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Large eddy simulations of passive and buoyant
scalars with dynamic subgrid-scale models

By W. Cabot

1. Motivations and objectives

Many flows of interest — especially those occurring in geophysical and astrophys-
ical settings — have very high Reynolds numbers and, therefore, large dynamic
ranges that cannot be captured by direct numerical simulation (DNS), even on to-
day’s supercomputers. Large eddy simulation (LES) is thus required, in which the
large scale structures are resolved and the effects of the small, unresolved “subgrid”
scales on the large, resolved scales are modeled.

A new subgrid-scale (SGS) model has recently been developed by Germano ef
al, (1991) that augments the standard Smagorinsky (1963) eddy viscosity model
by replacing the ad hoc, flow-dependent constant with a coefficient extrapolated
from the small, resolved scales in the LES. The coefficient automatically adjusts to
the flow conditions, including near-wall conditions so that no ad hoc wall-damping
functions are needed. This “dynamic” SGS model has been tested successfully by
Germano et al. (1991) in the LES of incompressible channel flow with plane-averaged
model coefficients, and the model has been extended to compressible flow by Moin
et al. (1991).

The immediate goal of this work is to test the performance the dynamic SGS
model and some of its possible variants in incompressible channel flow with passive
scalars and with Boussinesq buoyancy. The LES results with the dynamic SGS
model will be compared with low Reynolds number DNS data and with higher
Reynolds number laboratory data. The consequences of implementing the dynamic
SGS model at a local level rather than using globally averaged coeflicients, which
would be useful for applications with more complex geometries, will also be explored.

A longer range goal of this work will be to test the performance of SGS mod-
els in the LES of flows with more complicated physics (e.g., rotation and density
stratification), applicable to geophysical and astrophysical systems.

2. Accomplishments

The basic dynamic SGS model for the residual Reynolds stress in LES was derived
by Germano et al. (1991). The model was extended to compressible flow by Moin
et al. (1991) and written explicitly for a passive scalar by Cabot & Moin (1991). A
brief summary of the dynamic model equations and their variants are provided in
$2.1 below for ready reference.

The dynamic SGS model for the passive scalar was evaluated a priori using DNS
databases of homogeneous turbulence by Rogers et al. (1986) and channel flow by
Kim & Moin (1989) to compute globally averaged SGS model coefficients. Results
from these a priori tests were presented in detail in Moin et al. (1991) and Cabot
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& Moin (1991). The key results from these tests are (1) the SGS turbulent Prandtl
number of 0.4-0.5 predicted by the dynamic model away from solid boundaries in
channel flow is about the same as that found to give the best performance in LES
with standard eddy viscosity models (Eidson, 1985; Erlebacher et al., 1990); and (2)
the SGS turbulent Prandtl numbers predicted by the dynamic model follow the same
trends as the large-scale Prandtl numbers near solid boundaries and for different
molecular Prandtl numbers and orientations of scalar gradients with respect to
the mean flow. This is an indication that the dynamic model in LES will predict
reasonable values for the residual scalar transport.

A channel flow code described in detail by Piomelli et al. (1987) has been modi-
fied to include passive scalars and the dynamic SGS model with global coefficients
(determined from plane-averaged terms). Low Reynolds number LES results for
passive scalars generated by adding them at the bottom wall and removing them at
the top wall have been compared to DNS data of J. Kim (personal communication)
and Kim & Moin (1989); and LES results for a passive scalar generated by a uni-
form streamwise scalar gradient have been compared to DNS results of Kasagi et
al. (1991). Nusselt numbers from these LES results and others at higher Reynolds
numbers have been compared to the semi-empirical predictions of Kays & Craw-
ford (1980). These results have been presented in Cabot & Moin (1991) and are
summarized in §2.2. '

This code has also been modified to simulate buoyant flows in the Boussinesq
approximation, in which the scalar becomes the density fluctuation or, equivalently,
the potential temperature. A low Rayleigh number case of Bénard convection has
been simulated with the simple passive scalar dynamic SGS model, and higher
Rayleigh number cases are under way. The results are being compared to the
laboratory data of Deardorff & Willis (1967) and the LES results of Eidson (1985).
Implementation of a dynamic version of a buoyant SGS model, like that used by
Eidson, is discussed in §2.3.

The application of local SGS coefficients in the dynamic model is found to lead
to numerical instability in this code (as well as in others), which is discussed in §2.4
below. The channel code of Kim et al. (1987), which is more generally robust in
terms of numerical stability, has also been modified to include the local dynamic
SGS model; numerical instability also arises in the LES using this code, apparently
due to persistent regions of negative eddy viscosity.

2.1 The dynamic SGS model for passive scalars
In the LES of passive scalars, the residual Reynolds stress

Tij = Uit; — Ty (1)

and the residual scalar flux

g =0u; - 0%; (1b)
must be modeled. Here 8 is the passive scalar, and u; are the velocity components.
The overbar denotes the filtering operation, which here shall always refer to a sharp
cutoff filter in the homogeneous directions of the flow. Let r;; and ¢; be modeled
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by functions p;; and #;. Further let the residual Reynolds stress and scalar flux at
a coarser scale,

Tij = uﬁj - ﬁ:;‘?;, (20')
Q: = fu; — 047, (2b)

where the caret refers to the coarser “test” filter, be modeled similarly by M
and H;;. Though neither the terms in (1) nor (2) are computable in the LES, the
differences

Lij =Ty — 7y = wi%; — uiwj, (3a)
F;:Q;—:‘;}mﬁ‘?—@ﬁ- (38)

are; hence
Lij = My — i (4a)
F,=H;—1;. (4b)

The Smagorinsky eddy viscosity model has the residual stress aligned with the
strain rate §;;:

pij = =285, v =CAS|, (5a)
M;; = —2§¢§¢j , U= 032|§| , (5b)

where, generally,
285 = wig +uje,  |S|= (2585)' %5 (6)

and where A and A are the filter widths of the resolved field and the test filtered
field, respectively, whose definitions will be discussed below. (Since the strain rate
is traceless, this model strictly applies to the traceless part of the residual stress;
in the incompressible equations, the trace of the residual stress is absorbed into the
reduced pressure.) The residual scalar fluxes can be modeled similarly with an eddy
diffusivity model in which they are aligned with the scalar gradients:

m=—0b;, ar=CeA%S|, (Ta)

Hi=-88;, & =0sAY3|. (75)

The coefficient Cp is also expressed in terms of the SGS turbulent Prandtl number
as U/ Pry. Note too that the coefficients are assumed to be independent of the filter,
which allows them to be determined algebraically in equations (4):

Li; — Labis/3 = —2CA My, My; = (A/AY|S[S:; — ISIS;;,  (8a)

Fi=—Col™;, M;=(B/AY(S10; (58, (85)

Other models for the residual Reynolds stress and scalar flux can of course be
adopted.
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Equations (8) are tensor and vector equations that overdetermine the scalar coef-
ficients. The scalar coefficients were extracted by Germano et al. (1991) and Moin et
al. (1991) by contracting (8a) with Si; and (8b) with §; (the “strain-rate contrac-
tion”). Lilly (1991, private communication) suggested applying the least-squares
technique to these equations, resulting in the contraction of (8a) with A;; and (8b)
with #; (the “least-squares contraction”). LES results from channel flow using both
contractions have been obtained with plane-averaging of the contracted quantities.

The filter width A is typically defined as the geometric ratio of the unidirectional
filter widths A; (Deardorff, 1970): A% = A;A3Aj;. For a spectral cutoff wavenum-
ber K;, A; = w/K;. However, since no explicit filtering occurs in the normal (y)
direction in the channel LES code, it may be more appropriate to let A% = A A,.
The dynamic eddy viscosity and diffusivity depend only on A/ A, so that, for all
A i/ A; the same, the former definition yields A/A = (Ai/A:)2® while the latter
yields A/A = A;/A; for channel flow. LES results using both definitions of filter
width have been obtained and compared.

2.2 LES of passive scalars

A LES channel code (see Piomelli et al.,, 1987) was modified to include passive
scalars and the dynamic SGS model. The code uses Fourier decomposition in the
homogeneous streamwise (z) and spanwise (z) directions and central finite differ-.
encing in the normal (y) direction. Time advancement is performed semi-implicitly
with the Adams-Bashford, Crank-Nicholson method. The pressure is calculated di-
rectly in the Navier-Stokes equation. The plane-averaged part of the eddy viscosity
from the SGS model is integrated implicitly. The flow was filtered in the horizontal
directions with A1/ Ay = Asz/A; = 2, which was found to yield the best a priori
test results by Germano et al. (1991), and the SGS coeflicients were computed as
functions of normal direction and time from plane-averages of tensor and vector
contractions in equations (8).

Simulations were performed for passive scalars added at one wall and removed at
the other with Prandtl numbers Pr = v/a (where v and « are the molecular kine-
matic viscosity and scalar diffusivity) of 0.1, 0.71, and 2.0 for low friction Reynolds
numbers (Re, = u,8/v & 150, where u, is the friction velocity and § the channel
half-depth); the strain-rate contraction was used with Zg/ A = 2%, The integra-
tions were performed on 32 x 63 x 64 meshes. The results were compared with DNS
data (J. Kim, personal communication; cf. Kim & Moin, 1989). It was found that
the SGS model was generally too dissipative. The mean streamwise velocity was
found to exceed the DNS values by 10% in the log layer (see Figure 1a); the mean
scalar from the LES also exceeded the DNS values substantially (the more so the
larger the Prandt]l number; see Figure 1b). The Nusselt number is defined by Kays
& Crawford (1980) as

Nu = (46/0.,)|06/8yl. , (9)

where @, = {fu}y /(u}yv is the mass-averaged scalar ({}y denoting a global aver-
age), and where the gradient of the scalar is evaluated at the wall, For Pr = 0.1,
0.71, and 2.0, Nu = 7.4, 21.0, and 35.2 for the LES and 7.2, 23.8, and 43.8 for
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FIGURE 1. Mean profiles for low-Re LES with the strain-rate contraction and
AJA = 2%/3 (Case S1): (a) streamwise velocity ( ----) and (b) scalar for Pr = 0.1
(e ), 0.71 (----), and 2.6 ( —-— ); compared with the corresponding DNS
data of J. Kim (personal communication) ( ). Quantities are expressed in
terms of wall (*) units, i.e., scaled by §, u,, and the scalar wall flux ¢,,.

the DNS, respectively, for the same mass-flux Reynolds number, Re,, = 46{u}v /v,
of 1.12 x 10%. The corresponding values predicted semi-empirically by Kays &
Crawford are Nu = 5.6, 24.9, and 47.5, respectively. (These values were obtained
from their Table 13-5 with a bilinear interpolation of log(Nu — Nu,) in log Pr and
log Rem, where Nu, is the laminar value. Note that they express a lack of confi-
dence in low-Pr values, and that the low-Pr values are also very sensitive to the
interpolation scheme.)
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FIGURE 2.  Mean profiles of (a) streamwise velocity and (b) Pr = 0.71 scalar
for low-Re LES Cases 51 ( -+ ), 82 (——), and M2 { ---~ ) with a uniform
streamwise scalar gradient. The DNS results of Kasagi et al. (1991) ( ~-— ) for a
uniform streamwise scalar gradient and those of Kim & Moin (1989) ( )fora
uniform scalar source are shown for comparison.

Another set of low Reynolds number (Re, = 150) simulations were performed
with a passive scalar of Pr = 0.71 generated by a uniform streamwise scalar gra-
dient, which gives very similar results to scalars generated by a uniform source
term. Versions of the SGS model were used with the strain-rate contraction and
A/A = 2*/% (Case S1) and A/A = 2 (Case S2), and with the least-squares con-
traction with ZS/A = 2 (Case M2); this sequence of models was found to give
progressively less SGS dissipation (decreasing by an overall factor of 2). The mean
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streamwise velocity and scalar are shown from these calculations in Figure 2 and
compared with the recent DNS results of Kasagi et al. (1991) for a uniform stream-
wise scalar gradient and with the DNS results of Kim & Moin (1989) for a uniform
scalar source term. It is evident that the less dissipative the SGS model, the better
the agreement with the DNS data. The DNS results of Kasagi et al. had a Nusselt
number of 30.8 for Re,, = 9160, or 9% lower than the value of Nu = 34.0 predicted
by Kays & Crawford (1980). The values of Nu from the LES Cases S1, 52, and M2
were 31%, 22%, and 10% lower than predicted by Kays & Crawford, the lattermost
case comparing very well with Kasagi et al.’s DNS results.

Simulations at much higher Reynolds number (Re, =5 1400 and Rep, = 1.2 % 105)
have been performed on a mesh of 32 x 125 x 64 for a passive scalar of Pr = 0.71
added at the bottom wall and removed at the top wall. The SGS model with
the strain-rate contraction and A/A = 22/® (Case S1) was found to be much too
dissipative and gave mean streamwise velocities about 25% too large compared to
the standard empirical log law, Ut = 2.5Iny* + 5.0, where y* is the distance
from the wall in units of §/Re, and U* is the mean streamwise velocity in units of
friction velocity u, (see Figure 3a). Using the least-squares contraction gave much
better results, with the less dissipative model with 3/ A = 2 (Case M2) performing
somewhat better than with A/A = 22/% (Case M1) (see Figure 3). The Nusselt
number for Case S1 is 20% below that predicted by Kays & Crawford (1980), Nu
for Case M1 is 3% higher, and Nu for Case M2 is 12% higher. The empirical curve
for the mean scalar by Kader (1981) is shown for comparison in Figure 3b. Case M2
is seen to have about the same level as Kader’s in the scalar log-law region, albeit
with a slightly different slope. The large discrepancy at large y* near midchannel
is because Kader's curve applies to scalars with uniform heating.

Note the occurrence of a bump in the mean streamwise velocity between y+ = 20
and 200 above the standard log law in Figure 3a; the reason for this discrepancy is
not yet known. Note, though, that this region where U* exceeds the log law actually
agrees well with the DNS results of Kim et al. (1987), who used Ut = 2.5Ilny* +5.5
to fit their data; this concordance may be coincidental, however. Another problem
with the high Reynolds number simulation is the very short timesteps — and large
amount of CPU and real time — that are necessary to achieve statistical equilibrium
because of the refined mesh needed to resolve the wall layer; the convective CFL
number is greatest in the region between the viscous layer and the log layer. Some
sort of scheme for matching to the near-wall region, such as those used in the LES
of planetary boundary layers, may be necessary to increase the speed of the LES at
high Reynolds numbers for practical application.

2.8 LES of buoyant flows

The same LES channel code used in §2.2 above was also modified to calculate
buoyant flows in the Boussinesq approximation (cf. Townsend, 1976). At present,
the SGS model in this code is the same as that used for passive scalars described
in §2.1 above. Simulations of Bénard convection (with the bottom wall heated and
top wall cooled) are being performed for Rayleigh numbers (Ra = 8§°8A0/va,
where 3; = —36;; is the gravity vector times the expansion coeflicient and A® is
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FIGURE 3. Mean profiles of {(a) streamwise velocity and (b) Pr = 0.71 scalar
for high-Re LES Cases S1 ( - )y M1 ( =—-— ), and M2 { ----). The log

law, Ut = 2.5lnyt + 5.0, is shown ( ) in (a) for comparison. The empirical
formula of Kader (1981) is shown ( ) in (b) for Re, = 1400 and Pr = 0.71.

the potential temperature difference across the channel) of 6.3 x 10%, 2.5 x 109,
and 1.0 x 107, Preliminary results give Nusselt numbers, defined here as Nu =
2106/ 8y|w8/AO, of 7.5 and 12.0 for Ra = 6.3 x 10° and 2.5 x 10%, which lie between
the LES values of about 9.5 and 13.8 found by Eidson (1985) and the laboratory
values of about 6.0 and 8.0 found by Deardorff & Willis (1967). The eddy viscosity
vy from the SGS model was found to be negative in the viscous wall region for
Ro = 6.3 x 10° (but very much smaller in magnitude there than the molecular
viscosity); in the Ra == 2.5 x 10° simulation, 14 has negative values near the wall in
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some realizations, but when averaged over time has positive mean values.

Many researchers who simulate buoyant flows feel that better results are obtained
with the inclusion of a buoyancy production term in the SGS model (derived, e.g.,
by Eidson, 1985); the resulting model is, instead of (5) and (7),

pij = =248, 1 = CA%, (10a)
My =-20,8;;, B =CA%, (105)
and 3
n=—af;, oay= C'oAzF, (11a)
H; = —&tﬁ,i , Q= 0932?;':, (11b)
where, generally,
o=||SP + N2/Pr|'? | NZ=pi8; (12)

is the new scaling factor. N, is the convective lapse rate. For convectively stable
regions NZ < 0 (and N = [~N?]*/? is the Brunt-Viisala frequency), in which case
the buoyancy production and the N2 term in (12) are usually assumed to vanish,
and the passive scalar 3GS model is recovered. The dynamic model is now given
by

ﬂgj - l:kkﬁgj/3 = —2GA2M,'_-,' y Mij= (8/&)2 §§5i - "&'-:S:,'j ; (130,)
Fi= —(C/Pr)A™;, Hi=(R/AY50;-70,. (138)

The first complication that arises with this set of equations is the mode of contrac-
tion to extract ¢ and Pr;. A least-squares analysis leads to a messy and ambiguous
result in the sense that one cannot even guarantee that one is minimizing the error!
Therefore, in continuity with the previous least-squares contraction, let the error
be minimized in the tensor and vector equations (13) with respect to only C, which
again results in a contraction with M;; and H;. Only SGS coefficients that are
functions of y and ¢ derived from plane-averages (denoted by {)) of the contracted
quantities will be considered here; thus

20A My Myj) = —{Li; M), (14a)

CA2<'H,'H5) = —Pn(ﬂﬂ;) s (146)

where the contracted terms are functions of Pry. Even with this simple contraction,
extracting the SGS coefficients presents a second complication since Pr; is embedded
in square roots in the ¢ terms. Eliminating € from (14b) gives

Pro(FM:) (2M e Mje) — (HiH) (L M) = 0, (15)

which is an expression solely in terms of Pr;. This equation can be solved for Pr,
iteratively (e.g., by Newton’s method), which can then be substituted into (14a)
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to extract €. This procedure has been followed in @ priori tests of DNS data
for internally heated thermal convection in a channel {cf. Cabot et al., 1990); the
derivative of the function on the left side of (15) with respect to Pry, necessary to
compute the correction in the Newton’s method, was computed by numerical finite
difference. In most planes, the procedure produced well converged solutions in only
a few iterations, but in many planes the solution took more than 10 iterations to
converge, and in rare instances no solution could be found at all (implying either
complex solutions or problems with the numerical scheme). Multiple solutions also
cannot generally be ruled out. Some further refinement and optimization of this
iteration procedure is required in order to attain a more efficient version of it for
use in the LES channel code.

A sample of a priori results from the DNS of the internally heated, buoyant
channel flow (which is convectively stable in about the lower quarter of the channel
and unstable elsewhere) are shown in Figure 4, comparing SGS coefficients with and
without the buoyancy production term in (12). The DNS was performed on a mesh
with 128 points (64 wavenumbers) in both horizontal directions; the coefficients
shown in Figure 4 were computed for the same field on a “fine” mesh (using 32 and
16 wavenumbers for the resolved and test fields) and a “coarse” mesh (16 and 8
wavenumbers for the resolved and test fields). The coefficients from the fine field
show little effect of the buoyancy production term, except near the upper wall where
the buoyancy production is maximal. The effect the buoyancy production term on
the SGS coefficients is much more evident in upper half plane using the coarser
field, which would be more likely be the resolution used in a LES of this flow.

2.4 Numerical instabilily of the local dynamic SGS model

In order for the SGS model coefficients C and Cj in (5) and (7) to be determined
by (8), they must, in strict terms, be independent of the test filter or, more generally,
be spatially independent of the directions in which filtering takes place. This is
properly satisfied in the channel flow for coefficients that depend on only y and
t determined from plane-averages. However, in order to extend the dynamic SGS
model based on eddy viscosity and diffusivity to a more local definition that is more
applicable complex geometries, this condition of self-consistency has been relaxed,
and we have considered local values of the SGS model coefficients determined from
equations (8). There is no obvious way yet to construct a self-consistent local eddy
viscosity using the dynamic SGS model approach.

Germano et al. (1990) noted early on that the strain-rate contraction of (8a) leads
to an ill-conditioned local problem due to the denominator term M;;8;; frequently
traversing zero. The least-squares contraction in principle solves this problem, since
one is now dividing by M;;M;; and M, H;, which are positive definite. A priort
test of DNS channel flow data has shown that this problem is still not very well
conditioned, because the denominators occasionally (perhaps as much as 1% of the
time) become very small, leading to large local spikes in the coeficients. Further,
the numerators (£;;M;; and FyH;) exhibit the usual backscatter statistics, with
roughly half of the points being positive and the other half being negative (cf.
Piomelli et al., 1991). The result is local eddy viscosities and diffusivities that have
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FIGURE 4. The (global) dynamic SGS (a) velocity and (b) scalar coefficients
from a priori tests of DNS data for an internally heated, buoyant channel flow with
Ra = 1.25 x 10° and Pr = 0.04. The coefficients were computed using equations
(14) and (15) without the buoyancy production term in (12) on a fine mesh ( —-—)
and coarse mesh (oo ), and with the buoyancy production term on the fine mesh
( ) and coarse mesh ( ----).

r.m.s. values much larger than (5-10 times) the mean values (which is expected),
but extrema that are often 100 times the r.m.s. values. Local spatial averaging or
filtering (over scales a few times the resolved scales, say) ameliorates the spikiness
of the local results, but only by factors of a few.

Some preliminary a priori tests were conducted exploring whether some of the ill
behavior of the local eddy viscosities and diffusivities were due to an inappropriate
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model which seeks to align the residual stresses and scalar fluxes with strains and
scalar gradients. One model (P. Durbin, personal communication) uses a second-
rank tensor SGS coefficient Cy;, such that

Tij = ——(C,‘k?kj + Cjkﬁk,’)Azrﬂ s (16a)

Ti; = —(CiSas + CinSwi)B%(S, (168)
such that, instead of (8a),

Li; = —(CupMpj + Cse M) A?; (17)

but this model also turns out to be ill-conditioned, since it involves dividing by the
determinant of M, which frequently traverses zero. A more general model should
use a fourth-rank tensor for ' and a second-rank tensor for Cp (which Rogers et
al., 1986, found to be appropriate for the large-scale scalar fluxes). Another model
that was tested locally included the second-order strain term, such that

Tij — Tkkaij/:; = —201A2|§|§,'j - 202A2(—§;k§k5 — g},gggkﬁ,'j/m , (18)

and so on. The least-squares analysis for ¢y and O3 leads to the inversion of a
maftrix, whose determinant again traverses zero frequently and thus leads to ill-
conditioned results. More sophisticated models that attempt to align the residual
stress to a more appropriate basis are currently being explored by T. S. Lund (this
volume).

The local dynamic SGS model (using equations [8] and some variants) was used
in the channel code described in §2.2. The code very quickly developed large nor-
mal pressure oscillations (resembling “2-A” waves) that caused the simulations to
blow up. It had been noticed previously that this code was unstable to sufficiently
choppy data, perhaps due to the direct computation of the pressure in the Navier-
Stokes equation and/or due to the central finite difference scheme employed. A
more stable channel code (see Kim et el., 1987) has recently been modified to in-
clude the dynamic SGS model with plane-averaged or local coefficients; this code
uses Chebyshev decomposition in the direction normal to the walls and solves the
Navier-Stokes equation in a form that has the pressure eliminated from it. The
SGS residual Reynolds stress and scalar flux are integrated fully explicitly, and
the CFL condition due to the SGS diffusion is monitored (which generally limits
the timestep for local SGS coeflicients due to their inherently large maxima). A
simulation with plane-averaged SGS coefficients was performed and experienced no
instabilities. When the local model (from [8]) was employed, the SGS dissipation
quickly changed sign from a damping state to a growing state (corresponding to a
build-up of local negative eddy viscosity), and the calculation blew up. The simu-
lation did not, however, exhibit the wild pressure oscillations characteristic of the
previous finite-difference code. Similar instabilities were observed for various de-
grees of local averaging or filtering, despite a reduction in the r.m.s. and extremal
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levels of eddy viscosity/diffusivity. Similar instabilities were also observed using
variants of the model in (5) and (7): in one, the mean strain rate and scalar gradi-
ent were excluded from the definitions, similar to that used by Moin & Kim (1982);
and in another only the last octave of wavenumbers at a given filter level were used
to compute |§|. The numerical instability apparently arises from regions of negative
eddy viscosity that persist long enough with respect to the integration timesteps to
cause the calculation {o diverge exponentially.

Another local dynamic SGS model was attempted, which is locally self-consistent
but not per se an eddy viscosity/diffusivity model, namely making the residual stress
and scalar flux proportional to their counterparts in (3) with scaling factors:

ny = L (2[5 [R*8P), (196)

% = Fi(%[31v8| /B[S v]) (196)

A priori tests indicate that this model should be dissipative (in the mean). In this
LES, the SGS model dissipation also went from damping to growing, causing the
simulation to blow up in a similar time as the local eddy viscosity models. The
reason for the numerical instability is likely the same — with persistent regions of
“backscatter” experiencing runaway growth — although an analogy with negative
viscosities is no longer exact.

3. Future plans

Further testing of the dynamic SGS model for passive scalars with global (plane-
averaged) coeflicients in the LES in channel flow will continue, In particular, the
performance of SGS models that use the fluctuating part of the strain rate tensor (a
la Kim & Moin, 1982) will be tested. Also at issue with the high Reynolds number
simulations is (1) explaining the deviation from the log law observed in the mean
streamwise velocity profile; and (2) exploring means to increase the integration
timesteps in the simulations (e.g., using near-wall matching conditions).

Much more extensive testing of the dynamic model for buoyant flows will be per-
formed. The sequence of simulations of Bénard convection discussed in §2.3 will be
completed and compared in detail to the laboratory and LES results; in particular
the SGS model that includes the buoyancy production terms will be implemented,
and it will be determined if its added computational costs are worth the benefits,
if any, it confers. The LES of Bénard convection at somewhat higher Rayleigh
numbers (near the “hard turbulence” régime) will be attempted and compared to
laboratory results (e.g., Heslot et al., 1987) of statistical quantities like Nusselt num-
ber and vertical velocity-temperature correlations. The LES of internally heated,
buoyant flow will also be performed for different versions of the dynamic SGS model
and compared to laboratory results (e.g., Kulacki & Goldstein, 1972) and numerical
simulation results (e.g., Grétzbach, 1982).

The performance of the dynamic SGS model in the presence of rotation will also
be explored, in particular whether the model can automatically take account of the




204 W. Cabot

observed rotational inhibition of the turbulent transfer of energy to small scales
(Bardina et al.,, 1985) within the framework of a simple eddy viscosity model, or
if additional modeling terms are needed. The effects of differential rotation will
also be considered. DNS data from uniformly and differentially rotating buoyant
flows will be used for comparison (e.g., Cabot et al., 1990; Cabot & Pollack, 1991).
An important, ultimate application of a successfully developed and tested SGS
model will be in the LES of large Reynolds number geophysical and astrophysical
flows with differential rotation, thermal convection, large density stratification, and
perhaps other compressibility effects.

Finally, the dynamic SGS model has only been successfully employed with global
eddy viscosity and diffusivity coeflicients, which limits its application to flows with a
large degree of homogeneity. A model that uses locally determined coefficients would
have more universal applicability to geometrically complex flows. Considerable
effort will be devoted to removing this deficiency.
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