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Linear stability analysis of
hypersonic boundary layers

By E. Guilyardi, J. J. W. van der Vegt! AND J. H. Ferziger?

1. Motivation and objectives

Transition to turbulence is of great importance in the design of the new generation
of hypersonic aircraft. Together with experiments, direct numerical simulations can
provide valuable information on this phenomenon which is yet not well understood.
In performing such simulations, linear stability analysis can be of enormous value
in providing physical understanding and initial conditions.

The growth or decay of infinitesimal perturbations superposed on laminar solu-
tions of the Navier-Stokes equations is the subject of the linear stability theory. The
basic equations governing the linear stability of parallel-flow compressible boundary-
layers are derived by linearizing the Navier-Stokes equations about the laminar flow.
These initial perturbations are usually assumed to be of the form

u'(w,y, 1) = d(y)e’*> Y, (1.1)

For temporal stability analysis, «, the streamwise wavenumber, is fixed and real
and w, the frequency, is complex; for spatial analysis, & is complex and w is fixed
and real. In temporal analysis, w = w, + iw;, w, is the frequency and w; is the
growth rate of the perturbation. These infinitesimal disturbances are imposed on
the compressible Navier-Stokes equations linearized about a laminar boundary layer
solution. If it is assumed that the mean flow is locally parallel, a set of five ordinary
differential equations is obtained. Of these, three are the second order momentum
t\equa.tions, one is the second order energy equation, and one is the first order conti-
nuity equation; thus the complete system is ninth order. For a complete review of
boundary-layer stability theory, see Reshotko (1976) or Mack (1984).

Mack (1984) showed that the second mode, which is active at supersonic speeds,
has considerably higher growth rates than the first mode (which are the Tollmien-
Schlichting waves). Mack further showed that the second mode is destabilized by
wall cooling, unlike the first mode. The second mode also offers the advantage that
two-dimensional waves are the most unstable second modes. We chose to begin by
performing calculations of second mode instability of a flat plate boundary layer
at Mach 4.5 as other computations are available for comparison (Erlebacher and
Hussaini, 1990).

With the aid of the temporal linear stability code COSAL written by Malik (1982,
1990), our goal is to generate profiles of the most unstable waves to provide initial
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data for the direct numerical simulation code written by van der Vegt (1990). The
COSAL code was modified in several ways to meet this requirement. Improvements
needed in the accuracy of the computation of the eigenfunctions were noted in van
der Vegt and Ferziger (1990). Various numerical methods and grid adaptation have
been applied in order to increase the accuracy of the results produced by the linear
stability code.

2. Accomplishments
2.1. The linear stability code : COSAL

3.1.1 Introduction

COSAL is a compressible linear stability analysis code for two-dimensional bound-
ary layers. It uses an iterative finite-difference method to compute the most unsta-
ble eigenvalue and requires an accurate estimate of the most-unstable eigenvalue.
A local eigenvalue search procedure improves the accuracy of the eigenvalue and
also yields eigenfunctions and group velocities. A global eigenvalue procedure was
developed which may be used when no estimate of the most unstable eigenvalue
is available. The elements of COSAL that were modified are first presented in the
following lines.

2.1.2 Mean flow laminar profile

The mean flow is a similarity solution for the boundary layer on a flat plate
obtained from the compressible form of the boundary layer equations; the resulting
ordinary differential equations are solved using Keller’s box method; see Cebeci and
Smith (1974) for details. The mean flow profile for an adiabatic flat plate at Mach
4.5 is given in Figure 1.

The grid used for the numerical discretization of the boundary-layer equations
was originally an exponentially stretched mesh which yielded high resolution near
the wall and rapidly increasing mesh spacings away from it.

2.1.3 Global method

When no guess of the most-unstable eigenvalue is available, COSAL uses a global
method that computes the whole eigenvalue spectrum. The finite differenced com-
pressible stability equations can be reformulated as a matrix eigenvalue problem

A% = wB9, (2.1)

where w is the eigenvalue and ® the discrete representation of the eigenfunctions.
The eigenvalues are the roots of the determinant equation

Det|B A - wI| =0 (2.2)

This is a standard matrix eigenvalue problem and is solved using the LR method.
The most unstable eigenvalue is the one that satisfies the conditions

w; >0
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Figurg 1. Mean Flow Profile for a Flat Plate, Mo, = 4.5, Pr = .7, Res = 8000.

and

)

2.1.4 Local method

When a guess for the most-unstable eigenvalue is available, it can be improved by
a local method which also computes the corresponding eigenfunction. In the original
version of COSAL, this was done with an inverse Rayleigh iteration procedure,
for which the theory was presented in Wilkinson (1965). Generalization of this
procedure to the compressible stability problem results in the following algorithm

(4 — i B)3*+D = Bal® (2.4)

(A — w B w+) = BT g® (2.5)
B (‘I’(k+l),;i@(k+l))

Wit = (TC+1) Fok+D)’ (2.6)

The iteration cycle is started with the guessed eigenvalue produced by the global
method, wg, and an assumed but arbitrary smooth profile for the eigenfunction ®(0)
and its adjoint W(0). The algorithm converges cubically for the eigenvalue, but the
eigenfunction converges at the square root of this value, as stated by Hackbusch
{1985). In Figures 2 and 3, we present the temperature and velocity components of
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the eigenfunction obtained after local computation for the adiabatic wall flat plate
at Mach 4.5. The corresponding eigenvalue (for the most unstable second mode) is

w = 2.04706 4 0.02283:.

We see that the fluctuations are not restricted to the vicinity of the wall and that
significant gradients appear up to a distance of several §* from the wall.

2.8, Modifications made to COSAL

2.2.1 General strategy

As noted in the previous section, the emphasis was originally on guaranteeing
the accuracy of the computation of the eigenvalue. Concerns about accuracy in the
eigenfunclions are rarely found in the literature. Most authors base their conver-
gence criteria on the eigenvalue and present the eigenfunctions as a by-product of
the eigenvalue calculation. However, to use the results of linear stability analysis as
- input to direct numerical simulations of transition, we need accurate eigenfunctions
and must, therefore, be concerned with the convergence of the eigenfunctions as
well the eigenvalue. Our assumption is that complete convergence of the eigenmode
problem is only achieved when both quantities are converged.

The main goal of this work is to improve the accuracy of the calculation of the
most unstable eigenfunction by the local procedure. This required improvement in
three different areas:

¢ use of improved grids in the mean flow calculation;

¢ abandonment of inverse Rayleigh iteration in favor of a Newton method in the
local calculations;

¢ implementation of an adaptive grid algorithm in local calculations.

Our objective is to keep the number of mesh points as low as possible (no more
than a few hundred) as the profiles obtained from the local computation will be
used in a simulation code that is much more expensive to run than the stability
code itself. These refinements are not needed in the global calculation which are
only required to provide a reasonable estimate of the most-unstable eigenvalue.

2.2.2 New grids for the mean flow computation

By considering the truncation error inherent in finite-difference approximations,
Vinokur (1983) proposed new grid stretching functions based on the inverse hyper-
bolic sine. Using these stretching functions for the generation of mean flow grids
yields better accuracy for a given number of grid points than is obtained with an
exponentially-stretched mesh. We studied the effect of the new mesh generation
scheme on profiles prior to using them in local calculations.

2.2.9 Newton method for local computations

The original local eigenvalue convergence process (inverse Rayleigh iteration) has
been changed to Newton iteration which yields the same accuracy for both the
eigenvalue and the eigenfunction.
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FIGURE 2. Temperature Eigenfunction for a Flat Plate, second mode o = 2.25,

Mo = 4.5, Pr = .7, Res» = 8000.
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In symbolic form, the linear disturbances satis{y the system of ordinary differential
equations which can be written

L® = H, (27
where ® is the five-component vector defined by

~ ~ - + Bt T
{t,,5,T,9} .
The boundary conditions for Eq. (2.7) are

y=0; ¢l=¢2z¢4=¢5=0
{y — 00; 1,962,041, 05 — 0. (2.8)

For the local eigenvalue problem, Eqs. (2.7) are a block-tridiagonal system which
is solved using LU factorization. As Eq. (2.7) is homogeneous, in order to avoid
a trivial solution, one inhomogeneous boundary conditions is imposed at the wall.
Specifically, as proposed by Malik (1990), the boundary condition ¢;(0) = 0 is
replaced by ¢1(0) = 1. This is equivalent to normalizing the eigenfunction so that
the value of the pressure perturbation at the wall is unity. Since the pressure
does not vanish at the wall, this condition is appropriate. See the discussion in
Malik (1990) for other possible normalizations. A non-trivial solution may now be
obtained if w = wq, the correct eigenvalue. Newton’s method is then used to iterate
on w so that the missing boundary condition ¢,(0) = 0 is satisfied. After a solution
$ is obtained using the estimated value of wy, the correction Aw is determined from
the linearized equation

¢1(0) + 9-%:(,0—)4:0 =0, (2.9)

where ¢,(0) is known from the solution ® just computed; 8¢1(0)/0w is obtained by
solving

Lo = -3, (2.10)

The process is repeated until ¢;(0) vanishes within a preassigned tolerance.

We ran the local computation with this numerical method on the grid deseribed
above and the ecigenvalue kept with 10 significant digits of accuracy. At the same
time, the accuracy of both the eigenvalue and the eigenfunctions were checked by
regularly doubling the number of mesh points. Figure 4 presents the absolute error
in the real and imaginary parts of the frequency versus the number of grid points.
The slopes of the two lines confirm the second order accuracy of the method. Now
consider the eigenfunctions. Figure 5 presents the absolute error history for the
imaginary part of the temperature eigenfunction as the number of mesh points
is increased. After a minimum number of mesh points sufficient to capture the
structure of the eigenfunction is reached, the local maxima in the error in the
temperature eigenfunction decrease at the same rate as the eigenvalue error shown
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in Figure 4. With one thousand mesh points, we now obtain an accuracy of 10~3
compared to 5.102 with the inverse Rayleigh iteration.

2.2.4 Grid works

The grids used in linear stability analysis have a significant effect on the results.
As we are using a second order accurate numerical scheme, the grids need to be
very smooth, Following the grid trials for the mean flow, we tried the Vinokur grids
in the local calculations. Besides being smooth, they allow considerable control
of the distribution of the grid points, which is not the case with exponentially
stretched grids. The slopes at the wall and free-stream can be specified. It is also
possible to join different Vinokur grids while retaining smoothness at the junctions.
Finally, the number of grid points does not affect the shape of the grid. Several
Vinokur grids were tried in the local computation. The resulting changes in the
eigenvalue w is an indicator of how sensitive these computations are to the grid,
This naturally led us to implement an adaptive grid algorithm controlled by the
error in the eigenfunctions.

Numerous adaptive grid methods are available. Most of them can be divided
into two categories: displacement methods and refinement methods. The first type
used a fixed number of mesh points and the adaptation consists of moving the
mesh points from low-gradient regions to high-gradient regions. The second type
starts with a coarse mesh and adds points in high-gradient regions. In an attempt
to minimize the number of mesh-points, we first tried the displacement method
based on a error equidistribution variational process proposed by Eiseman (1987).
Although promising at low Mach number, this method was not able to handle the
very steep gradients in the hypersonic second mode eigenfunctions, especially in the
temperature eigenfunction. The main cause was the inability of the algorithm to
maintain the proper smoothness of the grid.

It was then decided to develop a grid-refinement method that would maintain the
required mesh smoothness. The algorithm is defined by the following steps :

(1) The initial grids, Gy and G, are Vinokur grids of 41 and 81 points;

(i) The eigenfunctions computed on G; and G;_; are compared and estimates of
the error are constructed. Refinement intervals are introduced where the solution
error is greater than a specified ¢;

(tit) The number of points on each refinement interval is doubled by adding the
mid-points of the old grid;

(iv) Smooth connection between new grids and the old ones is assured by a data-
passing scheme;

(v) repeat steps (ii} - (iv) until no more refinement intervals are found.

The main difficulty was the choice of interpolation method. To avoid the wiggles
that appear with B-spline interpolation, we used the interpolation method proposed
by Akima (1970). This method is based on piecewise cubic polynomials. The slope
is determined using a second-order geometric rule which leads to very “natural
looking” and smooth grids. The junctions between the old parts of the grid and
new the parts generated with Akima's method were made from fifth-order B-splines.
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This new method was first tested on a Mach 0.5 case for which the eigenfunctions
are smooth. The iteration process converged rapidly (in less than 10 iterations) for
e & 10~5. For lower values of ¢, the first 10 iterations simply doubled the points
everywhere thus producing a huge number of grid points. This demonstrated the
need for early capture of the significant gradients. Consequently, to obtain very low
error (say € ~ 1077), we first need to converge for an intermediate value of ¢ and
then restart the process on the resultant grid with a lower value of €.

This process is illustrated by Figure 6. We see the capture of three high-gradient
regions during the refinement process, Convergence to € = 10™* is obtained on the
sixth grid. Iteration continues with ¢ = 10™° until convergence is obtained on the
ninth grid. Figures 7 and 8 show the accelerated convergence of the eigenfunctions
due to the capture of those layers.

In Figure 7 we plot the difference between the converged eigenfunction obtained
with ¢ = 107 and the solutions on the intermediate grids. Note the big jump
between the last two results. This should be compared to the convergence history
in Figure 5. In Figure 8, we compare the converged solution for ¢ = 10~5 to
the solutions obtained on all intermediate grids, including those of Figure 7. It
is interesting to note that these “jumps” in the eigenfunction are accompanied by
corresponding “jumps” in the eigenvalue. The eigenvalues obtained on the various
grids of Figures 7 and 8 are given in Table 1.

Grid (# of points) w

1(41) 6.224F — 2 + 2.727E — 3i
2 (81) 6.224F — 2 + 2.766 E — 3i
3 (161) 6.224E — 2 + 2.775E — 3i
4 (321) 6.224F ~ 2 4 2.933E — 34
5 (467) 6.224F — 2 + 2.933E — 3
6 (823) 6.242F — 2 + 4.627TE — 3:i*
7 (1081) 6.242E — 2 + 4.627E — 3i
8 (1485) 6.242F — 2 + 4.627E — 3i
9 (2791) 6.342F — 2 + 4.266E — 3i*

TABLE 1. Most Unstable Eigenvalues found by Local Grid Adaptation Method,
(* denotes new structure captured).

To verify that the solution is not jumping from one eigenvalue to another, we
ran the global calculation using the same adapted grid and found the same most
unstable eigenvalue. This confirms our assumption that complete convergence of the
eigenmode problem is achieved only when both the eigenvalue and the eigenfunction
are converged.

Running this adaptive process for the Mach 4.5 case led to convergence in eleven
iterations to e == 10~%. The adaptive process was not able to continue because the
B-spline caused increasing wiggles in the grid. A new adaptive method is being
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FIGURE 6. Grid Adaptation in Local Calculation, My, = 0.5, Res. = 2000.
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developed to avoid that phenomenon (see future plans). The final number of grid-
points was about 1500, which is too many to use in direct numerical simulation.
We reduced this number by taking every fifth point to create a 300 point grid which
has the same structure as the 1500 point one. Using these eigenfunctions in the
simulation code improved its performance. Several CPU hours were saved on a
CRAY Y-MP because the simulation code did not have to adjust the eigenfunction
shape before being able to simulate their growth.

These encouraging results show that the eigenmode problem is now being solved
accurately. During this study, it was found that accuracy requires capture of the
relevant physical layers in the temperature and velocity profiles. Once this is real-
ized, it becomes possible to ensure convergence of the eigenvalue and eigenfunction
with a relatively small number of grid points. Perhaps just as importantly, the
adaptive technique yields as a by-product a grid which is nearly ideal for the direct
sitnulation of transition,

3. Future plans

e In order to decrease the number of points needed to obtain the required ac-
curacy, a fourth order compact difference scheme will be implemented in the local
calculations. This will also reduce the smoothing requirements for the grids used in
these calculations.

¢ Because the resolution required for a given error is not uniform and is unknown
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in advance, an adaptive grid will probably be required in the simulations of transi-
tion. Although they are not really needed in the instability calculations which are
only one-dimensional, this is an ideal place to test them prior to their installation
in the multi-dimensional code. The results reported here are an encouraging first
step in that direction.

¢ As the results of the stability code are to be used as input to the three dimen-
sional code and small changes in the eigenfunctions can result in large effects in the
transition simulation, it is important that the grids used in the two calculations be
as similar as possible. We, therefore, intend to allow the DNS code and the stability
code to communicate directly to ensure consistency,
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