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Probability density function approach and
related closures for turbulent scalar fields

By Feng Gao

1. Motivation and objectives

Turbulent flows are characterized by highly irregular flow patterns and, therefore,
require statistical descriptions (Monin & Yaglom 1975; Tennekes & Lumley 1973).
The probability density function (PDF) of a turbulent field provides complete sta-
tistical properties of the quantity concerned.

The PDF approach is especially useful when applied to complicated statistical
behavior of turbulent fields, such as intermittency (Kraichnan 1990a, 1990b), and
highly nonlinear reacting flow problems (O’Brien 1980, Pope 1985, Bilger 1989).
Intermittency refers to the “bursting” signal that is frequently observed in a tur-
bulent flow. Its presence is normally represented by long tails of the velocity or
scalar gradient PDF (non-Gaussian tails). The application of the PDF method
to this problem seems to be natural. For reacting flow problems, the chemical
source terms are usually nonlinear and have to be modeled if the traditional mo-
ment method is employed. Given the fact that there are many different types of
reactions, these models, if they can be constructed, are very likely to be problem
oriented and do not have widespread applicability., On the other hand, the PDF
approach provides a closed form for the reacting source terms, which makes it an
attractive method in dealing with turbulent reacting flows (Pope 1990).

However, the PDF method is not without its setbacks: the major difficulty asso-
ciated with the PDF method has been the unclosedness of Fickian diffusion terms
in the PDF formulation. Recently, the mapping closure was formulated to address
this difficulty (Chen et al. 1989, Gao & O’Brien 1991, Pope 1991). It has been
shown that this closure model captures major characteristics of the scalar PDF’s
(Gao 1991a, 1991b; Pope 1991). The mapping closure has been used to study some
fundamental problems in turbulence, such as the intermittency of the velocity and
scalar gradient fields (Kraichnan 1990, Gao et ol. 1991}

Qur current study generally concerns the development of PDF methodology in
turbulence research. More specifically, our efforts have been focused on various
aspects of the mapping closure models in PDF approach. The results of mapping
closure are tested against the available direct numerical simulation (DNS) data to
further validate the model. Encouraged by the success of single scalar mapping
closure, we have extended the satne idea to cases with more than one species, which
is a rather natural step because most reactions involve many reacting species.

It should be pointed out that any single-point PDF only provides local informa-
tion of the concerned field. In other words, the interactions between different points
in a turbulent field cannot be properly described by a single-point PDF. The map-
ping closure model, being a one-point closure model, certainly cannot be exempted
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from this shortcoming. There have been two ways to cure this problem. The first
one is to introduce two-point PDF’s, But this method does not solve the problem
at all because three-point information would be needed to close the two-point PDF
and this hierarchy would continue to higher level. Also, this method complicates
the problem by doubling the dimension of the problem, which makes numerical sim-
ulation very difficult (Pope 1990). The second method, which is widely accepted, is
to characterize the effects of turbulence by a time scale. Other turbulence models
are used to determine this time scale.

In the second method, the scalar PDF in a turbulent field would evolve in the
same way as in the pure diffusion case with a modified time. As a consequence
of this argument, an initial Gaussian scalar PDF remains a Gaussian distribution.
However, recent DNS and experimental results have shown that this may not be the
case (Kraichnan, private communication). Figure 1{B) shows the PDF of a scalar
field evolved from an Gaussian initial state (Figure 1(A)) in a stationary turbulence
field in a 64% direct simulation, The development of non-Gaussian tails is obvious.
Similar simulations are performed for the pure diffusion case with essentially the
same initial field (the only difference being that a different random seed is used
in generating the initial field) by turning the velocity field off. As expected, the
PDF in this case remains Gaussian (Figure 1(C)). Our analysis suggests that the
representation of the turbulent effect may have over-simplified the problem (Gao
et al. 1991). W. C. Reynolds and P. A. Durbin have also pointed out on differ-
ent occasions that the structure of the turbulence field should be reflected in the
PDF formulation. Hence, an attempt has been made to study detailed interaction
between scalar and velocity fields.

2. Accomplishments

3.1. Mapping closure for multispecies Fickian diffusion

We seek mappings
1 = X(¢1,2,1), (1.a)

1»[’2 = Y(¢1,¢2:t), (Lb)

where ¢; and ¢; are standard independent Gaussian reference fields, and ¥(&,1)
and (&, 1) are governed by

= DAVl (2.0)

%—}; = D[V a- (2.b)
It can be shown (Gao & O’Brien 1991a) that X and Y satisfy

%%‘—. = Dy(Ly + L)X, (3.0)

oy _ Dy(Ir + L)Y, (3.0)

ot
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FIGURE 1(a).

dard Gaussian distribution (dashed line).

where

and A;
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The solutions of equation (3) are
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(2 =1,2) are the time scales to be determined.

Ih

"

exp|— ($1 e_sz —u)? (¢26_D"’2 — up)
4at da3

P

expl— (G170 —ug)?  (fae D2t — up)?

a7

a2

227

Normalized initial scalar PDF. oy(0) = 1.487 (symbol) and stan-
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FIGURE 1(B). Normalized scalar PDF at a later time (g = 0.811) in a turbulence
field.

where 7 = [ Midt (i =1,2),

t ¢
al(t) = f exp(—2Dym;)dt  and  B3(t) = / exp(—2D,;)dt.
0 0
Clearly, solutions (4) preserve two important features of the scalar PDF: 1) if
the initial scalar fields are bounded, the subsequent fields remain bounded, and 2)
the leading terms in the solution relax to Gaussian distributions (Gao & Q’Brien
1991a). It is also obvious that the above procedure can be applied to cases with
more scalar fields involved.

3.2. Test of amplitude mapping against DNS results
For an initially double-delta PDF

P($,0) = 5164) + 6(¢ — 1)}, %)
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FIGURE 1(c). Normalized scalar PDF at a later time (¢y = 0.811) for pure
diffusion case.

the mapping solution can be shown (Gao 1991a, Pope 1991) to be
| -
X(#,1) = 5(1+ exflpe™ Va(r)), (6)

where r is the rescaled time and a* = 1 — e~ 27. Consequently, the conditional
dissipation rate of the scalar field E{{V)?|¢} = E(¥,1) can be derived for this
case (O'Brien, private communication) as

E(%,t)/E(0.5,1) = exp{—2[erf}(2¢p — 1)’} (")

This result provides a perfect test case for the mapping closure because any error
that may be introduced by time rescaling has been ruled out. Direct numerical
simulations are performed for this specific case and the results are plotted in Figure
2. It shows that the mapping prediction are in excellent agreement with the DNS
data.




230 F. Gao

E(¥,)/E(0.5,1)

1.2 Y T ' T r T Y T T T Y T r T v T ¥ T
1V mapping _
o 0.158
& 0.413
0.8 | u
+ 0.878
0.953
0.6
0.4
0.2
0

FIGuRrE 2. E(#,1)/E(0.5,t) for an initially double delta PDF at different times.
Solid line: mapping closure; symbols: DNS data (taken at eddy-turn-over times
tu/l = 0.158; 0.413; 0.676 and 0.953).

3.8 Persistence of scalar PDF non-Gaussianity

An interesting observation can be made about Figure 2: the relative shape of
the conditional dissipation rate does not change with time. Recalling the fact that
the PDF of a homogeneous scalar field is a Gaussian distribution if and only if the
conditional dissipation rate E{(V+)2[+} is independent of the scalar field ¥ (Gao
1991b}, Figure 2 suggests that some of the non-Gaussian properties of a scalar field
persist during the scalar evolution process.

It is well known that scalar gradient fields become intermittent in turbulence and
their PDF’s develop non-Gaussian tails (e.g. Monin & Yaglom 1975; Kraichnan
1990). However, it has been generally believed that the PDF of a homogeneous
scalar field relaxes to a Gaussian distribution. Figure 2 definitely casts some doubts
about this conclusion and needs to be explained.

The amplitude mapping solution can be written in an expansion form (Gao 1991b)

X(68) = 3 buHa($/vB)e, ®)

where H., is the Hermite function. It is obvious from (8) that in the course of time,
Hy, which is a linear function of ¢, becomes the leading term. In this sense, the
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scalar PDF relaxes to a Gaussian distribution. However, the higher order terms
survive for large ¢ even at later times, which means that the tails of the scalar
PDF continue to be influenced by the initial and boundary conditions. Thus, non-
Gaussianity of a scalar field persists, most noticeably in the tails of its PDF and in
the high order moments of the scalar amplitude {Gao 1991b).

3.4 Effect of turbulence on the evolution of scalar PDF’s

As has been pointed out earlier, an initially Gaussian scalar field develops a non-
Gaussian PDF under the action of turbulence. To understand this phenomenon,
let us start with an ensemble of scalar fields which has a Gaussian distribution.
Under the action of a certain velocity field, the scalar PDF remains Gaussian, but
the decaying rate of the scalar variance is determined by scalar diffusivity and the
advecting velocity field 7. i.e.

1 2
P U] = s exb(~ o

where [9] indicates a functional of velocity field and P, is the PDF of scalar 4
conditioned on a given ¥. Hence, we have

P(3,1) = j P.(, () P([4], £)dl]. (9)

Obviously, P(¥,t) given by (9) has longer tails than a Gaussian distribution (Gao
& (O’Brien 1991b).

The above analysis can be formulated by introducing J, which represents the
stretching produced by the velocity field. The J-analysis was first proposed by
Kraichnan, who used a heuristic non-stochastic J-model to explained the inter-
mittency (exponential-like tails in velocity gradient PDF) in Burgers' turbulence
(1990a, 1990b). For a passive scalar field, J is generally a random functional of the
advecting velocity field. Therefore, a stochastic J-model is needed for turbulent
scalar fields.

The mapping analysis can be readily carried out if we consider a one-dimensional
case with random uniform stretching velocity field u = a{t)z. For an initial Gaussian
scalar field, the mapping solution yields

t
P=¢e " = t;Sexp(—»Dﬁ szt), (10)

where J measures the stretching of length scale by a certain velocity field and this
defines 7. Therefore,

2
- -é;f- — Jtee. (1)

J is generally a functional of the velocity field and is random in time. A Stratonovich
type stochastic differential equation

dJ = ~aJ3dt + /28T W, (12)
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can be written for J if the stretching velocity field a(t) is replaced by a white noise
process in time. Here a oc D, B is determined by velocity stretching and W, is a
standard Wiener process,

The Fokker-Planck equation for the PDF of J can be easily written as

oP
i (JSP)"*“ﬁ yildry; (JP)] (13)
It is shown that (13) represents both limits of pure diffusion and of pure convection
cases (Gao et al. 1991). The stationary solution for (13) can also be easily written
as

Hﬂ~mmm~—ﬂ) (14)

It should be noted that (14) does not apply as J — 0, where unsteady effects remain
important. The scalar PDF P(4), given ¢ ~ ¢ exp(—cJ?), can be derived from (14)
as

P#) = [ Pa(8)P(I)a1,

where Pg is the standard Gaussian distribution. A typical scalar PDF so obtained
is plotted in Figure 3. It shows similar non-Gaussian scalar PDF as those observed
in the DNS results (Figure 1(B)).

The PDF of the scalar gradient £ can also be obtained from (11) and (14) as

P(©) ~ i exnl 1/ 2). (15)

This clearly demonstrates the exponential-like tails for the scalar gradient PDF,
similar to that derived by Kraichnan for velocity gradient in Burgers’ turbulence
(1990a, 1990b). These tails indicate the expected intermittency of the scalar gra-
dient field and are widely observed in experiments and DNS. 643 DNS have been
conducted for both turbulent and pure diffusion cases. It is shown by the DNS that
while the scalar gradient remains a Gaussian distribution for the pure-diffusion case
(Figure 4(A)), the gradient of a turbulent scalar field clearly develops exponential-
like tails (Figure 4(B)).

3.5 Implementation of mapping for reacting flows

A scheme has been developed for implementing the mapping closure model for
single-scalar turbulent reacting flows. The results are in excellent agreement with
the DNS data. For more details, see the report by L. Valifio in this volume.

4, Future plans

It is important to find practical schemes for implementing the available closure
models, especially for multispecies reactlng cases. Three issues are involved.

First, the dimension of the problem increases with increasing species number,
thus making numerical calculations of multispecies PDF very difficult using the
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FIGURE 3. A typical PDF of a scalar field (initially Gaussian distributed) in a
turbulence field.

traditional finite-difference method (Pope 1990). The Monte-Carlo technique is
suggested to carry out such calculations. Preliminary results show this may be a
feasible technique.

Second, the time scale of scalar evolution process under turbulence advection
must be modeled for practical problems. More detailed studies will be conducted
to answer two questions: 1) How does turbulence affect the scalar evolution? and
2) Does representing the turbulent effect by a single time scale cause much error
in calculating terms that are of practical interest? Both of these questions concern
turbulent mixing theory, and the second question is related to the application of
the PDF approach to study of turbulent reacting flows. OQOur results show that
the low order statistics, which are of interest in practical problems, are not greatly
affected by the “tail” effects. Thus, detailed interactions between velocity and scalar
fields, although theoretically of great interest, may not render substantial practical
improvement. If this is true, our implementation of the PDF approach will be much
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FIGURE 4(a).

Normalized PDF of a scalar gradient developed from an initially

Gaussian distribution (0¢(0) = 5.263) under pure-diffusion. o = 3.661.

simpler.

Third, to deal with problems of turbulent combustion, the current research should

be extended to more general cases involving several scalar fields in non-homogeneous
turbulence. The key issue is to develop methods that are workable under available
resources at relatively low cost compared with the DNS method. The feasibility of
mapping closure to such complicated cases is not obvious and will be investigated.

Acknowledgment

The non-Gaussian tails of the scalar PDF in a turbulence field was first pointed
out by Dr. Y. Kimura. The theoretical study of this problem is an on-going collab-
oration among Dr. R. H. Kraichnan, Dr. Kimura and myself.



PDF method for turbulent scelar fields 235

T r v T v Y v ' v .
- D ]
-___Elq ]
L 0., -

D\‘
- n . "
o™
oy
-1 o
10 o', -
L o -
B [y -
L o i
L a' 3
n ﬂ‘\ -
- Ei‘ E
0
L ‘\U -
% 5O
vl %0
—2 1

b-s. 10 ~ ‘\‘ nu -
N L g 7
[ A .
. [y -
- \‘ UU =
- ‘\ a -

LY
1
- \“ Op -]
5 Y a -
]
| 1
i oo"
_y 1
107 . ' o
X 0 gigma=3.715 Y N
e 1] -
- \
F | ___Gaussian E o
" L
3.10“4 [ . | A ) . | \ | i
4] i 2 3 4 4]
Ploy

FIGURE 4(B). Normalized scalar gradient PDF in homogeneous turbulence (de-
veloped from a similar initial field as in 4(A), ¢¢(0) = 5.263). o¢ = 3.715.
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