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Monte-Carlo implementation of mapping
closures: application to chemical reacting flows

By Luis Valifie

1. Motivation and objectives

1.1 Motivetion

A promising approach for solving chemical reacting turbulent flows is to use the
one-point probability density function (PDF) of the fields of interest (Lundgren,
1969). The main advantage of the PDF methods lies in the chemical terms being
closed (Dopazo & O’Brien, 1974; Pope, 1985). The PDF gives as much informa-
tion as the statistical moments of every order, but the price paid is a much more
complicated equation. In every point of space and time, we have to know a func-
tion of several variables, the PDF, instead of a handful of numbers representing the
statistical moments, In order to solve numerically such an equation with so many
variables, Monte-Carlo methods are most suitable and have allowed the solution of
flows of industrial interest (Pope, 1985; Haworth et al., 1990).

The major stumbling block in the PDF formulation is to close the diffusion term.
A new family of models, the mapping closures (Chen et al., 1989), seems to be very
promising overcoming this difficulty. Notice, however, that an external characteris-
tic dissipation time has to be provided. Monte-Carlo methods have been suggested
to implement the one-scalar mapping closure for diffusion in homogeneous turbu-
lence. But they have not been able to properly treat complex chemical reactions
because the mapping affects the whole equation and greatly complicates the chem-
ical terms, a defect shared by any other scheme in the multispecies case (Pope,
1991). A fractional step technique (Yanenko, 1971) is used to solve this problem.

1.2 Objectives

The first objective of this research is to solve the PDF equation of one reacting
scalar in a constant density homogeneous turbulent field with a Monte-Carlo tech-
nique, using a mapping closure for the diffusion term. The second objective is to
solve a similar problem for the multispecies case. The choice of a suitable method
to calculate the needed characteristic time-scale should follow the accomplishment
of these two objectives. Further extensions to more complex flows are also the aim
of this research.

2. Accomplishments

The single-scalar case has been solved and is explained in the rest of this section.
The multispecies case is still under development. Although there are some prelimi-
nary results for the latter case, more work is required before it can be published.




238 Luis Valivio

2.1 Background
Let ¢(x,1) be a reacting scalar field that obeys the equation (for constant density)

%:1‘ +u-Ve=xVic+ 8(e), (1)

where u is the turbulent velocity field, x is the molecular diffusivity coefficient,
S(¢) is a unimolecular chemical source term, and x and ¢ denote the space and time
variables respectively. Both ¢ and u are statistically homogeneous.

The equation for the scalar PDF P.(%;t) is (Dopazo & O’Brien, 1974)

oP, i o
5 w—% [(nV2c|c=¢>P¢] —%[5(¢)Pc]a (2)

where 1 stands for ¢ in the probability space and (| ¢ = %) means expected value
conditioned on ¢ = 9. Notice that the chemical term is closed in this formulation,
while the mixing one remains open.

A monotonically increasing mapping X can be defined between a time indepen-
dent zero-mean one-variance isotropic multivariate Gaussian reference field cp(x)
and a surrogate scalar field ¢*(x,1):

1) = X (eal;) 3)
The mapping closure assumption identifies all the statistics of the surrogate and
real fields (Pope, 1991), i.e. <|Vc’|2> would be equal to <IVc|2>
It is straightforward to show that X obeys the equation (Chen et al., 1989)

i) a 2
5 =< (valt) |- 2 S 4 son), (@)

where <|ch[2> can be related to <]Vc|2> using the chain rule on equation(3) (Chen

et al., 1989)
(j9el?) = <(—§—5)> (iveol?). %)

It should be noted that the scalar dissipation rate, ¢, = <n|ch|2> or some related

quantity, as a characteristic variance dissipation time, has to be provided by some
other means, for example, using the standard k-¢ equations.

The relation between the PDF of the reference field P,(19) and that of the real
one is (Chen et al., 1989)

Pe(9st) = P, %)(gf) : (6)

We need to solve the mapping equation (4), and equation (6) will provide us
with the solution for P,. Gao has solved the mapping equation analytically for
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non-reacting flows (Gao, 1991), but an analytical solution is not possible for the
general reacting case.

2.2 Monte-Carlo implementation

A Monte-Carlo method which numerically solves equations (2) and (4) is de-
scribed next, The approach for obtaining P is slightly different from that employed
in the previous section. The fractional step method is applied to equation (2), solv-
ing first the chemical term, which is closed, and then the mixing one using an inert
scalar mapping closure. Equation (6) will not be employed.

2.2.1 Chemical fractional step

The real scalar PDF P.(¢;1) is represented by N stochastic particles with scalar
values ¢{9)(t),

N
Pt = 5 206 (¥ - 0. @

The chemical term in equation (2) yields for ¢(¥) the evolution equation (Pope,
1985)

et + A1) = (1) + 8 (e O(1)) A, (8)

where the scalar subindex indicates the current fractional step, ‘1’ in this case. The
new values obtained for the stochastic particles from the previous equation will be
the initial values for the next fractional step, i.e., in the next subsection we take
C(g)(‘)(t) = C(l)(‘)(t + At).
2.2.2 Mizing fractional step
In this fractional step the mixing term, closed by the mapping equations of the

section 1 (with the chemical term removed), is considered. First, X (1y;%), the
mapping at the beginning of this fractional step, has to be set. To do so, a static
Gaussian reference field is represented. This is done by N sorted particles cgJ )
obtained at the very beginning by a normalized Gaussian number generator. After
sorting the N particles 0(2)('1) representing the real PDF (or surrogate PDF, both
fields have the same one-point probability density function), X is set as a discretized
function

cmin = X(—o0;t),

c(j)(t)=X(c,(]J);t) y 7=1...,N, (9)

emaz = X(oo;t),
where the ‘2’ subindex is dropped for easier reading, cmaz and emin are the upper
and lower bounds respectively for the real scalar field, and j indexes are {(and will
be) used to indicate that particles are sorted.

We want to obtain X (3o;t + At), the mapping at the end of this fractional step,

that will allow us to obtain the new real field, by means of the equation (9) applied
at 1+ At.
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Using the same idea of Valifio et al.(1991), we define a distribution function
F(1o;1) as

X(o;t) — emin

si) = .
F(dos2) cmaz — emin (10)
Its ¢ derivative, f(1o;t), is a PDF, and from the previous equation,
f(ost) = QE%—Q (emaz — emin)™? . (11)
0

The PDF f(10;t) can be represented (see equation (7)) by N particles cg.j )(t) that

are obtained from N uniform distributed random particles v(¥) by (Abramowitz,
1965)

D) =FWe), j=1,...,N, (12)

where discretized F is known at ¢ from equations (9) and (10), and linear interpo-
lation can be used when needed.

We want to know ¢ f"' (t + At), the representation of f(3p;t + Af). From their
value, we will be able to determine X at ¢ + At.

Taking %o derivatives in equation (4) (with the chemical term removed), yields
(Valifio et al.,, 1991)

aa{ <|ch|2) [ 1) 59 ('/’0 f)+ 3¢2} (13)

Equation (13) is the transport equation for a La,ngevm diffusion process. Notice that
keeping the chemical term in the equation would yield an impracticable nonlinear
integro-differential equation.

The values of ¢ ’)(Hw At) can be deduced now from the previous equation (Valifio
& Dopazo, 1991)

Dt + At) = P(2) ———-——n<lvc°|2> Oy at+ (25 {Veo?) a8)" e9), (14
Pt +80 =P+ —otPwar+ (2 (Ival) a0 €00, 9

where £() is a normalized Gaussian variable, chosen independently at every time
step. The value of <|ch|2> is deduced from the provided external characteris-

tic time and equation (5), smoothing the mapping derivative obtained from the
discretized mapping by central differences.

Notice that F(t;t+ At) is the integral of f(1o;+ At), so it can be represented
as

N
Flost+ ) = = S B (o — st + 0O, (15)

i=1
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where H stands for the Heaviside function,

1w ={7 350}

From equations (10) and (15), we can get a set of discretized values of X at ¢4 At

emin = X (—o0;t + At),
cmin + (emaz — cmin)v(j) =X (cg.j)(t + At);t + At) , i=1,...,N, (16)
cmaz = X(oo;t + At).

Finally, using equation {9),
D+ at) =X (5t +At), j=1,...,N, (17)

we get the new values representing P.(v;t + At). Linear interpolation for X can
be used when needed.

2.9 Numerical results

A Monte-Carlo code has been developed following the previous ideas. Its results
have been tested against different set of DNS data, for inert, linear reacting, and
second order reacting scalars and for different Damkhéler numbers (Da). Details
about the DNS can be found in the work by Valifio & Gao (1991).

In all cases, 10° sample points have been taken, although 10* are enough to grasp
the low order moment statistics. Every time-step takes 1.5 seconds CPU time on a
Cray Y-MP, running on one processor. A two eddy-turnover {ime run requires about
1200 time-steps of size {100 max (wq,w.,)]—l, where w, and w, are characteristic
frequencies for scalar dissipation and reaction, respectively. The definitions of these
quantities are

Da = wy/w,,

_ &
YT ey 2
wg = ke ™Y,

where n equals to 1 (linear reaction) or 2 (second order reaction), k. is the reaction
constant and ¢’ denotes the fluctuating part of the scalar. The definition and values
of the eddy-turnover time, //u, used to non-dimensionalize the time, can be found
in the cited article by Valifio & Gao (1991).

To empirically prove the convergence of this numerical method, several runs of
the code have been made, randomly choosing in every time step the order of the
fractional steps, and the results compared to those obtained when prescribing this
order. The results were indistinguishable. It should also be remarked that Monte-
Carlo methods converge as 1/N(1/?) and that the CPU time requirement for the
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present implementation varies practically linearly with the number of stochastic
particles. For most practical purposes, 10 particles are enough, and the CPU time
required per time-step in this case is 0.15 seconds.

Figures 1 to 10 show the comparisons between Monte-Carlo and DNS resulis.
Although the height of the PDF’s peaks are slightly underpredicted when the mix-
ing is dominant (and hence the effects of the mapping closure), the agreement is
remarkable. The means and variances predicted reproduce the DNS results. It is
remembered that the characteristic frequency was chosen to fit the data of the inert
scalar run, and it has the same value in all cases.

In the inert scalar case, the skewness and flatness predicted by the mapping clearly
tend to the Gaussian values, but the DNS data flatness overshoots the corresponding
Gaussian value of 3. Eswaran and Pope (1988) observed the same behavior in their
simulations, and they claimed that the flatness returns to 3 after a few more eddy-
turnover times. This overshooting cannot be reproduced by the mapping closure in
its current form (and, logically, by its Monte-Carlo implementation), which implies
an asymptotic relaxation without crossing the Gaussian values. A similar kind of
behavior can be observed in the reacting case. The Monte-Carlo calculation of
skewness shown in figure 9 indicates a slightly greater tendency to recover the zero
values than indicated by DNS data. The flatness evolutions predicted by the Monte-
Carlo simulations in figure 10 show a more steady path towards Gaussianity without
any kind of oscillation. A new mapping closure model now under development is
supposed to overcome this difficulty (Gao & Kraichnen, 1991).

1.2
1 I
0.8

(y;1)

0.6 1

AL ]

04 ¢t

P

021
0

1.5 1.5

FiGURe 1.  Comparison of the PDF’s predicted by the Monte-Carlo mapping
closure (—-o— tufl = 022 ; —a— tu/l = 0.42 ; — a— tu/l = 0.62) with those
obtained by Eswaran and Pope’s DNS (—— tu/l = 0.22; 0.42; 0.62).
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FIGURE 2.  Comparison of the PDF's predicted by the Monte-Carlo mapping
closure (~-o— tu/l = 024 ; ~w—tu/l = 0.71 ; — =— tu/l = 2.08) with those
obtained by DNS data (--- - - tu/l = 6.00 ; tu/l = 0.24;0.71; 2.08). Inert
scalar.
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Ficure 3. Comparison of PDF’s predicted by the Monte-Carlo mapping closure
for three early times (—o— tu/l = 0.06 ; —a—tu/l = 0.19 ; —=— fu/l = 0.25) with
those obtained by DNS (— tu/l = 0.06; 0.19; 0.25). Da = 0.275.
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FIGURE 4. Comparison of PDF’s predicted by the Monte-Carlo mapping closure
for three later times (—o— tu/l = 0.31; —8—tu/l = 0.37 ; —a— tu/l = 0.55) with
those obtained by DNS ( tu/l = 0.31; 0.37; 0.55). Da = 0.275.
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FiqURE 5. Comparison of PDF’s predicted by the Monte-Carlo mapping closure
for three early times (—e— tu/l = 0.06 ; —a—tu/l = 0.19 ; —a— tu/l = 0.25) with
those obtained by DNS ( tu/l = 0.06; 0.19; 0.25). Da == 2.75.
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FiGUuRE 6. Comparison of PDF's predicted by the Monte-Carlo mapping closure
for three later times (—o— fu/l = 0.31 ; —a—tu/l = 0.37 ; —a—tu/l = 0.55) with
those obtained by DNS ( tu/l = 0.31; 0.37; 0.55). Da = 2.75.
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FIGURE 7. Comparison of the scalar mean evolutions predicted by the Monte-
Carlo mapping closure for different reactions (—-e— none ; —-a— linear Da=5.5 ;
— - second order Da=0.275 ; — -a~ second order Da=2.75) and those obtained
by DNS data ( all cases).
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FIGURE 8. Comparison of the scalar variance evolutions predicted by the Monte-
Carlo mapping closure and those obtained by DNS. Same cases as figure 7.
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FiGURE 9. Comparison of the scalar skewness evolutions predicted by the Monte-
Carlo mapping closure for different reactions (—-e— none ; —-a— second order
Da=0.275 ; — & — second order Da=2.75) and those obtained by DNS ( all
cases),
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FIGURE 10. Comparison of the scalar flatness evolutions predicted by the Monte-
Carlo mapping closure and those obtained by DNS. Same cases as figure 9.

2.4 Summary

A fractional-step Monte-Carlo technique has been used to predict the evolution of
a single-scalar PDF with chemical reaction, using a mapping closure for single inert
scalar diffusion to solve the fractional-step corresponding to the mixing term. A code
has been developed and its numerical results (mean, variance, skewness, flatness,
and PDF) have been tested against DNS data obtained using modified versions
of Rogallo’s code (Eswaran & Pope, 1988; Gao, 1990). The needed characteristic
time was chosen to fit the variance of the non-reacting case. Comparisons have
been done for the double delta initial PDF case and different Damkholer numbers
in forced homogeneous turbulence. The agreement is remarkable. An interesting
point is the difference between the steady tendency to Gaussianity shown by the
mapping predictions and the more erratic shown by the DNS. The CPU times
needed have been high, but still reasonable, showing the computational feasibility
of this technique.

3. Future plans

The extension of this methodology to several scalar PDF might be possible, al-
though the increasing dimensionality of the mappings with the number of scalars
(Pope, 1991; Gao & O’Brien, 1991) will greatly complicate the implementation. A
simpler multispecies diffusion closure based on the single-scalar mapping closure is
under development. This closure will make the problem much easier. The next step
will be the extension to homogeneous cases allowing mean gradients. Finally,a k—¢
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model or the two particles Durbin’s Lagrangian model may provide the character-
istic time or, alternatively, the new mapping by Gao and Kraichnan (1991) may be
considered.
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