of the Germano model to
overpredict the values of positive dissipation rate, coupled with its tendency to pre-
dict erroneous positive dissipation rates, makes it seem likely that rapidly growing
solutions could be incorrectly amplified rather than damped. If this scenario is
correct, then it is the noisy nature of the dynamic model that is responsible for the
numerical difficuities. The model is scrutinized for the source of its noise in the
following subsection

2.2.1 Stress-strain alignment and local isotropy

The dynamic model is constructed from the following chain of equalities

—\

(ﬁ:‘ﬁ; - U ﬁ,) - "(Ukuk - uk”k)au = Lu = T* {

computable Germano's identity

_ A ——
= -CA? (?) 1313 = 18155],  3)

M;j {computable)

where () denotes variables obtained directly from the large eddy simulation, (ﬂ)
denotes a “test” filtering operation that removes the smallest scales resolved by
the large eddy simulation, and # denotes the trace-free part of the corresponding
tensor. C is the square of the usual Smagorinsky coefficient, S;; is the strain rate,
A is a measure of the grid spacing, and T and r are the subgrid-scale stresses
associated with the test-filtered and large eddy fields, respectively. Notice that the
Smagorinsky model has been assumed for both stress fields, with the same value of
the scaling coefficient (which, when defined locally, has been inconsistently extracted
from the test filtering operation in the last term).
Equation (3) may be written more compactly as

L= —CA*M;;. (4)

Since both L* and M are computable, the above relation can, in principal, be solved
to yield the value of C. Notice, however, that the above equation is a tensor relation
that is equivalent to nine scalar equations ( only six of which are independent due to
symmetry). Two possibilities thus exist: either (1) L* and M are the same tensor,
differing only by a scaling factor, or (2) the system is overdetermined algebraically
and no value of C will make Eq. (4) an equality. The former requirement is met
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if the Smagorinsky models used at both the large eddy and test-filtered levels are
exactly correct. In this case, the subgrid-scale stress and the corresponding strain
rate tensors are related by a scalar factor and therefore share the same principal
directions (perfect alignment). Alignment of the subgrid-scale stresses and the strain
rate implies that the subgrid-scale stresses are transporting momentum isotropicaily
at each point within the flow field. Isotropy, however, is a statistical notion that is
not expected to hold locally. Indeed, the scatter plot of Figure 1(b) confirms this
conjecture by illustrating the poor correlation between the Smagorinsky model and
the exact values on a point-to-point basis.

It can be argued that while the Smagorinsky model is not strictly valid from point
to point, it is still a reasonable approximation. Using this line of reasoning, each of
the six constraints implied by Eq. (4) would yield a different value of C, but the
variation between these values would be small. It is easy to show that this variation
can be minimized in a least squares sense by simply contracting both sides of Eq.
(4) with the model terms M;;. The resulting scalar equation can then be solved to
obtain a unique value of C.

The degree of success achieved by the least squares approach can be evaluated
through the use of the following correlation coefficient that is the tensorial analog
of the cosine of the angle between two vectors

PP anL:nn (5)
Wi

where M? = My, Myn. If the correlation coefficient is unity, the tensors M and L*
are perfectly aligned and the six constraints implied by Eq. (4) are identical. Values
of the correlation coefficient slightly less than unity imply reasonable alignment
between L* and M, corresponding to a small degree of incompatibility among the
constraints of Eq. (4). A correlation coefficient near zero indicates that L* and
M are nearly orthogonal and the constraints of Eq. (4) are strongly incompatible.
Negative values of the correlation coefficient have the same relative meaning, but
with the principal directions of L* and M having the opposite sense.

The correlation coefficient between L* and M, averaged over planes parallel to
the channel walls is displayed in Figure 4. In forming the average, the absolute
value of the correlation coefficient has been taken to avoid a fortuitous cancellation
between positive and negative values (negative values imply local backscatter). Also

included in Figure 4 are the correlation coefficients between T* and § and 7* and
S. All three correlations are quite similar. The correlations are nearly zero close
to the wall, from where they rise to a roughly constant value of 0.35 for most of
the channel. The extremely poor correlation near the wall is not surprising since
anisotropy is greatest in this region.

The low degree of correlation between T* and S, and 7* and § invalidates the
assumed isotropic relationship between subgrid-scale stress and strain rate incor-
porated in the Smagorinsky model. When the dynamic procedure is applied to the
Smagorinsky model, the resulting equations for the coefficient C (Eq. (4) ) attempt
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to force this isotropic relation to hold. The resulting equations are inherently in-
consistent, and as evidenced by the low correlation between L* and M, the least
squares approach can be expected to yield erroneous results.

2.8 A principal alignment dynemic model

In light of the conclusions drawn in the previous section, it is clear that an
isotropic subgrid-scale stress model such as that of Smagorinsky leads to a poorly
conditioned set of equations for the model coefficient. The difficulty stems from
the assumed alignment between the subgrid-scale stress and the strain rate. The
assumed alignment carries through to Eq. (4), where an inconsistency arises since
the computed tensors L* and M are not aligned. This difficulty can be alleviated
through use of a model that does not assume alignment but rather performs op-
erations on S to align it with 7. Such an anisotropic model is developed in this
section.

In developing the new model, it is most convenient to think in terms of principal
coordinates, Since both the subgrid-scale stress and the strain rate are real symmet-
ric tensors, each may be decomposed into three principal values and a corresponding
set of three mutually orthogonal principal directions. Thinking in these terms, the
strain rate tensor can be transformed exactly into the subgrid-scale tensor as follows,
First, each of the three principal values of § is independently stretched to match the
corresponding principal value of 7. Next, the principal directions of S are subjected
to three independent rotations to line them up with the principal directions of .
Note that 6 degrees of freedom (three stretchings and three rotations) are needed
to match the principal values and align the principal directions of § and 7. This
is precisely the number of constraints that will arise from the dynamic procedure
(¢f. Eq. (4)). Thus if the principal alignment procedure is followed, there will be a
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uniquely determined solution for the stretchings and rotations.
The principal alignment procedure is now developed. Using matrix notation, r
and S are decomposed as follows

r= XA X1, S = X;A: X1, (6a,b)

where X,, X71, and X35, X;! are the normalized eigenvector matrix and inverse for
7 and §, respectively, while A, and A; are diagonal matrices of the corresponding
eigenvalues. The eigenvectors yield the principal directions, while the eigenvalues
give the principal values. Starting with Eq. (6a) and using Eq. (6b) it is possible
to write the following

= X AX!
=X, . As X7 (7a)
Ar —-1& -1
EXT 'K; XS‘ SX;XT 3 (Tb)

where the ratio A;/Aj; is equivalent to A, /A;, in index notation. The eigenvalue
ratios perform the required stretchings while the eigenvector products perform the
required rotations. Equation (7b) has been included for clarity only; Eq. (7a) is
the desired form. Note that Eq. (7a) requires the principal values and principal
directions of 7. These can be estimated from the correspondéng eigensystem of 7.

It it is assumed that  scales with A%|S}?, and T with A?|S|?, then the following

relation will hold _
A _ (é) 15| Az ®)
As T \A |§| A’

If it is assumed further that 7 and T share the same principal directions, then Eqs.
(7a) and (8) can be combined to give

e GO

Thus 7 may be expressed in terms of the eigensystem of 7. The eigensystem of T
is determined from Germano’s identity (Eq. (3)) as follows

Li; =Ty — 75 ~ Ty (10)

This approximation is justified on the grounds that the dominant contribution to
7 are the precisely the highest frequencies that are removed by the filtering oper-
ation done in forming #. As illustrated in Figure 5, this approximation becomes
increasingly better as the filter width ratio A/A is increased,
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FIGURE 5. Plane averaged correlation coefficient between the tensors T and L as
a function of filter width ratio.

With the eigensystem of T approximated by the eigensystem of L, Eq. (9) takes

the final form o,
AN 18] (As 1
T$XL (T) s (——) AL]X . 11
[ A lSl Ag L ( )
2.4 Tests of the principal alignment model

The model developed in the previous section is subjected to the same tests given
to the dynamic model of Germano et al. in Section 2.1.

A scatter plot of the subgrid-scale dissipation is shown in Figure 6. The correla-
tion between model and exact values is seen to be fair. Even though the correlation
is only fair, it is a marked improvement from that corresponding to the dynamic
model, Note that the range of dissipation predicted by the principal alignment
model is roughly a factor of 10 less than that for the dynamic model. This is
significant since erroneously large values of positive dissipation are likely to lead
to numerical instability. The principal alignment model is also superior to the
Smagorinsky model in the sense that it is able to predict backscatter. Plane aver-
ages of the correlation coefficient between the model and exact values of dissipation
rate are shown in Figure 7.

The principal alignment model is seen to correlate somewhat better with the exact
values than does the dynamic model. There is still a local region of negative corre-
lation. This is an unsettling detail that will be addressed in future improvements to
the model. Plane averaged dissipation rate is shown in Figure 8. Agreement with
the exact values is seen to be good.

3. Summary and future plans
The primary motivation for this work was to eliminate the numerical difficulties
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dissipation rate for the principal alignment model.

associated with the model of Germano et al. when local values of the model constant
are used. It was shown that the subgrid-scale stresses are not related isotropically
to the strain rate on a point to point basis. The Smagorinsky model is, therefore,
not valid in this sense, and its use in the dynamic procedure leads to an inconsistent
set of equations for the model coefficient. It was further shown that a more general,
non-isotropic relation between the subgrid-scale stresses and the strain rate leads to
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a dynamic model that correlates better with the exact values and contains roughly
an order of magnitude less erroneous scatter.

The next step in this work will be to test the principal alignment model in a
large eddy simulation to evaluate it for numerical stability and accuracy. This will
be done initially in simulations of isotropic, homogeneous turbulence. This phase
is currently being implemented, and preliminary indications are that the principal
alignment model does not lead to instability. The accuracy of the model is yet
unchecked. If simulations in homogeneous turbulence are successful, the new model
will be applied to the more challenging case of turbulent channe! flow,

Improvements to the model will also be made. The principal alignment model
still has a tendency to predicts dissipation of the wrong sign (points in quadrants 2
and 4 in Figure 6). Modifications will be sought to reduce this effect.
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